論文

査読有り
2015年9月

Computational study of the dynamics of two interacting bubbles in a megasonic field

ULTRASONICS SONOCHEMISTRY
  • Naoya Ochiai
  • ,
  • Jun Ishimoto

26
開始ページ
351
終了ページ
360
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.ultsonch.2015.04.005
出版者・発行元
ELSEVIER SCIENCE BV

Clarification of the mechanism of particle removal by megasonic cleaning and control of cavitation bubbles in the megasonic field are essential for cleaning of nanodevices without pattern damage. Multiple bubble interactions complicate the mechanism of particle removal. Therefore, it is important to understand multiple bubble dynamics to clarify the mechanism of particle removal by megasonic cleaning. In the present study, the dynamics of two bubbles in a megasonic field with several initial radii and initial separation distances were simulated by numerical analysis using a compressible locally homogeneous model of a gas-liquid two-phase medium. The present numerical method simulated the various complex behaviors of two bubbles, which are repulsive motion, coalescence, periodic and stable motion of the separation distance, and bubble breakup. The initial separation distance strongly affected the behavior of the two bubbles because the effect of the secondary pressure induced by the oscillation of one bubble on the other bubble depends on the separation distance. In particular, when the equilibrium radii are larger than the resonant radius and the radius of one or both bubbles is close to the resonant radius, the bubbles can show characteristic behaviors, such as periodic and stable motion of the separation distance. (C) 2015 Elsevier B.V. All rights reserved.

リンク情報
DOI
https://doi.org/10.1016/j.ultsonch.2015.04.005
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000355024300044&DestApp=WOS_CPL
ID情報
  • DOI : 10.1016/j.ultsonch.2015.04.005
  • ISSN : 1350-4177
  • eISSN : 1873-2828
  • Web of Science ID : WOS:000355024300044

エクスポート
BibTeX RIS