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INTRODUCTION

During spermatogenesis, initiation of meiosis is one of 
the most noteworthy events that coincides with spermato-
cyte differentiation. Meiosis is a specialized cell cycle 
that produces haploid gametes from diploid cells. Mei-
otic entry occurs concomitantly with pre-meiotic S phase 
and is followed by meiotic prophase. Meiotic prophase 
is equivalent to G2 phase, but is prolonged to ensure 
the completion of numerous meiosis-specific chromosome 
events. During meiotic prophase, chromosomes are 
reorganized into axis-loop structures, which provide the 
structural framework for meiosis-specific events. Homol-
ogous chromosomes (homologs) then undergo pairing, 
synapsis and meiotic recombination, yielding crossovers 
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Meiosis is a crucial process for spermatogenesis and oogenesis. Initiation of 
meiosis coincides with spermatocyte differentiation and is followed by meiotic 
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osis-specific chromosome events. During meiotic prophase, chromosomes are 
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discovered MEIOSIN (Meiosis initiator), a DNA-binding protein that directs the 
switch from mitosis to meiosis. This review mainly focuses on how MEIOSIN is 
involved in meiotic initiation and the meiotic prophase program during spermato-
genesis. Further, we discuss the downstream genes activated by MEIOSIN, which 
are crucial for meiotic prophase-specific events, from the viewpoint of chromosome 
dynamics and the gene expression program.
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called chiasmata that are physical linkages between the 
homologs (Baudat et al., 2013; Keeney et al., 2014; Zickler 
and Kleckner, 2015; Cahoon and Hawley, 2016). During 
these processes, chromosomes undergo dynamic move-
ment to facilitate homolog pairing and synapsis, driven 
by telomeres attached to the nuclear envelope (Shibuya 
and Watanabe, 2014). In this way, the chromosome 
architecture and dynamics during meiotic prophase are 
markedly different from those in mitosis.

Completion of meiotic prophase is regulated by sexu-
ally dimorphic mechanisms, so the transcription and 
chromatin status are altered in the subsequent post-
meiotic developmental program for sperm production and 
oocyte arrest/maturation. In spermatocytes, the comple-
tion of meiotic prophase is monitored under several lay-
ers of regulation such as the pachytene checkpoint and 
meiotic sex chromosome inactivation (Burgoyne et al., 
2009; Ichijima et al., 2012; Turner, 2015). Male meiotic 
prophase is accompanied by robust alterations of gene 
expression programs (Schultz et al., 2003; Shima et al., 
2004; Namekawa et al., 2006; Green et al., 2018; Grive et 
al., 2019) and epigenetic status (Kota and Feil, 2010; Sin 
et al., 2015; Maezawa et al., 2020) for post-meiotic sper-
miogenesis. However, the precise mechanisms by which 
this gene expression and epigenetic status are controlled 
under the meiotic prophase program is unknown.
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It has been a longstanding enigma what triggers the 
initiation of meiosis upon spermatocyte differentiation, 
and activates the subsequent meiotic prophase pro-
gram. Recently, we discovered MEIOSIN, which directs 
the switching from mitosis to meiosis (Ishiguro et al., 
2020). This review mainly focuses on the mechanism of 
meiotic initiation and the downstream meiotic prophase-
specific events controlled by MEIOSIN.

INITIATION OF MEIOSIS DURING  
SPERMATOCYTE DIFFERENTIATION

Meiotic initiation coincides with spermatocyte differ-
entiation. In mouse, retinoic acid (RA) and BMP sig-
naling, at least in oocytes, synergistically induce meiotic 
transcription (Bowles et al., 2006; Koubova et al., 2006; 
Miyauchi et al., 2017; Nagaoka et al., 2020). Upon stim-
ulation by RA, STRA8 (stimulated by retinoic acid gene 
8) is transiently expressed in postnatal testis prior to the 
entry into meiosis (Oulad-Abdelghani et al., 1996) (Fig. 
1). Since Stra8 knockout (KO) germ cells fail to undergo 
normal meiosis in male and female (Baltus et al., 2006; 
Anderson et al., 2008; Mark et al., 2008; Dokshin et al., 
2013), it has been assumed that STRA8 plays an essen-
tial role in the progression of meiosis. However, whereas 
Stra8 KO germ cells fail to undergo meiosis in the C57BL/6 
background (Baltus et al., 2006; Anderson et al., 2008), 
those in a mixed genetic background initiate but fail to 
complete meiotic prophase I (Mark et al., 2008). Thus, 
whether STRA8 is involved in the initiation of meiosis 
depends on genetic background. Furthermore, STRA8 is 
also transiently expressed in differentiating spermatogo-

nia long before their differentiation into spermatocytes 
(Mark et al., 2008; Zhou et al., 2008a, 2008b; Endo et 
al., 2015) (Fig. 1). This indicates that Stra8 expression 
alone is not sufficient for the induction of meiosis in sper-
matogonia, which raises the question of why meiosis is 
induced only in pre-leptotene spermatocytes, the phase 
of the second expression of STRA8, but not in spermato-
gonia despite the expression of STRA8. Thus, whether 
STRA8 is indeed required for meiotic initiation has been 
controversial.

By a proteomic approach, we screened STRA8-
interacting factors from mouse testes and identified 
MEIOSIN (Meiosis initiator), which was encoded by a 
hypothetical gene, Gm4969 (Ishiguro et al., 2020). As 
the gene information and the exon–intron prediction 
for Gm4969 in the database were yet to be correctly 
annotated, even extensive studies in the field with 
transcriptome approaches may have failed to recognize 
Gm4969. MEIOSIN protein possesses basic helix–
loop–helix (HLH) and high mobility group (HMG) box 
domains, implying a role as a DNA-binding protein 
(Fig. 2A). Meiosin mRNA showed a specific expression 
pattern in adult testis and embryonic ovary. Indeed, 
MEIOSIN and STRA8 were transiently co-expressed in 
pre-leptotene stage spermatocytes (Fig. 2B, 2C), which 
coincides with the S phase prior to meiotic prophase.

Whereas STRA8 is expressed both in differentiating 
spermatogonia and in pre-leptotene spermatocytes (Fig. 
2C), expression of MEIOSIN is restricted to pre-leptotene 
spermatocytes, despite the existence of a RA response ele-
ment in the 5′ region upstream of the Meiosin locus. It 
has been proposed that DMRT1 prevents premature 
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Fig. 1. MEIOSIN and STRA8 expression during spermatogenesis. Schematic illustration of spermato-
genesis. The periods of STRA8 and MEIOSIN protein expression and retinoic acid (RA) execution are 
shown along the developmental stages. STRA8 protein is expressed in differentiating spermatogonia 
and in pre-leptotene spermatocytes. MEIOSIN protein is expressed at the transition toward meiotic 
initiation in pre-leptotene spermatocytes. The pre-leptotene stage is defined as the time point that 
coincides with the S phase starting shortly before meiotic prophase. RA is secreted from Sertoli cells in 
the stage VII–VIII seminiferous tubules, which contain differentiating spermatogonia and pre-leptotene 
spermatocytes. AE: axial element.
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meiotic entry in spermatogonia by negatively regulating 
RA-dependent transcription (Matson et al., 2010). Since 
chromatin immunoprecipitation followed by sequenc-
ing (ChIP-seq) data showed that DMRT1 binds to the 
5′ region upstream of the Meiosin locus (Murphy et al., 
2015), DMRT1 may repress Meiosin expression in sper-
matogonia, which would explain why RA does not induce 
MEIOSIN expression and subsequent meiosis in differen-
tiating spermatogonia. Although the precise mechanism 
of Meiosin expression is yet to be fully investigated, the 
temporal expression of MEIOSIN ensures the proper tim-
ing of meiotic initiation in testis.

MEIOSIN DIRECTS THE SWITCH FROM  
MITOSIS TO MEIOSIS

In Meiosin-deficient testes, spermatocytes later than 
pre-leptotene stage do not appear, and consequently 

postmeiotic spermatids or sperm are absent, resulting 
in severe infertility (Fig. 3A, 3B). In Meiosin KO tes-
tes, STRA8 is still expressed and vice versa, implying 
that Meiosin and Stra8 expression are regulated inde-
pendently of each other. Notably, despite the expres-
sion of STRA8, Meiosin KO spermatocytes fail to enter 
meiotic prophase (Fig. 3C). It is also worth noting that 
in Meiosin KO, STRA8 largely remains in the cytosol 
rather than in the nucleus, suggesting that MEIOSIN 
is required for nuclear localization of STRA8 in pre-
leptotene spermatocytes. In differentiating spermatogo-
nia, where MEIOSIN is not expressed, STRA8 localizes 
to the nucleus (Fig. 2C). This suggests that the nuclear 
localization of STRA8 is independent of MEIOSIN in dif-
ferentiating spermatogonia, which further emphasizes 
that the expression of both MEIOSIN and STRA8 is 
required for the initiation of meiosis.

Consistent with this evidence, transcriptome analysis 
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Fig. 2. MEIOSIN is a STRA8-binding factor. (A) Schematic illustration of the domains in mouse MEIOSIN protein. (B) Seminifer-
ous tubule sections from adult WT mouse testis (eight-week-old) were stained as indicated. STRA8 and MEIOSIN proteins are co-
expressed in the pre-leptotene nuclei. Pre-lep: pre-leptotene spermatocyte. Pachy: pachytene spermatocyte. Round Sp.: round sper-
matid. (C) WT neonatal male mice were subjected to consecutive injection of the RA synthesis inhibitor WIN 18,446 from postnatal 
day 5 (P5) to P11, followed by RA injection at P12 to enrich pre-leptotene spermatocytes. Seminiferous tubule sections at P13 were 
stained as indicated. Pre-lep: pre-leptotene spermatocyte. Arrowheads: STRA8-positive/MEIOSIN-negative differentiating spermato-
gonia. Boundaries of the seminiferous tubules are indicated by dashed lines. Scale bars: 25 μm. Samples for the photo images (B, 
C) were prepared and the images acquired as described previously (Ishiguro et al., 2020).
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indicates that meiosis-associated genes, including those 
involved in the processes of meiotic chromosome orga-
nization, the meiotic cell cycle and spermatogenesis, are 
downregulated in Meiosin KO. This accounts for the fail-
ure of progression into meiotic prophase and subsequent 
maintenance of the meiotic cell cycle observed in Meiosin 
KO spermatocytes. Altogether, MEIOSIN plays a cru-
cial role in the initiation of meiosis and the subsequent 
meiotic program. In Stra8 KO, some spermatocytes still 
have the ability to enter meiosis but fail to complete mei-
otic prophase, indicating a phenotypic difference between 
Meiosin KO and Stra8 KO testes. A subset of meiotic 
genes is more strongly downregulated in Meiosin KO 
than in Stra8 KO, which may account for the phenotypic 
difference of a more severe pre-leptotene block in Meiosin 
KO than in Stra8 KO.

Since their spermatocytes do not enter meiosis, what 
happens to Meiosin KO testes? In Meiosin KO tes-

tes, mitotic prometaphase-like cells marked by his-
tone H3Ser10 phosphorylation accumulate to a high 
level. Moreover, the mitotic cyclin A2 is ectopically 
expressed in Meiosin KO spermatocytes, as if Meiosin 
KO spermatocyte-like cells are in the mitotic cell cycle, 
which are consequently eliminated by apoptosis. These 
observations suggest that Meiosin KO spermatocyte-like 
cells acquire precocious mitotic status soon after reaching 
the pre-leptotene-like stage. In summary, MEIOSIN is 
required for cell cycle switching from mitosis to meiosis.

MEIOSIN IN COLLABORATION WITH STRA8 
ACTIVATES THE MEIOTIC PROPHASE  

PROGRAM

It has been suggested that the gene expression pro-
gram for meiotic prophase is executed under RA signaling 
through either STRA8-dependent or -independent path-
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Fig. 3. MEIOSIN plays an essential role in meiotic initiation in testes. (A) Testes from eight-week-old WT and Meiosin KO. Scale 
bar: 2 mm. (B) Hematoxylin and eosin staining of sections from four-week-old WT and Meiosin KO testes. Spermatocytes in meiotic 
prophase and postmeiotic spermatids are absent in Meiosin KO testis. Scale bar: 250 μm. (C) Seminiferous tubule sections from 
eight-week-old WT and Meiosin KO testes were stained for SYCP3, STRA8 and DAPI. Spermatocytes that enter meiotic prophase 
are absent in Meiosin KO testes. Pre-lep: pre-leptotene spermatocyte; Pachy: pachytene spermatocyte. Round Sp.: round sperma-
tid. Note that STRA8 is localized in the nuclei in WT testes, and mostly remains in the cytoplasm in Meiosin KO testes. Scale bar: 
25 μm. Samples for the photo images (B, C) were prepared and the images acquired as described previously (Ishiguro et al., 2020).
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ways (Koubova et al., 2014; Soh et al., 2015). However, 
it remained elusive how STRA8 might be involved in the 
expression program for meiotic prophase. MEIOSIN 
possesses the HMG box DNA-binding domain (Fig. 2A), 
and interacts with STRA8. Indeed, ChIP-seq analy-
sis indicates that MEIOSIN and STRA8 share binding 
sites at promotor regions on the mouse genome (exem-
plified in Fig. 4A) with common DNA-binding motifs 
(Fig. 4B). MEIOSIN- and STRA8-binding sites over-
lap well at the transcription start site (TSS) regions, 
as revealed by CAGE-seq (cap analysis gene expression 

with sequencing) in the testis. Since meiotic gene pro-
moters in spermatogonia are often poised by the enrich-
ment of H3K4me2 and the loading of RNA polymerase 
II (Sin et al., 2015), one possibility is that at the tar-
get TSSs, MEIOSIN and STRA8 promote the release of 
paused RNA polymerase II, or stimulate the activity of 
the polymerase II-associated basal transcription machin-
ery, for a rapid and synchronous burst of transcrip-
tion. Indeed, it should be mentioned that some, if not 
all, of these MEIOSIN/STRA8-bound genes start to show 
weak expression just prior to meiotic entry, which is con-
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sistent with the observed upregulation of a broad range 
of genes after RA signaling (Koubova et al., 2014; Kojima 
et al., 2019). BMP signaling may also synergistically 
induce meiotic transcription through ZGLP1 (Nagaoka 
et al., 2020). Although the precise mechanism is yet to 
be investigated, MEIOSIN and STRA8 may amplify the 
transcription of these primed genes for meiotic entry.

Importantly, genes bound by both MEIOSIN and 
STRA8 are downregulated in Meiosin KO testes. Many 
of these genes have functions associated with meiotic 
prophase processes such as meiotic chromosome dynam-
ics and recombination (Fig. 4C), which is consistent 
with the STRA8 ChIP data (Kojima et al., 2019). Nota-
bly, MEIOSIN and STRA8 bind to their own promoter 
regions, which may realize rapid expression during the 
short period of meiotic initiation by an autoactivation 
feedback loop. Interestingly, among the MEIOSIN- and 
STRA8-bound genes are the Meioc and Ythdc2 genes, 
whose products are suggested to destabilize mitotic cell 

cycle-associated transcripts (Abby et al., 2016; Soh et al., 
2017). In Meioc KO and Ythdc2 KO mice, germ cells ini-
tiate but fail to maintain the meiotic prophase, showing 
misexpression of mitotic cyclin A2 and metaphase-like 
chromosome condensation (Abby et al., 2016; Soh et al., 
2017; Jain et al., 2018). Since a similar mitotic status is 
also observed in Meiosin KO and Stra8 KO mice (Mark 
et al., 2008; Ishiguro et al., 2020), the cell cycle switch-
ing program from mitosis to meiosis may be executed 
through the activation of Meioc and Ythdc2. This implies 
that a MEIOSIN–STRA8 complex directly activates the 
transcription of a subset of critical meiotic genes (Fig. 
4D). Given that meiosis starts from the S phase of the 
cell cycle (Pratto et al., 2021), the meiotic prophase pro-
gram may be installed on S phase by robust activation of 
MEIOSIN/STRA8 target genes.
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33Initiation of meiosis in mouse spermatogenesis

MEIOSIN/STRA8 TARGET GENES UNDERLIE 
MEIOTIC CHROMOSOME ARCHITECTURE

The chromosome structure during meiosis is markedly 
different to that in mitosis. The MEIOSIN–STRA8 com-
plex directly activates the transcription of a subset of crit-
ical meiotic genes that are required for meiotic chromo-
some architecture (Fig. 4C). During meiotic prophase, 
chromosomes are organized into proteinaceous structures 
termed the axial element (AE) or chromosome axis, whose 
main components are encoded by MEIOSIN/STRA8 target 
genes, Sycp2 (Yang et al., 2006), Sycp3 (Yuan et al., 2000), 
Hormad1 (Shin et al., 2010) and Hormad2 (Wojtasz et al., 
2009) (Fig. 5A). The AE provides a scaffold to recruit 
meiotic recombination machineries that promote double-
strand break (DSB) introduction and DSB repair (Baudat 
et al., 2013). Many of the factors in these processes 
are encoded by MEIOSIN/STRA8 target genes. For 
example, SPO11 (Baudat et al., 2000; Romanienko and 
Camerini-Otero, 2000), TOP6BL/Gm960 (Robert et al., 
2016; Vrielynck et al., 2016), DMC1 (Pittman et al., 
1998; Yoshida et al., 1998), PRDM9 (Baudat et al., 2010), 
MEIOB (Luo et al., 2013; Souquet et al., 2013; Xu et al., 

2017), ANKRD31 (Boekhout et al., 2019; Papanikos et al., 
2019), HSF2BP/MEILB2 (Zhang et al., 2019) and MSH5 
(de Vries et al., 1999) are involved in meiotic recombina-
tion.

The AE also underlies the structural basis for the 
assembly of the synaptonemal complex (SC), which medi-
ates tight association of homologous chromosomes and 
promotes recombination (Fig. 5A). SC components are 
also encoded by MEIOSIN/STRA8 target genes, such as 
SYCE1 (Costa et al., 2005), SYCE2 (Bolcun-Filas et al., 
2007), SYCE3 (Schramm et al., 2011) and TEX12 (Hamer 
et al., 2006).

During these processes, telomeres are anchored to the 
nuclear envelope (NE) by meiosis-specific telomere and NE 
proteins (TERB1 (Shibuya et al., 2014), TERB2, MAJIN 
(Shibuya et al., 2015), KASH5/CCDC155 (Morimoto et 
al., 2012) and SUN1 (Ding et al., 2007)) that are also 
encoded by MEIOSIN/STRA8 target genes (Fig. 5B). By 
telomere-driven force, chromosomes undergo dynamic 
movement to facilitate homolog pairing and synapsis 
(Shibuya and Watanabe, 2014). It should be mentioned 
that some well-known meiotic genes such as Hei10, Msh4, 
Six6OS and Rec8 are not bound by the MEIOSIN–STRA8 
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complex, suggesting that a subset of the meiotic genes is 
regulated independently of MEIOSIN and STRA8, as in 
the case of Rec8 (Koubova et al., 2014).

In meiosis, the cohesin complex plays crucial roles, not 
only in sister chromatid cohesion but also in numerous 
aspects of meiosis-specific chromosomal dynamics such 
as AE formation, homolog pairing/synapsis and meiotic 
recombination. Notably, the cohesin complex in meiosis 
differs from that in mitosis (Ishiguro, 2019) (Fig. 5C). In 
mammalian germ cells, there are two types of meiosis-
specific cohesin complexes, one that contains REC8 
(Bannister et al., 2004; Xu et al., 2005) and another that 
contains RAD21L (Herrán et al., 2011; Ishiguro et al., 
2011, 2014; Lee and Hirano, 2011). In these cohesin 
complexes, mitotic cohesin subunits SMC1α and STAG1/

STAG2 are replaced by meiosis-specific subunits, SMC1β 
(Revenkova et al., 2001; Biswas et al., 2018) and STAG3 
(Fukuda et al., 2014; Hopkins et al., 2014; Llano et al., 
2014; Winters et al., 2014; Ward et al., 2016), respec-
tively. Expression of the genes encoding meiosis-specific 
cohesin subunits is activated by MEIOSIN/STRA8, except 
for Rec8 whose expression seems to be regulated by RA 
(Koubova et al., 2014). It has been shown that a “cohe-
sin axial core” is pre-formed between sister chromatids, 
which subsequently acts as an underlying framework for 
the formation of the AE (Pelttari et al., 2001; Fujiwara 
et al., 2020). Since AE formation is abolished in the 
absence of either of the meiosis-specific cohesin subunits 
(Llano et al., 2012; Ishiguro et al., 2014), the meiotic 
cohesin axial core assembled by meiosis-specific cohesin 

B
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complexes plays an essential role in AE formation. It is 
known that mitotic cohesin establishes chromatin loops 
by cooperating with CTCF, and forms topologically associ-
ated domains (TADs) in mitotic interphase nuclei (Zuin et 
al., 2014; Ghirlando and Felsenfeld, 2016; Gassler et al., 
2017; Haarhuis et al., 2017; Wutz et al., 2017). Whether 
the meiosis-specific cohesins play a role in the formation 
of TADs during meiotic prophase is currently unknown.

GENE EXPRESSION OF CHROMATIN  
COMPONENTS IS ALTERED BY ZFP541  
REPRESSOR COMPLEX PRIOR TO THE  
COMPLETION OF MEIOTIC PROPHASE

In spermatocytes, meiotic prophase is accompanied by 
robust alterations of gene expression programs (Schultz 
et al., 2003; Shima et al., 2004; Namekawa et al., 2006; 
Green et al., 2018; Grive et al., 2019) and chromatin sta-
tus (Kota and Feil, 2010; Sin et al., 2015; Maezawa et 
al., 2020) as well as by reorganization of the chromatin 
structure (Alavattam et al., 2019; Patel et al., 2019; Wang 
et al., 2019), for sperm production. At the pachytene 
stage of spermatocytes, the transcriptional program for 
post-meiotic development starts to take place (da Cruz 
et al., 2016; Ernst et al., 2019). The germ cell-specific 
Polycomb protein SCML2 is, at least in part, responsible 
for the suppression of somatic genes and the activation of 
late-spermatogenesis-specific genes in spermatocytes and 
in round spermatids (Hasegawa et al., 2015; Maezawa 
et al., 2018a, 2018b). However, gene activation mecha-
nisms during pachytene and late spermatogenesis largely 
remain unknown. Thus, for spermatocytes, pachytene 
exit is a critical developmental event for the subsequent 
spermatid differentiation, but how the completion of mei-
otic prophase is ensured prior to post-meiotic differentia-
tion remained elusive.

The Zfp541 gene, which encodes a zinc finger protein, 
has been identified as one of the MEIOSIN/STRA8 target 
genes (Horisawa-Takada et al., 2021). ZFP541 is also an 
interactor of KCTD19, which was discovered in KO screen-
ing of spermatogenic genes (Oura et al., 2021). ZFP541 
is expressed in spermatocytes and in round spermatids 
(Fig. 6A, 6B), and interacts with HDAC1/2 and germ cell-
specific KCTD19. Disruption of Zfp541 leads to defects 
in the completion of meiotic prophase, with a severe 
impact on male fertility (Fig. 6C). Thus, ZFP541 plays 
a critical role in promoting developmental progression 
of meiotic prophase toward completion in spermato-
cytes. Chromatin binding analysis of ZFP541 combined 
with transcriptome analysis demonstrates that ZFP541 
binds to and represses a broad range of genes whose 
biological functions are associated with the processes of 
transcriptional regulation and covalent chromatin modi-
fication (Fig. 7A). It is worth noting that most of these 
genes are generally expressed in broad cell types rather 

than being germ cell-specific. For example, these include 
Dnmt1, Dnmt3A (DNA methyltransferase), Ino80D, 
Chd1, Chd2, Chd3, Chd6 (chromatin remodeling), Kat6A, 
Kmt2C, Kmt2B, Kdm2A, Kdm5B, Ash1L, Bmi1, Jarid2, 
Ezh1, Ezh2, Ehmt1, Rnf2, Suz12 (histone modification) 
and Ctcfl (chromatin binding) (Fig. 7B). Notably, expres-
sion of these ZFP541-bound genes declines overall in pro-
phase spermatocytes and post-meiotic round spermatids, 
compared to spermatogonia. This, at least in part, leads 
to reconstruction of chromatin status for spermiogen-
esis. Thus, an HDAC1/2-containing ZFP541–KCTD19 
complex represses the transcription of a subset of criti-
cal genes that are involved in transcriptional regulation 
and chromatin modification prior to the completion of 
meiotic prophase. ZFP541 may trigger the reconstruc-
tion of the transcription network to promote the comple-
tion of prophase, finalize meiotic divisions, and proceed 
into spermatid production. Since ZFP541 and KCTD19 
are conserved only in mammals, it will be interesting to 
investigate whether a similar mechanism exists for the 
reconstruction of the transcription network that promotes 
the completion of prophase in other species.

CONCLUSION

MEIOSIN in collaboration with STRA8 directs meiotic 
entry upon spermatocyte differentiation. The initiation 
of meiosis occurs after the second induction of STRA8 
when both MEIOSIN and STRA8 are co-expressed. The 
temporal expression of MEIOSIN ensures proper timing 
of meiotic initiation in testis. The MEIOSIN–STRA8 
complex directly binds and activates the transcription of 
a subset of meiotic genes that are required for meiotic 
chromosome dynamics. Furthermore, the MEIOSIN–
STRA8 complex activates Zfp541, which plays a critical 
role in the regulation of the transcription network dur-
ing meiotic prophase. Therefore, MEIOSIN together 
with STRA8 acts as a master transcription factor for 
establishing and maintaining the meiotic prophase pro-
gram. Given that MEIOSIN and STRA8 bind to TSSs 
rather than to upstream enhancers, it will be interest-
ing to investigate the molecular mechanism that trig-
gers meiotic gene transcription. Since MEIOSIN and 
STRA8 are conserved in vertebrates, it is possible that 
the MEIOSIN/STRA8-mediated system acts for meiotic 
gene activation in other vertebrate species.

It should be mentioned that some targets of the 
MEIOSIN–STRA8 complex are hypothetical genes. These 
uncharacterized MEIOSIN/STRA8 target genes may play 
crucial roles in meiosis. Indeed, we have newly iden-
tified BRME1/4930432K21Rik among the MEIOSIN/
STRA8 target genes, which acts for the recruitment of 
BRCA2-RAD51 during meiotic recombination (Takemoto 
et al., 2020). Further investigation of MEIOSIN/STRA8 
target genes will shed light on new players in meiosis.
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