論文

査読有り 本文へのリンクあり
2018年5月10日

On the stability of a superspinar

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
  • Ken ichi Nakao
  • ,
  • Pankaj S. Joshi
  • ,
  • Jun Qi Guo
  • ,
  • Prashant Kocherlakota
  • ,
  • Hideyuki Tagoshi
  • ,
  • Tomohiro Harada
  • ,
  • Mandar Patil
  • ,
  • Andrzej Królak

780
開始ページ
410
終了ページ
413
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.physletb.2018.03.014
出版者・発行元
Elsevier B.V.

© 2018 The Author(s) The superspinar proposed by Gimon and Hořava is a rapidly rotating compact entity whose exterior is described by the over-spinning Kerr geometry. The compact entity itself is expected to be governed by superstringy effects, and in astrophysical scenarios it can give rise to interesting observable phenomena. Earlier it was suggested that the superspinar may not be stable but we point out here that this does not necessarily follow from earlier studies. We show, by analytically treating the Teukolsky equations by Detwiler's method, that in fact there are infinitely many boundary conditions that make the superspinar stable at least against the linear perturbations of m=l modes, and that the modes will decay in time. Further consideration leads us to the conclusion that it is possible to set the inverse problem to the linear stability issue: since the radial Teukolsky equation for the superspinar has no singular point on the real axis, we obtain regular solutions to the Teukolsky equation for arbitrary discrete frequency spectrum of the quasi-normal modes (no incoming waves) and the boundary conditions at the “surface” of the superspinar are found from obtained solutions. It follows that we need to know more on the physical nature of the superspinar in order to decide on its stability in physical reality.

リンク情報
DOI
https://doi.org/10.1016/j.physletb.2018.03.014
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85044160394&origin=inward 本文へのリンクあり
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85044160394&origin=inward
ID情報
  • DOI : 10.1016/j.physletb.2018.03.014
  • ISSN : 0370-2693
  • SCOPUS ID : 85044160394

エクスポート
BibTeX RIS