論文

査読有り 招待有り
2016年8月

Near-infrared indocyanine dye permits real-time characterization of both venous and lymphatic circulation

JOURNAL OF BIOMEDICAL OPTICS
  • Toshikazu Kurahashi
  • ,
  • Katsuyuki Iwatsuki
  • ,
  • Tetsuro Onishi
  • ,
  • Tetsuya Arai
  • ,
  • Katsunori Teranishi
  • ,
  • Hitoshi Hirata

21
8
開始ページ
86009
終了ページ
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1117/1.JBO.21.8.086009
出版者・発行元
SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS

We investigated the optical properties of a near-infrared (NIR) fluorochrome, di-beta-cyclodextrin-binding indocyanine derivative (TK-1), and its pharmacokinetic differences with indocyanine green (ICG). TK-1 was designed to have hydrophilic cyclodextrin molecules and, thus, for higher water solubility and smaller particle sizes than the plasma protein-bound ICG. We compared optical properties such as the absorption and fluorescence spectra, quantum yield, and photostability between both dyes in vitro. In addition, we subcutaneously injected a 1 mM solution of TK-1 or ICG into the hind footpad of rats and observed real-time NIR fluorescence intensities in their femoral veins and accompanying lymphatics at the exposed groin site to analyze the dye pharmacokinetics. These optical experiments demonstrated that TK-1 has high water solubility, a low self-aggregation tendency, and high optical and chemical stabilities. Our in vivo imaging showed that TK-1 was transported via peripheral venous flow and lymphatic flow, whereas ICG was drained only through lymphatics. The results of this study showed that lymphatic and venous transport can be differentially regulated and is most likely influenced primarily by particle size, and that TK-1 can enable real-time NIR fluorescence imaging of whole fluids and solute movement via both microvessels and lymphatics, which conventional ICG cannot achieve. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)

リンク情報
DOI
https://doi.org/10.1117/1.JBO.21.8.086009
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/27548771
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000388212300034&DestApp=WOS_CPL
ID情報
  • DOI : 10.1117/1.JBO.21.8.086009
  • ISSN : 1083-3668
  • eISSN : 1560-2281
  • PubMed ID : 27548771
  • Web of Science ID : WOS:000388212300034

エクスポート
BibTeX RIS