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Overview of JST OPERA Project

Resilient electric power and ICT (R-EICT) converged network infrastructure
technologies based on overall optimization of autonomous decentralized
cooperative control of DC microgrids Project leader: Prof. Taiich Otsuji
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- Optimal operation of DC Microgrid .
- Power exchange operation between DC Microgrids {@
- Job scheduling of renewal energy driven distributed micro dater center
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DC microgrid

Distributed power sources such as renewable energy and storage batteries

Local production and consumption of electricity
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DC Bus Microgrid

PCS: Power conditioning subsystem
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Control method of DC microgrids

1. Centralized Control

A central controller monitors overall grid status (bus-line voltage, state of
charge (SoC) of each storage battery, PV power generation, load power
consumption, etc.) through communication links, and controls each device.
The central controller performs control to stabilize the grid and optimizes
the entire grid so that the SoC of each storage battery is equal.

2. Decentralized Control

Each device distributed on the bus-line does not have a central control device
and operates based on its own judgment based on the voltage at the
connection point with the bus-line.

- Distributed Autonomous Cooperative Control (DACC)

Neighboring devices communicate with each other and work autonomously

while cooperating with each other.
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Centralized Control method
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Complex algorithms to needs to be changed as breaks, the connected device
control many devices the grid scale changes becomes uncontrollable
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Distributed Autonomous Cooperative Control method

Nearby LCs exchange information through communication links
although there is no central controller

Some mechanism is needed to make devices work together

PV System Wind Turbine
DC/DC AC/DC
Converter Converter |1 LC
DC Bus f
DC/DC L[ c DC/AC L c DC/DC L c
Converter Inverter Converter
Battery AC Load DC Load [ LC Battery
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LC: Local Controller 2 3,
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Challenges of the DACC

How can we achieve cooperative operation between devices?

Conventional DACC method

- Devices communicate and negotiate with each other

- Droop Control of DC/DC converters

@ Our method

- Directory connecting batteries to the bus-line
- Passive control with droop characteristics of batteries

- To apply electrical inertia to the bus-line

Passive DACC method
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Passive DACC method

Our method [ Connecting storage batteries whose terminal voltage is
equal to the bus-line voltage directly to the bus-line

PV System Wind Turbine
DC/DC AC/DC
Converter 1 LC Converter [ LC

DC Bus r@ ----- ! | | r@ ...... 4

Directly connecting DC/AC Directly cpnnecting
. <1 LC .
to the bug-line Inverter to the bug-line
Battery AC Load DC Load [ LC Battery
= : =y
BATTERY ’ BATTERY
LC: Local Controller A5,
VS: Voltage Sensor "{*,«&?
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Passive DACC using battery characteristics

Utilizes the characteristics of lithium-ion batteries
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Droop characteristics of batteries

Make the terminal voltage equal to the bus-line voltage
by connecting an appropriate number of cells in series

Cell voltage of LiFePO, battery

1

T

~3.2V

Bus-line
400 V

1
—E- 64 cell (~200 V)

=-mm_ G4 cell (~200 V)
*

TOHOKU

vvvvvvvvvv



What Is electrical inertia?

Electrical inertia is the ability of a bus-line to maintain a constant
voltage or frequency in response to power load fluctuations

Electrical inertia in existing AC power grid

Electrical inertia is a short-term adjustment force

Accident occurred
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Electrical inertia in DC grid

Electrical inertia in DC grid is the ability to maintain a constant
bus-line voltage in response to power load fluctuations.

DC bus-line
é 400V 350V
[ | AN

When a large current is extracted
from the bus-line, the voltage at

H the point decreases

hundreds of ampsl

bus-line__

L

bus-line

If the inertial force is
small, the bus-line
voltage fluctuate
greatly in response to

. Small inertial force large load changes Large inertial force Q{:”}*}\
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Passive DACC using battery characteristics

Our original method

Storage batteries, such as Li-ion batteries, which have a region where the
terminal voltage changes linearly with respect to the SoC and have
appropriate Droop characteristics, are distributed and loaded directly onto

the bus-line
Contributes to Contributes t
cooperative and ontributes to
stable operation electrical inertia
Features

— Simple configuration (No communication links required)

— Easy to control (Bus-line voltage reflects the SoC of the battery)

— Scalable (Can treat even if the grid scale expands/shrinks)

— Resilience (Even if some parts are damaged, the remaining parts
will still function)
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Electrical equivalent circuit of battery loaded bus-line

distributed resistance distributed inductor

of bus-line of bus-line
AAAY 0100} NN—
| < ibternal resistance < !
storage | df battery line capacity : | storage
battery ! | of bus-line : 1 battery
| T : | T :
[ L.
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Local bus-line voltage = Terminal voltage of battery connected: (ex. 400 V)
Internal resistance of battery: small (large) — electrical inertia: large (small)

Storage capacity of battery: small (large) — Power supply duration: long (short)

1

Not directly related to electrical inertia

To obtain large electrical inertia, distributed loading .
of batteries with low internal resistance is effective ;{i"%
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Composite storage battery system

.
Composite storage battery system combining

- Directly connected batteries: short-term adjustment force (Electrical inertia)
- Large capacity battery connected via DC/DC converter: long-term adjustment force

If a DC/DC converter is used in between,
the electrical inertia of the battery is not
transmitted to the bus-line

Electrical inertia DC/DC
(To supply short-term Converter
adjustment force)

- small internal resistance
BaTTery - small capacity

DC bus-line

Electrical endurance
(To supply long-term
adjustment force)

Electrical inertia
(To supply short-term
adjustment force)

< small internal resistance
BaTTery - Small capacity

-\large capacity

[ Directly connected J

Directly connected
storage battery

storage battery

BATTERY
( Storage battery J

connected via {{ *}
DC/DC converter R e
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Constructed a battery-directly connected DC microgriF

Power box
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Parameters to monitor the grid status

Bus-line voltage / PV power grneration /

Battery SoC / Load power consunption /
Power fow / Device temperature ...

----------------------------------------------------------------------------------------
]

1 minute interval
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Micro data center as a primary power load

Operating micro data centers with 100% solar power generation

Building 2
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System operation for one month in January 2023

PV generated power in January this year
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SoC equalization and cooperative power supply

SoC equalization achieved automatically during the night
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Building a simulator to analyze grid behavior

Constructed a grid simulator that runs on MATLAB/Simulink

Central Building

Building 2 o
Building 1
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52m 1

Charge Controller 1

Charge Controller 2
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Safety measures of the grid

If the bus-line has electrical inertia, a mechanism is needed to detect leakage
current or over current due to short circuit, and cut off the power supply

To detect
leakage current

Clamp meter
P(+) l CBQ\% /\ ° //// CB%-I—-O%—

To detect
over current

To detect
over current
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Summary

v" We proposed a DC microgrid in which storage batteries are distributed
and directly connected to the bus-line, and demonstrated the operation.

v Adding electrical inertia to the bus-line simplifies grid control and
analysis

v" We introduced a composite storage battery system combining directly
connected batteries and large capacity battery via DC/DC converter

v Safety measures of the grid is inevitable when electrical inertia is given

to the bus-line
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