論文

査読有り 最終著者 責任著者 本文へのリンクあり 国際誌
2024年1月17日

Deep learning-based osteochondritis dissecans detection in ultrasound images with humeral capitellum localization

International Journal of Computer Assisted Radiology and Surgery
  • Kenta Sasaki
  • ,
  • Daisuke Fujita
  • ,
  • Kenta Takatsuji
  • ,
  • Yoshihiro Kotoura
  • ,
  • Masataka Minami
  • ,
  • Yusuke Kobayashi
  • ,
  • Tsuyoshi Sukenari
  • ,
  • Yoshikazu Kida
  • ,
  • Kenji Takahashi
  • ,
  • Syoji Kobashi

記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1007/s11548-023-03040-8

PURPOSE: Osteochondritis dissecans (OCD) of the humeral capitellum is a common cause of elbow disorders, particularly among young throwing athletes. Conservative treatment is the preferred treatment for managing OCD, and early intervention significantly influences the possibility of complete disease resolution. The purpose of this study is to develop a deep learning-based classification model in ultrasound images for computer-aided diagnosis. METHODS: This paper proposes a deep learning-based OCD classification method in ultrasound images. The proposed method first detects the humeral capitellum detection using YOLO and then estimates the OCD probability of the detected region probability using VGG16. We hypothesis that the performance will be improved by eliminating unnecessary regions. To validate the performance of the proposed method, it was applied to 158 subjects (OCD: 67, Normal: 91) using five-fold-cross-validation. RESULTS: The study demonstrated that the humeral capitellum detection achieved a mean average precision (mAP) of over 0.95, while OCD probability estimation achieved an average accuracy of 0.890, precision of 0.888, recall of 0.927, F1 score of 0.894, and an area under the curve (AUC) of 0.962. On the other hand, when the classification model was constructed for the entire image, accuracy, precision, recall, F1 score, and AUC were 0.806, 0.806, 0.932, 0.843, and 0.928, respectively. The findings suggest the high-performance potential of the proposed model for OCD classification in ultrasonic images. CONCLUSION: This paper introduces a deep learning-based OCD classification method. The experimental results emphasize the effectiveness of focusing on the humeral capitellum for OCD classification in ultrasound images. Future work should involve evaluating the effectiveness of employing the proposed method by physicians during medical check-ups for OCD.

リンク情報
DOI
https://doi.org/10.1007/s11548-023-03040-8
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/38233599
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85182429478&origin=inward 本文へのリンクあり
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85182429478&origin=inward
ID情報
  • DOI : 10.1007/s11548-023-03040-8
  • ISSN : 1861-6410
  • eISSN : 1861-6429
  • PubMed ID : 38233599
  • SCOPUS ID : 85182429478

エクスポート
BibTeX RIS