Papers

Peer-reviewed
Dec, 2017

Valosin-containing protein (VCP) is a novel IQ motif-containing GTPase activating protein 1 (IQGAP1)-interacting protein

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
  • Norimichi Itoh
  • ,
  • Taku Nagai
  • ,
  • Takashi Watanabe
  • ,
  • Kentaro Taki
  • ,
  • Toshitaka Nabeshima
  • ,
  • Kozo Kaibuchi
  • ,
  • Kiyofumi Yamada

Volume
493
Number
4
First page
1384
Last page
1389
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1016/j.bbrc.2017.09.159
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE

Scaffold proteins play a pivotal role in making protein complexes, and organize binding partners into a functional unit to enhance specific signaling pathways. IQ motif-containing GTPase activating protein 1 (IQGAP1) is an essential protein for spine formation due to its role in scaffolding multiple signal complexes. However, it remains unclear how IQGAP1 interacts within the brain. In the present study, we screened novel IQGAP1-interacting proteins by a proteomic approach. As a novel IQGAP1-interacting protein, we identified valosin-containing protein (VCP) which is a causative gene in patients with inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD). The physiological interaction of IQGAP1 with VCP was confirmed by an immunoprecipitation assay. Both the N-terminal (N-half) and C-terminal (C-half) fragments of IQGAP1 interacted with the N-terminal region of VCP. Co-localization of IQGAP1 and VCP was observed in the growth corn, axonal shaft, cell body, and dendrites in cultured hippocampal neurons at 4 days in vitro (DIV4). In cultured neurons at DIV14, IQGAP1 co-localized with VCP in dendrites. When HEK293T cells were co-transfected with IQGAP1 and VCP, an immunoprecipitation assay revealed that binding of IQGAP1 with disease-related mutant (R155H or A232E) VCP was markedly reduced compared to wild-type (WT) VCR These results suggest that reduction of IQGAP1 and VCP interaction may be associated with the pathophysiology of IBMPFD. (C) 2017 Elsevier Inc. All rights reserved.

Link information
DOI
https://doi.org/10.1016/j.bbrc.2017.09.159
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/28970065
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000413991900003&DestApp=WOS_CPL
ID information
  • DOI : 10.1016/j.bbrc.2017.09.159
  • ISSN : 0006-291X
  • eISSN : 1090-2104
  • Pubmed ID : 28970065
  • Web of Science ID : WOS:000413991900003

Export
BibTeX RIS