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Superposed recurrence plots for reconstructing a common input applied to neurons
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In the brain, common inputs play an important role in eliciting synchronous firing in the assembly of
neurons. However, common inputs are usually unknown to observers. If an unobserved common input can be
reconstructed only from outputs, it would be beneficial to the understanding of communication in the brain. Thus,
we have developed a method for reconstructing a common input only from output firing rates of uncoupled
neuron models. To this end, we propose a superposed recurrence plot (SRP) comprising points determined
by using a union of points at each pixel among multiple recurrence plots. The SRP method can reconstruct
a common input when using various types of neurons with different firing rate baselines, even when using
uncoupled neuron models that exhibit chaotic responses. The SRP method robustly reconstructs the common
input applied to the neuron models when we select adequate time windows to calculate the firing rates in
accordance with the width of the fluctuations. These results suggest that certain information is embedded in
the firing rate. These findings could be a possible basis for analyzing whole-brain communication utilizing rate
coding.
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I. INTRODUCTION

Neural synchronization is ubiquitously observed in the
brain during task-relevant activities and at rest [1]. For neural
synchronization, common inputs play an important role by
eliciting collective behaviors from spatially separated neu-
rons. Transcranial alternating current stimulation has been
used to impose electrical common inputs on certain brain
areas to activate an assembly of neurons, resulting in enhanced
working memory performance [2]. Each neuron exhibits an
increased firing rate when it receives a stronger common
input. The mean firing rates vary depending on the firing
characteristics of each neuron. Subsequently, the responses
of collective neurons are robust because they can generate
synchronous output.

Apart from experimental situations, common inputs are
usually unknown to observers. If an unobserved common in-
put can be reconstructed from output measurements, it would
be beneficial to the understanding of how information is con-
veyed in the brain. Thus, we have developed a method for
reconstructing a common input only from the output firing
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rates. Robustness is also examined to study whether different
types of neurons can retain information from a commonly
applied input.

Same-class neurons in given layers usually have small
individual differences in their firing characteristics [3] while
sharing the same membrane dynamics. Such individual dif-
ferences between neurons may disturb the transmission of
common input information by changing the firing timing
among neurons.

Moreover, various types of neurons with different char-
acteristics are present in the brain. For example, pyramidal
neurons in the cortex exhibit relatively slow (10–60 Hz) peri-
odic and regular spiking, whereas inhibitory neurons exhibit
fast spiking (80–140 Hz). Some pyramidal cells in the visual
cortex demonstrate chattering spiking, in which intermittent
bursts are observed [4]. Although chattering neurons are lo-
calized in small areas, different types of neurons coexist in
the cortex and in other areas. Thus, different types of neurons
usually receive common inputs simultaneously [5].

By consistently identifying a common input by using the
firing rates obtained from various types of neurons, we may
be able to gain information about communications by us-
ing rate coding, which is one of the major neuron coding
schemes [6,7]. Thus, in the present study, we develop a
method that uses a recurrence plot (RP) to reconstruct com-
mon inputs. Eckmann et al. [8] introduced the concept of RP
to identify the nature of dynamical systems in terms of peri-
odicity, nonlinearity, and nonstationarity. Nonlinear, possibly
chaotic, deterministic dynamical systems often return to the
neighboring trajectory in a phase space. In other words, non-
linear deterministic dynamical systems exhibit recurrences.

2470-0045/2022/106(3)/034205(13) 034205-1 Published by the American Physical Society

https://orcid.org/0000-0001-5510-8535
https://orcid.org/0000-0001-8114-7837
https://orcid.org/0000-0001-9280-9541
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.034205&domain=pdf&date_stamp=2022-09-12
https://doi.org/10.1103/PhysRevE.106.034205
https://creativecommons.org/licenses/by/4.0/


NOMURA, FUJIWARA, AND IKEGUCHI PHYSICAL REVIEW E 106, 034205 (2022)

The RP is a visual expression of the recurrences and is used
to describe the characteristics of nonlinear dynamical systems
because they can possess multidimensional information, de-
spite providing two-dimensional visualization.

Ten years after Eckmann et al. introduced RPs, Cas-
dagli [9] further demonstrated that the RPs of an output time
series are similar to those of the input time series obtained
from a target dynamical system. Since this discovery, RPs
have been used to reconstruct common inputs by utilizing the
output time series of a target dynamical system. According
to Hirata et al. [10], we can reconstruct the common input
generated from a nonlinear dynamical system using the fol-
lowing procedure. First, multiple RPs are created using the
respective output time series of forced systems that simul-
taneously receive a common input. Subsequently, to obtain
the approximation of an RP regarding the common input, an
RP is calculated by taking unions at each corresponding pixel
among multiple RPs. Next a coarse-grained RP is created by
focusing on the large areas in the RP union because the short
lines correspond to the local dynamics of the forced models.
The coarse-grained RP is then transformed into a network,
each link of which has a weight defined by the similarity
between states in multidimensional phase space (see Sec. II).
Finally, the amplitude of the input time series is reconstructed
by applying a multidimensional scaling method to the net-
work. The scope of this reconstruction method is not limited
to specific dynamical systems because RPs use the state infor-
mation embedded in a high-dimensional space rather than the
details of the target system. Thus, we hypothesize that this
method might also be useful for forced systems that yield
a point process, such as uncoupled neurons that receive a
common input.

Neurons are nonlinear dynamical systems that sometimes
exhibit chaotic behavior [11,12]. Recurrence plots can repre-
sent the nature of nonlinear dynamical systems. Usually, the
firing rates of a neuron reflect fluctuations, such as intensity
and persistency, in the common input, as well as in the dynam-
ics of each neuron. Therefore, we can hypothetically obtain
information about a common input if we can counterbalance
the effects of neural dynamics.

To test our hypothesis, we have developed a superposed
recurrence plot (SRP), which refers to an RP where the value
of each pixel is summed across the corresponding pixels of
multiple RPs and binarized to 1 or 0 depending on whether
the summation at each pixel is greater than or equal to 1.
Under the conditions of this study, each RP is calculated using
the output time series of a neuron receiving a common input.
To reconstruct the common input, we set a certain time range
in which a point process is used to calculate the firing rates.
The accuracy of the reconstruction may depend on the time
range because the scale of the firing times may differ from
one system to another. Hence, we examine the influence of
the time window width w on the firing rate calculations and
the accuracy of reconstructing a common input. For the sake
of simplicity, we refer to our proposed reconstructing method
as the SRP method.

In this study we use the SRP method to reconstruct a
common input using the firing rates of the uncoupled neuron
models proposed by Izhikevich [13]. We consider the follow-
ing three cases. In the first case, we reconstruct the common

input applied to localized neurons using the firing rates ob-
tained from neurons that share approximately similar firing
rates, although they have individual differences depending on
the parameters of the models. The change in the parameters
bifurcate the states of the neuron model, producing 10–20 ms
firing timing variations. In the second case, we reconstruct a
general common input applied to mixtures of different types
of neurons that coexist in a single brain area, using firing rates
obtained from three types of neurons that exhibit different fir-
ing characteristics and thus have different baseline firing rates:
chattering (CH), regular spiking (RS), and fast spiking (FS)
of the Izhikevich neuron model. In the third case, we examine
whether the SRP method could also be used to reconstruct a
common input for the chaotic response of the Izhikevich neu-
ron model. If useful, even when applied to chaotic neurons,
the SRP method may be widely applicable to various types of
systems that yield point processes. In these experiments, we
aim to demonstrate the possibility of reconstructing common
inputs using firing rates. We successfully achieve this goal.

In Sec. II we first explain the method for reconstructing
common inputs using an SRP for point processes. We then
describe the neuron model in Sec. III. The results of the sim-
ulations are reported in Sec. IV. Finally, in Sec. V we discuss
the ability and limitations of the SRP method with regard to
the reconstruction of a common input applied to uncoupled
neurons. We also discuss the potential functions of common
inputs in the brain.

II. RECONSTRUCTION METHODS

A. Definition of a superposed recurrence plot

Based on the Takens theorem [14], a one-dimensional time
series can be used to reconstruct a multidimensional system by
remapping the one-dimensional time series into a state space
defined by the time delay coordinates. Suppose that x(t ) is
a time series measured as the output of the system. We can
transform the value of x(t ) into a state space using a time
delay with a constant interval τ . For instance, if the dimension
of state space m is 3, x(t ) is transformed into a state vector
φt = (x(t ), x(t + τ ), x(t + 2τ )), in three-dimensional space.
Each point in this state space corresponds to the state of a time
point. Based on these states, we can calculate a diagonally
symmetrical recurrence matrix, in which the pixel (i, j) has a
value of unity if the pair of states φi and φ j are neighbors;
otherwise, the pixel has a value of zero. The matrix Ri j is
defined as [15]

Ri j (ε) = �(ε − ‖φi − φ j‖), i, j = 1, 2, . . . , N, (1)

where N is the total number of time points, ε is the threshold
for detecting neighboring states, and �(·) is a Heaviside step
function that returns unity if the L2-norm ‖φi − φ j‖ is smaller
than the threshold; otherwise, the function returns to zero.
The RP is a graphical expression of this matrix. In an RP, the
pixel (i, j) is filled with black when the corresponding value
is unity and in white when the corresponding value is zero.
Although RPs are two-dimensional expressions, they can be
used to reconstruct a common input because they possess
multidimensional information regarding the dynamics behind
the original time series.
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Membrane dynamics may differ among neurons; hence a
point being plotted in an RP depends on the neuron’s param-
eters and thus RPs are different from each other. On the other
hand, when the neurons receive a common input, the RPs will
resemble each other because the point at the pixel in the RPs
consistently reflects the dynamics of the common input. In
this case, the point at the pixel in the RPs corresponds to a
recurrence in the phase space for joint dynamics between the
common input and the target neuron at each time point. A
union of these points at each pixel among the RPs would pro-
vide consistent information about the commonalities. Hence,
we can infer the approximate dynamics of a common in-
put from the union of points at each pixel among multiple
RPs [10].

To extract the information of a common input, we super-
pose multiple RPs and combine them at each pixel. Thus, a
superposed recurrence matrix is defined using the mathemati-
cal expression

SRx(1,...,n)

i j (εx(1), . . . , εx(n) ) = sgn

(
n∑

k=1

Rx(k)

i j (εx(k) )

)
,

i, j = 1, . . . , N, (2)

where n is the total number of systems, x(k) is the kth system
that yields each x(t ), Rx(k)

i j is the recurrence matrix for ob-
served variables of the kth system among x(1), x(2), . . . , x(n),
and εx(k) is the threshold for Rx(k)

i j . In Eq. (2), sgn(·) is a
sign function that maps positive values to 1, zeros to 0, and
negative values to −1. Note that the summation at each pixel
in Rx(k)

i j only takes a positive integer or zero in this study. The
SRP is a graphical expression of this matrix. In the SRP, the
pixel (i, j) is filled in black when the corresponding value
is unity and filled in white when the corresponding value is
zero. In this study, εx(k) for each system is identified as the
number corresponding to the lower 10% of the total number
of combinations of i and j.

B. Networks and paths

A key concept of reconstruction is the neighboring states
of the two time points. To quantify the extent to which the
two time points are close to each other, Hirata et al. [10] used
a relational network created using the information provided
by RPs. For two particular time points, if the amplitudes of a
common input are similar, the states are close to each other
in the state space. This is because a neural system behaves
in a similar manner when the common input has a similar
amplitude. To transform an RP into a network of states in
a multidimensional state space, we use the distance between
states. Hirata et al. [10] defined the weight for each link in this
network by using the ratio of the number of elements in the
union of a set to the number of elements in an intersection.
The weight W (i, j) of a link between time points i and j is
defined as [10]

W (i, j) = 1 − |Gi ∩ Gj |
|Gi ∪ Gj | , (3)

where Gi and Gj are the sets of states in the state space that
are close to the states φi and φ j , ∩ and ∪ represent intersection

and union of the two sets, respectively, and |X | denotes the
number of elements in set X . If the number of elements in an
intersection dominantly occupies the number of elements in
the union, that is, if the two time points share many points,
we can infer that those two points are neighbors in the state
space. However, if there are no elements in the intersection,
it means that the time points have no shared points; therefore,
we can estimate that the two time points would be separated
from each other. In summary, regarding two target time points,
the ratio between the number of elements at their union and
that in their intersection indicates their similarity. Thus, we
can define the distance by subtracting the ratio from unity.

III. RECONSTRUCTING A COMMON INPUT

A. Overview

For the simulation setup, we apply a common input gener-
ated by the Duffing equation [16] to an assembly of uncoupled
neurons [17]. We then create an SRP from RPs calculated us-
ing the output time series, the values of which are the number
of firings within a certain time window. Next we apply the
method to calculate weight of links [10] to create a network
using SRP. Finally, we reconstruct the amplitude of the orig-
inal common input by applying multidimensional scaling to
the distance matrix.

B. Common input

We use the variable x in the Duffing equation as a common
input. The Duffing equation is selected in accordance with
Ref. [17], which suggested that recurrence plots can be con-
structed from the output time series of the Izhikevich model.
The Duffing equation is defined as follows:

ẋ = y, ẏ = −0.05y − x3 + 7.5 cos t . (4)

Figure 1(a) depicts the original time series of a common
input generated by Eq. (4). This time series is rescaled to
6–10, a range in which the Izhikevich neuron model would
fire sequentially. Figure 1(b) presents the RP of this common
input. In this RP, the plotted lines and blocks form rounded
shapes because the time series varies slowly.

C. Neuron model

In this study we selected the Izhikevich model as the math-
ematical neuron model because it can be used to reproduce
various firing patterns by changing its parameters. The Izhike-
vich neuron model is described as

v̇ = 0.04v2 + 5v + 140 − u + Iv (t ),

u̇ = a(bv − u), (5)

and if v � 30 then v ← c and u ← u + d , where v is the
membrane potential, u is the recovery variable, and Iv (t ) is a
time-varying variable defined as a common input. We generate
this common input using the Duffing equation. Other parame-
ters a, b, c, and d determine the firing pattern of the Izhikevich
neuron model. In the present study we examine the following
three cases. In each case, the neurons are uncoupled to clarify
the influence of common input.
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FIG. 1. Original time series of the common input and its RP: (a) the first 12 000 points of variable x in the Duffing equation and (b) the RP
of the original common input.

In the first case, we apply the SRP method to the uncou-
pled chattering neurons. Chattering neurons express a firing
pattern comprising intermittent bursts. According to Ref. [3],
neurons of the same class have similar firing characteristics,
while there may be small individual differences. A typical
instance of these neurons in a specific area is the grouping
of pyramidal cells in the visual cortex. In the simulations,
to create a situation in which a common input is applied to
neurons of the same class, we prepare a group of chattering
neurons by changing parameters such as 0.018 � a � 0.022,
0.198 � b � 0.202, c = −50, and d = 2. The results are de-
scribed in Sec. IV A.

In the second case, we apply our method to three different
types of neurons receiving a common input which is a typical
occurrence in any given brain area. Thus, we explore whether
a combination of different types of neurons and the num-
ber of neuronal firings per window influences the accuracy
of the reconstructed common input. To create a situation in
which there are different types of neurons, we prepare a group
of neurons by changing the parameters a and b to the fol-
lowing ranges: regular spiking neurons (0.018 � a � 0.022,
0.198 � b � 0.202, c = −65, and d = 8), fast spiking neu-
rons (0.998 � a � 0.102, 0.198 � b � 0.202, c = −65, and
d = 2), and chattering neurons (0.018 � a � 0.022, 0.198 �
b � 0.202, c = −50, and d = 2).

We then discriminate between these neurons using a super-
scripted index to indicate the neurons used in the respective
simulations. For instance, the parameters of RS(9p+q+1) are
determined as a = 0.018 + 0.0005 p, b = 0.198 + 0.0005 q,
c = −65, and d = 8, where p (p = 0, 1, 2, . . . , 8) and q (q =
0, 1, 2, . . . , 8) are index variables. Therefore, when p = 0
and q = 0, RS(9p+q+1) corresponds to RS(1): This means that
the model has the first combination of parameters a and
b, that is, the regular spiking neuron with the parameters
a = 0.018, b = 0.198, c = −65, and d = 8. Using the
same notation, RS(2) means that the model has a sec-
ond combination of parameters a = 0.018, b = 0.1985,
c = −65, and d = 8. Similarly, FS(9p+q+1) has parameters
a = 0.998 + 0.0005 p, b = 0.198 + 0.0005 q, c = −65, and
d = 2 and CH(9p+q+1) has parameters a = 0.018 + 0.0005 p,
b = 0.198 + 0.0005 q, c = −50, and d = 2. The results are
described in Sec. IV B.

In the third case, we apply the proposed method to chaotic
neurons. Izhikevich [11] showed that his model, with par-

ticular parameters (a = 0.2, b = 2, c = −56, and d = −16),
exhibited irregular firing patterns when the model received
a strong negative input [Iv (t ) = −99]. A prior study using
these parameters [17] revealed that the RPs of the firing rates
are similar to those of the input. The authors of that study
predicted that, theoretically, the common input can be recon-
structed by applying the procedure in Ref. [10]. In this study
we explore whether we could reconstruct a common input
applied to the Izhikevich neuron model that exhibits chaotic
responses. The results are described in Sec. IV C.

D. Firing rates and spikes per window

To reconstruct a common input, we set a certain time range
to calculate the firing rates using a point process. The scale of
the firing times differs between the systems. We then examine
whether the accuracy of reconstructing a common input de-
pends on the width of the time window. Specifically, we assess
the number of spikes per window. One possible reason for the
width of the time window influencing reconstruction accuracy
is that a wider window can contain a larger number of spikes.
Therefore, it is necessary to control the baseline firing rates of
the different types of neurons.

To calculate firing rates, we use time windows with widths
w of 100, 500, 2500, and 12 500 ms. The baseline firing
rates for each firing pattern are approximately 48–60 spikes/s
for CH, 15–20 spikes/s for RS, and 80–136 spikes/s for
FS neurons. Thus, the average counts in each time window
among the firing patterns differ. For instance, when we use RS
neurons and a 500 ms time window, the spikes per window are
calculated as 15 × 500

1000 = 7.5. The first term 15 corresponds
to the baseline firing rate of RS neurons and the numerator 500
represents the width of the time window. In all simulations, we
discard the first 2000 ms of the firing rate time series because
the neuron models are in a transient state during this period.

E. Evaluation of accuracy

We use the root mean square error (RMSE) as an index of
accuracy. The RMSE E is defined as

E =
√√√√1

n

n∑
t=1

[Ir (t ) − Io(t )]2, (6)
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FIG. 2. Influence of shift size s and embedding dimension m on
RMSE E .

where t is a point of discrete time with a unit of τ and n is
the total sampled time. In Eq. (6), Ir (t ) is the value of the
reconstructed common input at t , and Io(t ) is the resampled
value of the original common input at t . To obtain Io(t ), we
adopt the resample( ) function in MATLAB2021a.

IV. RESULTS

A. Case I: Uncoupled neurons with small individual differences

1. Parameter determination

In this section we reconstruct a common input using an
assembly of CH neurons. The neuron exhibits a constant firing
rate when it receives a constant common input because there is
no dynamical or observational noise. The firing rate provides
a fixed point in a time-delayed phase space. Thus, an RP
of the output firing rate corresponds to the fluctuations of
the common input. Theoretically, the dimension of the state
space m � 5 is sufficiently large because the dimension of
the input is 2 [18]. However, the reconstruction accuracy may
be sensitive to m, whereas the dimension of an unobserved
common input is usually unknown to observers. Hence, we
first examine the influence of the parameters of shift size s
and dimension m using CH neurons.

As shown in Fig. 2, E between the original common input
and reconstructed common inputs become larger when a shift
size of more than 100 ms is utilized. Contrary to this trend, E
are smaller when m � 5 when s = 50 and 100.

The reconstruction accuracy may also depend on the delay
time τ required to transform the time series into states in
a state space. Thus, we examine E by altering τ using CH
neurons. In this examination, we adopt the parameters m = 5,
w = 500, and s = 50. As shown in Fig. 3, E became larger
when we adopt τ = 3 and a longer time delay. These results
suggest that τ = 1, which corresponds to a delay of 50 ms,
is suitable for the reconstruction. Overall, we consider that
the method using the SRP can reconstruct common inputs
with smaller deviations from the original input when we use
parameters of m = 5 and τ = 1, especially when we take
advantage of a shift size narrower than 50 ms. Thus, we adopt
a shift size of 50 ms, rather than 25 ms, because it maintains
a similar level of accuracy by reducing 50% of the calculation
costs. Similar parameter dependences are determined when
we reconstruct common inputs using RS and FS neurons with
the parameters m = 5, w = 500, and s = 50 (for details, refer

FIG. 3. Influence of time delay τ and embedding dimension m
on RMSE E .

to Appendix A). Therefore, we adopt these parameters in the
following simulations.

2. Window size and reconstruction accuracy of the SRP method

Next we examine the relationship between the width of the
time window used to calculate the firing rates and reconstruc-
tion accuracy. In these examinations, we adopt CH neurons
and window widths w = 100 × 5i (i = 0, 1, 2, and 3). The
other parameters are m = 5, τ = 1, and s = 50.

As shown in Fig. 4, the reconstructed common inputs when
using 12 500 (w = 100 × 53) ms deviate from the original
common input [the black thick solid line in Fig. 4(b)]. From
these results, the RMSE E increases when we use a time
window that is too wide. Corresponding to these results, the
RMSE E is lower when we use the middle range of w, i.e.,
w = 500, as shown in Fig. 5. Similar tendencies are ob-
served when we used RS and FS neurons (for details, refer
to Sec. IV B).

To explore the causes of the loss of accuracy, we compare
the RPs used for the reconstructions of common inputs. Fig-
ure 6 illustrates the RPs when we use a time window width
of 100–12 500 ms. As shown in Fig. 6(d), the main islands
in the RPs disappear in a time window of 12 500 ms. The
disappeared areas correspond to the first 600 units, which are
the first 30 000 ms in the timescale of the original common
input.

In these instances, the results demonstrate that the time
location of the first peak shifts forward by approximately
10 000 ms, compared with the original input [the solid line
in Fig. 4(b)]. This may be caused by ignoring fluctuations, be-
cause the time window is wider when the initial decrease and
subsequent increase in firing rates occur. These results suggest
that we must set an appropriate time window width that is
narrower than the width of the fluctuations of the original
common input. As a technical constraint of the SRP method,
the length of the reconstructed time series is shortened to the
same length as the established time window. This is another
indication that relatively narrow time windows are necessary.

However, when using a time window that is too narrow
(w = 100), most of the pixels in the RP are filled with black
[Fig. 6(a)]. This indicates that the time window is too narrow
to detect the variations in states at each pixel (i, j) evaluated
by the Heaviside step function (neurons than CH neurons
are shown in Fig. 15 in Appendix B). Consequently, the
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FIG. 4. Reconstructed common inputs using uncoupled chattering neurons using (a) 100–2500 ms time windows and (b) a 12 500 ms time
window (rescaled for comparison).

reconstructed common input exhibits a distorted shape; thus,
the reconstruction accuracy is lower than that when using
w = 500 or 2500.

B. Case II: Different types of uncoupled neurons

1. Number of firings per window

In this case, we first examine whether the SRP method
could be used to reconstruct a common input using different

FIG. 5. Influences of window width w on RMSE E : w = 100 ×
5i (i = 0, 1, 2, and 3) were used.

types of neurons. We then explore the conditions under which
the SRP method is applicable.

To examine the effect of the window width w, which is
adopted for calculating the firing rates, on reconstruction ac-
curacy, we calculate E by modulating the window widths. In
this examination, we use the RS, CH, and FS neurons and
window widths of 100 × 5i (i = 0, 1, 2, and 3). The other
parameters are m = 5, τ = 1, and s = 50.

The results consistently demonstrate that the E between the
original and reconstructed common inputs are larger when
w = 12 500 [Fig. 7(a)]. These results suggest that window
widths narrower than the fluctuations in the common input ex-
hibit better accuracy. However, the window width that yields
the minimum E varies according to the firing patterns: E are
lowest when w = 2500 for RS neurons, w = 500 for CH
neurons, and w = 100 for FS neurons. These results suggest
that the number of neuron firings per window may influence
reconstruction accuracy because the baseline firing rates differ
among these three firing patterns.

Thus, to explore whether the number of spikes per window
influences the accuracy of the reconstructed common input,
we compare three different types of neurons (RS, FS, and
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(a) (b) (c) (d)

FIG. 6. Variation of SRPs for chattering neurons depending on the width of the window: (a) w = 100, (b) w = 500, (c) w = 2500, and
(d) w = 12 500. Each unit corresponds to 50 ms for i and j depending on the values of τ . The parameter w represents the width of the time
window.

CH). Figure 7(b) shows the relationship between the number
of spikes per window and E . The results demonstrate that
the number of spikes per window is not proportional to E ;
however, even 22.5 spikes per window exhibited by the RS
neurons realize the reconstruction of the common input with
good accuracy (E < 0.075). Thus, in this case, the neurons fire
sufficiently to realize the reconstruction of the common input.

2. Combinations of different types of neurons

Next we compare three conditions. For the first condition,
we reconstruct a common input using a distributed mixture
of the three types of neurons, i.e., 27 RS (RS(1)–RS(27)), 27
CH (CH(28)–CH(54)), and 27 FS (FS(55)–FS(81)) neurons (here-
inafter called the mixed-distributed condition). For the second

(a)

(b)

FIG. 7. Relationship between (a) window width (w = 100, 500,
2500, and 12 500 ms) and RMSE E and (b) the number of spikes per
window and RMSE E . Regular spiking, chattering, and fast spiking
neurons were used.

condition, we reconstruct a common input using a centered
mixture of three types of neurons: 27 RS (RS(28)–RS(54)),
27 CH (CH(28)–CH(54)), and 27 FS (FS(28)–FS(54)) neurons
(hereinafter called the mixed-centered condition). We com-
pare these results with the results obtained from 81 CH
(CH(1)–CH(81)) neurons reported in Sec. IV A as the control
conditions. For all these experiments, we use a 500 ms time
window.

If the accuracy of reconstruction depended on the range of
parameters regardless of neuron type, we would expect the
reconstructed common input to produce a smaller E under the
mixed-distributed condition than under the mixed-centered
condition. By contrast, if the accuracy of reconstruction is
sensitive to the bifurcation of firing patterns, the opposite
result would be observed.

Figure 8 demonstrates the original common input and the
reconstructed common inputs under each of the above three
conditions. As shown in Fig. 9, we are able to reconstruct
the common input with high accuracy (E = 0.051, i.e., 5.1%
error in terms of absolute value) when we use an assembly
of uniform neurons, i.e., CH(1)–CH(81). The accuracy is at
a similar level under the mixed-distributed (E = 0.100) and
mixed-centered conditions (E = 0.131).

3. The number of neurons

To examine the effect of the number of neurons on the
reconstruction accuracy, we calculate the E by modulating the
number of RS, CH, and FS neurons. In these calculations,
we use central 3i (i = 1, 2, 3, and 4) neurons in the range
of parameters. For example, we use RS(39)–RS(41) for three
neurons, RS(36)–RS(44) for nine neurons, RS(27)–RS(53) for
27 neurons, and RS(1)–RS(81) for 81 neurons. We use these
number of neurons to examine the other two firing patterns as
well.

As shown in Fig. 10, regarding RS neurons, E de-
crease as the number of neurons increases. However, when
we use CH and FS neurons, the RMESs are approxi-
mately constant regardless of the number of neurons (for the
dependence of dimension, refer to Appendix C). The results
suggest that reconstruction accuracy depends mainly on firing
patterns rather than the number of neurons used to reconstruct
a common input.

Through the examination in case II, we confirm that com-
mon inputs can be reconstructed using the SRP method with
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FIG. 8. Reconstructed common inputs using different types of neurons with a 500 ms time window (rescaled for comparison).

various neurons. Moreover, reconstruction accuracy mainly
depends on the time window width and the firing patterns of
neurons used; however, the number of firings per window is
less influential. Even when we use various types of neurons
simultaneously with a small number of neurons, we can re-
construct a common input as well. Thus, neither the existence
of various types of neurons nor the use of a large number
of neurons is a prerequisite for reconstructing a common
input. If a constant input is applied to a nonchaotic neuron,
the output firing rate is also constant. Thus, the common
input reconstructed using the SRP method exhibits a constant
common input that will be trivial. Similarly, if none of the neu-
rons fire, the firing rate will constantly be indicated as zero.
Even given this theoretical consideration, the SRP method
accurately reconstructs the common input, yielding a constant
common input. However, in the case of no spikes, we cannot
discriminate between situations in which there are no common
inputs and those in which the intensity of the common inputs
is too weak to force the dynamics of the neurons. Hence, to
apply the SRP method, we postulate that common inputs must
possess a certain intensity to induce changes in the firing rates
of dynamical systems.

FIG. 9. RMSE E between the original common input and the
reconstructed common inputs using various types of neurons.

C. Case III: Chaotic neurons

Chaotic neurons exhibit irregular firing patterns, yielding a
wider and richer variety of firing intervals than those achieved
by other types of neurons while receiving a common input.
However, the SRP method focuses on the increase and de-
crease in firing rates within a period rather than on the detailed
membrane dynamics of neurons. Therefore, we predict that
this method would be capable of reconstructing a common
input applied to chaotic neurons, although the E may increase.

In this section we use the Izhikevich model with a
chaotic response to reconstruct a common input. While the
Izhikevich model with a chaotic response is biologically un-
realistic owing to its assumption of a large negative input,
this model can phenomenologically reproduce the firing of
a chaotic neuron. Thus, this model is useful for simulating
the collective behavior of uncoupled chaotic neurons. We
prepare 81 chaotic neuron models by changing the parameters
0.018 � a � 0.022 and 0.198 � b � 0.202 within a constant
interval of 0.0005 based on the Izhikevich model with a
chaotic response (a = 0.2, b = 2, c = −56, and d = −16).
These models exhibit irregular firing patterns when they re-
ceive strong negative input. Thus, we rescale the common
input generated by the Duffing equation to the range of
−99 � Iv (t ) � −96, in which the neural models exhibit irreg-

FIG. 10. RMSE E for each number of RS, CH, and FS neurons.
The RMSEs E were calculated using 3i (i = 1, 2, 3, and 4).
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FIG. 11. Original common input and reconstructed common inputs using uncoupled chaotic neurons (rescaled for comparison). Recon-
structed common inputs used (a) a 100–2500 ms time window and (b) a 12 500 ms time window.

ular firings [17]. We then reconstruct the common input using
the firing rates of the 81 chaotic neuron models.

Figure 11 shows the original and reconstructed common
inputs for the chaotic neurons. These results demonstrate
that we are able to obtain the time series even when we
use an assembly of chaotic neurons. As predicted, the E
is larger (Fig. 12), which is three to four times as large

FIG. 12. Influences of window width w on RMSE E for neurons
with chaotic responses: w = 100 × 5i (i = 0, 1, 2, and 3).

as the E obtained when we use the other types of neu-
rons. However, the timings of peak amplitudes are precisely
detected when we use the 100–2500 ms time window
(Fig. 11).

In these cases, regarding the other time points, the ampli-
tude of the reconstructed common input deviates from that
of the original common input. Nonetheless, we find that the
trends, that is, the increase or decrease in the amplitude of
the reconstructed common inputs, correspond to the original
common input. These results suggest that the SRP method
is capable of reconstructing the variabilities of the common
input using neurons with chaotic responses, although the ex-
act amplitude cannot be reconstructed. For w = 12 500 ms,
however, the time location of the first peak shifts forward by
approximately 10 000 ms compared with the original input,
which is similar to the results obtained from CH neurons
[Fig. 4(b)]. This may be due to the fact that the time window
is wider than the fluctuations in the common input.

Figure 13 shows the SRPs in the case of chaotic neurons
with the 100–12 500 ms time window. The resulting SRPs
possess the features of the RP of the common input. For
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(a) (b) (c) (d)

FIG. 13. Variation of SRPs for chaotic neurons in the case of changing the width of the window w: (a) w = 100, (b) w = 500, (c) w =
2500, and (d) w = 12 500.

w = 12 500, similar to the SRP calculated using CH neurons,
the main islands in the SRP disappear. These results suggest
that the variations in the neuron’s chaotic responses in the
firing intervals are larger than those provided by the common
input; the firing rates cannot be determined only by the ampli-
tude of the common input because it increases and decreases
irregularly when compared to nonchaotic neurons.

V. DISCUSSION

When we use the SRP method, we are able to reconstruct
the common input applied to three cases: (i) uncoupled neu-
rons with small differences, (ii) three different assemblies of
neurons comprising three types of neurons, and (iii) chaotic
neurons. In the first case, the reconstructed common input
becomes more accurate when we use CH and FS neurons
with a 100–2500 ms time window. These neurons exhibit
higher firing rates, thus suggesting that the accuracy of the
reconstruction method depends on the number of firings oc-
curring within the time window. All three types of neurons
(RS, FS, and CH) fire frequently to reconstruct the common
input. We conclude that relatively narrow time windows are
necessary and that the aimed common input must possess a
certain intensity to induce changes in the firing rates.

In the second case, the reconstruction accuracy depends
on the types and number of neurons used. By changing the
number of neurons, that is, 3i (i = 1, 2, 3, and 4), the number
of neurons is less influential in the reconstruction accuracy.
Therefore, the key condition is the shared information about
states in the state space that is represented as an SRP, and
we are able to reconstruct the unknown common input using
the firing rates obtained from only a few neurons when the
firing rates possess information from the original common
input. These results indicate that the accuracy is not directly
proportional to the number of neurons used in the SRP method
and that a wide range of model parameters is not necessary for
high accuracy; the accuracy is at a similar level when we use
three different mixtures of the three types of neurons.

Regarding the third case, the SRP method is also capa-
ble of reconstructing a common input time series using the
firing rates of neurons with chaotic responses. In particular,
the timing of the peaks in the reconstructed common input
corresponds to that of the original common input when we
use the 100–2500 ms time window. Therefore, we are able
to predict the peaks of an unknown common input based
on the reconstructed common input even when using chaotic

neurons, as long as we use a narrower time window compared
to the fluctuations of the common input. Moreover, this re-
sult suggests that we can predict the approximate trends of
the common input, although we cannot determine the exact
amplitude of the original common input owing to large errors.
A previous study [17] reported that RPs that use the firing
intervals of chaotic neurons cannot represent the information
of a common input. By contrast, the SRP method focuses on
the increase and decrease in firing rates rather than on detailed
firing patterns and timings. We are able to retain the time res-
olutions when we use overlapping time windows with small
intervals, for example, w = 500 and s = 50. In summary, de-
spite the irregular firing patterns of chaotic neurons, the SRP
method accurately predicted the timing of the peak amplitudes
and the approximate trends of the original common input.

The results may also be applicable to studies regarding
whole-brain communication among neurons because our re-
sults indicate that we could reconstruct a common input by
using a set of different types of neurons. The hypothesis that
a common input applied across several brain areas transmits
information utilizing rate coding is consistent with our re-
sults. Each neuron exhibits increased firing when receiving a
stronger common input, although the baseline firing numbers
varies depending on neuron characteristics. Small differences
in the firing times caused by the model parameters are crucial
for reconstructing a common input. These differences among
neurons cancel out the specific dynamics between neurons;
thus, only common features remain. One theoretical predic-
tion is that governance by a common input in the brain does
not require one-to-one correspondence between firings of lo-
cal neurons. Rather, collective firing features among neurons
are a key factor. More precisely, it may be necessary for
neurons to transit collectively into similar firing-rate states
by receiving a common input. In this study, such collective
transitions are quantified as the common features depicted in
the SRP, that is, the quantified neighboring states in the state
space. The assumption that neurons in the brain possess this
mechanism may be unrealistic. However, the results of this
study support our hypothesis that different types of neurons
retain information on commonly applied inputs in firing rates.
This information can serve as the basis for rate coding.

Enhancement of the working memory by common exter-
nal electrical inputs in certain brain areas [2] suggests that
widely distributed neurons can function consistently with-
out interfering with each other. If different types of neurons
retain commonly applied inputs, brain activities such as theta-
band waves [5] across different brain areas may contribute
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to whole-brain coordination. Therefore, our findings would
provide a perspective that connects different scales of brain
phenomena: (i) on a microscopic level, firing patterns of single
cells that receive common inputs, which are measured as
local field potential, and (2) on mesoscopic and macroscopic
levels, more global brain activities, which are measured as
an electroencephalogram. Thus, it will be an important future
perspective to study how higher-order cognition [2] emerges
from the firing patterns of neurons.

VI. CONCLUSION

In this study we investigated the reconstruction of locally
applied and more widely applied common inputs using the
output firing rates of uncoupled neurons. We demonstrated
that the SRP method could reconstruct a common input, even
when using chaotic neurons, although the accuracy was lower
than when other neuron types were used. When we select an
adequate time window for firing-rate calculations, the method
developed in this study can robustly reconstruct a common
input applied to systems that yield a variety of point processes.
Moreover, even combinations of different types of systems,
which had differences in firing rates of a magnitude of four to
seven times (15–20 spikes/s for RS and 80–138 spikes/s for
FS neurons), were also beneficial for reconstruction.

Neurons in the brain are generally subjected to dynamical
noise and membrane dynamics. Thus, it is an important future
issue to systematically investigate the effects of dynamical
noise on the reconstruction accuracy of the SRP method.

This reconstruction ability facilitates further application of
the SRP method. In addition to neuron-related applications,
this method may be applicable to a variety of systems that
yield a point process. Therefore, this method may contribute
to the reconstruction of a common input applied to multiple
nonlinear, possibly chaotic, dynamical systems, as well as to
the assembly of the simple mathematical models considered
in this study. We expect that in the future, the SRP method
will be widely applicable to the fields of biology, engineering,
and cognitive science [19].
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APPENDIX A: INFLUENCE OF DIMENSION m AND SHIFT
SIZE s ON RECONSTRUCTION ACCURACY

FOR RS AND FS NEURONS

To examine the parameter dependence, we first calculated
E by changing the shift size s to obtain firing rates and dimen-

(a)

(b)

FIG. 14. Influence of embedding dimension m and shift size s on
RMSE E for (a) RS and (b) FS neurons. Regarding the results of FS
neurons, NA indicates that data are not available because common
inputs were not reconstructed when m = 4, 5, 6. For these parame-
ters, the primary lines disappeared in the SRPs for reconstruction.

sion m to transform the time series into states in a state space
(refer to the main text, Sec. III D) using the RS (RS(1)–RS(81))
and FS (FS(1)–FS(81)) neurons. In this examination, we used
τ = 1 and w = 500 ms. As shown in Figs. 14(a) and 14(b),
E between the original and reconstructed common inputs be-
came larger when we used a shift size of more than 100 ms.
Contrary to this trend, E were almost constant regardless of
the dimensions in each shift size. These trends were also found
when we used CH neurons (CH(1)–CH(81)), as shown in the
main text (Fig. 2).

APPENDIX B: RECURRENCE PLOTS USING
A NARROWER TIME WINDOW

For CH neurons, the E was larger when we used a narrow
(w = 100) time window compared to using a wider time
window (w = 500). Nonetheless, for the FS neurons, the E
was the smallest under the condition that w = 100. To explore
the cause of this difference, we compared the SRPs of the
RS, CH, and FS neurons when using w = 100 (Fig. 15). The
SRP of the FS neurons was very similar to that of the original
common input. However, in other two PRs, most pixels were
filled with black. Hence, the lower E for CH neurons would
be due to the small variations among the states corresponding
to each pixel. The time window would be too narrow to obtain
sufficient information on firing.
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(a)

(b)

(c)

FIG. 15. Variations of SRPs for (a) RS, (b) CH, and (c) FS
neurons using windows of w = 100.

APPENDIX C: DEPENDENCE OF DIMENSION
AND THE NUMBER OF NEURONS

ON RECONSTRUCTION ACCURACY

In the main text we also examined reconstruction accuracy
by modulating the number of neurons. Although the results
demonstrated that we can reconstruct a common input using
few neurons, the reconstruction accuracy may depend on the
dimensions as well.

(a)

(b)

(c)

FIG. 16. RMSE E for each number of neurons and dimension
with using (a) RS, (b) CH, and (c) FS neurons.

We then calculated E by modulating the number of RS,
CH, and FS neurons. In this examination, we used τ = 1 and
w = 500. As shown in Fig. 16, the RMSE E were improved
when we used a large number of neurons. The improvement
was larger when RS neurons were used than when CH and
FS neurons were used. These results suggest that the recon-
struction accuracy depends on the firing patterns rather than
the dimensions or the number of neurons used. The results
shown in Fig. 10 in the main text were supported as well when
sufficiently higher dimensions (m � 5) are used.
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