Focal Brain Cooling
As A New Therapy For Epilepsy

Hiroshi FUJIOKA¹,⁴, MD/PhD,
Masami FUJII¹,⁴, MD/PhD, Hirochika IMOTO¹,²,⁴, MD/PhD,
Sadahiro NOMURA¹,²,⁴, MD/PhD, Eiichi SUEHIRO¹,²,⁴, MD/PhD,
Hiroyasu KOIZUMI¹,²,⁴, MD/PhD, Hirosuke FUJISAWA¹,²,⁴, MD/PhD,
Takashi SAITO², PhD, Takeshi YAMAKAWA³,⁴, PhD,
and Michiyasu SUZUKI¹,²,⁴, MD/PhD

(1) Dept. of Neurosurgery, Yamaguchi Univ. Hospital
(2) Dept. of Neurosurgery, Graduate School of Medicine,
 Yamaguchi Univ. School of Medicine
(3) Graduate School of Life Science and Systems Engineering,
 Kyushu Institute of Technology
(4) Consortium of Advanced Epilepsy Treatment (CADET)
Overview of Focal Brain Cooling

History:
- Bedside application in 1960’s (Ommaya *et al.* 1963, Vastola *et al.* 1969)

Problems to Overcome:
- Technical Issues; closed-loop system, power supply, device implantation, etc.
- Physiological Issues; optimal cooling temperatures (CBF, metabolism, neurology, etc.)

![Fig. 1: an ideal closed-loop cooling system.](image)
Focal Seizures

Video 1: simple focal seizures and SI-MI cooling. Spontaneous seizures were induced by cobalt application (20mg). Implantation site; right sensorimotor cortex. Reduction of the amplitude in epileptic discharges; around 25°C. Seizure termination; around 15°C. Figure 2: EEG before cooling (top), and during cooling (bottom).
Neurological Severity Scoring (NSS) (Shapira ver., 0-25 points (0=normal))

Normal rats

Focal seizure rats

Foot-Fault Test (%) = \frac{\text{foot-faults per limb}}{\text{steps per limb}}

Normal rats

Focal seizure rats

control (sz) 20°C(sz) 15°C(sz)

LF RF LH RH

LF RF LH RH
Laminar Changes: Receptive Field

Fig. 3: a significant decrease in the receptive fields below 15°C cooling (p<0.05; Dunnett post hoc tests).
Fig. 4: Cooling reduced CBF, but returned normal following rewarming. Microdialysis showed a reduction of glutamate and lactate levels during cooling.
Fig. 5: partial gliosis under the device 1 month after implantation (top; arrow). The contralateral homologous area (bottom).

Fig. 6: blood-brain barrier (BBB) permeability was elevated just after 15 °C cooling (top; Evans Blue stain), which returned to normal 1 week after 15 °C cooling (bottom).
Video 2: following the automatic detection of epileptic waveforms, the system started cooling down to 20°C. Cooling changed from GTC to immobility (from 6 to 1 in Racine’s scoring). **Figure 7**: the associated EEG (ipsilateral and contralateral SI-MI), cerebral temperature, and ECG.
Clinical Investigation (I)

Patient with tuberous sclerosis
(Male, 33yrs.)

Patient with parietal lobe epi.
(Female, 58yrs.)

Peltier device

↑cooling
Clinical Investigation (II)

Case 1: male, tuberous sclerosis

Case 2: female, right TLE

Case 3: male, cortical dysplasia

Glutamate (mmol/L)

Lactate (mmol/L)
Cooling down to ~15°C is able to suppress seizures with relatively normal physiological functions. The finding is a crucial step for the realization of cooling system.

Figure 8: an assumed optimal cooling curve. There is a trade-off between seizure severity and neural function, until the optimal point, S_{opt}. Here $f''(S_{opt})=0$. From here seizure-free is achieved only at the cost of neural function.
Acknowledgements

This work was supported (in part) by a Grant-in-Aid for Specially Promoted Research (Project No.20001008) granted in 2008 to Kyushu Institute of Technology, Yamaguchi University and Shizuoka University by Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT).

References:
Thermo-Gradients

Cooling at 20°C and 5°C;
1mm: 23.3°C, 8.5°C
2mm: 24.0°C, 11.5°C
3mm: 25.4°C, 18.0°C

Cf. Inhibition of action potentials at 10°C (Volgushev et al. 2000)