MISC

責任著者 本文へのリンクあり 国際共著
2020年8月24日

Magnonic Quantum Simulator of Antiresonant Ultrastrong Light-Matter Coupling

  • Takuma Makihara
  • ,
  • Kenji Hayashida
  • ,
  • G. Timothy Noe II
  • ,
  • Xinwei Li
  • ,
  • Nicolas Marquez Peraca
  • ,
  • Xiaoxuan Ma
  • ,
  • Zuanming Jin
  • ,
  • Wei Ren
  • ,
  • Guohong Ma
  • ,
  • Ikufumi Katayama
  • ,
  • Jun Takeda
  • ,
  • Hiroyuki Nojiri
  • ,
  • Dmitry Turchinovich
  • ,
  • Shixun Cao
  • ,
  • Motoaki Bamba
  • ,
  • Junichiro Kono

記述言語
英語
掲載種別

Exotic quantum vacuum phenomena are predicted in cavity quantum
electrodynamics (QED) systems with ultrastrong light-matter interactions. Their
ground states are predicted to be vacuum squeezed states with suppressed
quantum fluctuations. The source of such phenomena are antiresonant terms in
the Hamiltonian, yet antiresonant interactions are typically negligible
compared to resonant interactions in light-matter systems. We report an unusual
coupled matter-matter system of magnons that can simulate a unique cavity QED
Hamiltonian with coupling strengths that are easily tunable into the
ultrastrong coupling regime and with dominant antiresonant terms. We found a
novel regime where vacuum Bloch-Siegert shifts, the hallmark of antiresonant
interactions, greatly exceed analogous frequency shifts from resonant
interactions. Further, we theoretically explored the system's ground state and
calculated up to 5.9 dB of quantum fluctuation suppression. These observations
demonstrate that magnonic systems provide an ideal platform for simulating
exotic quantum vacuum phenomena predicted in ultrastrongly coupled light-matter
systems.

リンク情報
arXiv
http://arxiv.org/abs/arXiv:2008.10721
URL
http://arxiv.org/abs/2008.10721 本文へのリンクあり

エクスポート
BibTeX RIS