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According to the AdS/CFT correspondence, certain quantum many-body systems in d-dimensions
are equivalent to gravitational theories in (d+1)-dimensional asymptotically AdS spacetimes. When
a massless particle is sent from the AdS boundary to the bulk curved spacetime, it reaches another
point of the boundary after a time lag. In the dual quantum system, it should appear as if quasi-
particles have teleported between two separated points. We theoretically demonstrate that this
phenomenon, which we call “holographic teleportation,” is actually observed in the dynamics of the
one-dimensional transverse-field Ising model near the quantum critical point. This result suggests
that the experimental probing of the emergent extra-dimension is possible by applying a designed
stimulus to a quantum many-body system, which is holographically equivalent to sending a massless
particle through the higher-dimensional curved bulk geometry. We also discuss possible experimen-
tal realizations using Rydberg atoms in an optical tweezers array.

Introduction.— The AdS/CFT correspondence [1–3] is a
holographic duality between the gravitational theory in
the (d + 1)-dimensional anti-de Sitter spacetime (AdS)
and the conformal field theory (CFT) living in the d-
dimensional boundary of the AdS. Although the corre-
spondence is originally proposed for a supersymmetric
large-N Yang-Mills theory, its idea has been also applied
to more realistic systems such as condensed matter sys-
tems [4–8]. Those studies indicate that there may be
“materials” having their gravitational duals in our world.
Experimenting with such materials, if realized, opens a
new path for tabletop experiments of quantum gravity.

As a tool of probing the dual spacetime, some of the
authors of this Letter and others have proposed a way to
create a null geodesic in the asymptotically AdS space-
time by the manipulation of the source in the quantum
field theory (QFT) [9–16]. Once a null geodesic is cre-
ated in AdS, it bounces repeatedly at the AdS bound-
ary [9, 16]. In the viewpoint of the dual QFT, while
the energy flux locally propagates following the conser-
vation law, the operator expectation value coupled to the
source behaves as if the signal teleports: We refer to this
phenomenon as “holographic teleportation.” The holo-
graphic teleportation is naturally understood with the
knowledge of the dual spacetime as schematically drawn
in Fig.1, but is highly non-trivial in terms of the QFT.

In this Letter, we investigate the occurrence of the
holographic teleportation behavior in the transverse-field
Ising model on a lattice ring, aiming at its experimen-
tal realization. This model is known to be described
by a CFT at the critical point. While it may not have
a gravitational dual due to its small central charge, we
demonstrate that the Jordan-Wigner fermions, generated
by a specific form of local perturbation, do exhibit the
teleportation behavior in the dynamics. This should be
attributed to the fact that the retarded propagators in
CFTs are determined only from conformal dimensions
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FIG. 1. Schematic picture of the holographic teleportation
in a spin system on a lattice ring. The response to a local
perturbation suddenly appears at a spatially separated point
after a certain time lag.

of operators [14–17]. Furthermore, we observe that the
teleportation behavior persists, even in small lattice sys-
tems, well outside the QFT limit, and in cases where the
parameters deviate away from the critical point. These
observations suggest the universality of the holographic
teleportation behavior for general quantum many-body
models that possess an (approximate) CFT description,
regardless of the existence of dual gravitational theories.

We also propose experimental realizations using a well-
controllable quantum system of Rydberg atoms in an op-
tical tweezers array [18–22] in the case of the transverse-
field Ising model. The observation of this phenomenon,
inspired by the AdS/CFT correspondence, in a labora-
tory setting can serve as a foundation for future exper-
iments with holographic materials. This study not only
predicts the nontrivial phenomenon of holographic tele-
portation, which is interesting in its own right, but also
offers an experimental method to see the motion of parti-
cles in the dual higher-dimensional spacetime. This rep-
resents a crucial first step in exploring semi-classical grav-
itational duals for condensed matter systems in tabletop
experiments.
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FIG. 2. (a) A typical orbit of the null geodesic in AdS3.
It bounces repeatedly at the AdS boundary depicted as the
yellow cylinder. The radial distance ρ ≡ r/

√
1 + r2 and the

azimuthal angle ϕ correspond to space coordinates, while the
axial coordinate corresponds to the time variable t. The AdS
boundary is located at ρ = 1 (r → ∞). (b) Points at which
the null geodesic collides with the AdS boundary on the (t, ϕ)-
plane.

Null geodesics in AdS3— We consider the null geodesic
in the global AdS3 spacetime:

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dϕ2 , (1)

where we take the unit of AdS radius = 1. We have the
exact solution of the null geodesic equation in the AdS3
as

t =
π

2
+tan−1 λ , r2 =

m2 + λ2

1−m2
, ϕ =

π

2
+tan−1 λ

m
, (2)

where λ is the affine parameter and m is the angular
momentum per unit energy. A typical orbit of the null
geodesic is shown in Fig. 2(a). Suppose that a null
geodesic is injected into the AdS3 from the AdS boundary
at (t, ϕ) = (0, 0). Such a particle arrives at the antipodal
point (t, ϕ) = (π, π), bounces back there, and returns to
the original position (t, ϕ) = (2π, 0). Figure 2(b) shows
the points at which the particle reaches the AdS bound-
ary on (t, ϕ)-plane. These points are independent of the
angular momentum M of the null geodesic, although the
trajectory does depend on it.

If a source is applied appropriately in the CFT living
on the AdS boundary, a null geodesic can be produced in
the bulk as a localized configuration of the probe field [9].
The null geodesic with energy Ω and angular momentum
M is created by the source,

J (t, ϕ) = A exp

[
− t2

2σ2
t

− ϕ2

2σ2
ϕ

− iΩt+ iMϕ

]
, (3)

where A, σt, and σϕ are the amplitude and the widths in
t and ϕ, respectively, of the Gaussian part. This source
modifies the action of the CFT as S → S +

∫
dtdϕJO

where O is an operator in the CFT. Since the subleading
term of the asymptotic expansion of the bulk probe field
corresponds to the response to J in the CFT, it is zero
while the null geodesic is inside the bulk. However, it

suddenly stands up just at the time the geodesic reaches
the boundary. Thus, under the source (3), we can expect
sharp signals of the response to be observed at discrete
points, as shown in Fig. 2(b).

Transverse-field Ising model— We consider the Ising
model in transverse magnetic field on the L-site ring:

H = −J
L∑

i=1

σz
i σ

z
i+1 − h

L∑

i=1

σx
i , (4)

where σa
i (a = x, y, z) is the Pauli matrix which acts on

the i-th spin (σL+1 = σ1). This Hamiltonian is explicitly
diagonalizable. (See Refs.[23, 24] for nice reviews.) The
one-dimensional spin-1/2 chain can be mapped onto a
fermionic system by the Jordan-Wigner transformation

ci =
1

2

i−1∏

j=1

σz
j (−σz

i + iσy
i ) . (5)

Under the transformation Eq. (5), the Hamiltonian (4)
is rewritten as

H = −J
L∑

i=1

(c†i ci+1 + c†i+1ci + c†i c
†
i+1 + ci+1ci)

− h
L∑

i=1

(1− 2c†i ci) (with cL+1 = −c1) , (6)

where we assumed that the total number of fermions is
even N =

∑L
j=1 c

†
jcj ∈ 2Z since the ground state is al-

ways in the even-N sector [23].
Before showing the behavior of holographic telepor-

tation, let us see the QFT description of the lattice
model (6) in the continuum limit. To this end, we in-
troduce the fermion field Ψ(xj) = cj/

√
a where a is the

lattice spacing. In the continuum limit a → 0 while keep-
ing the total length of the ring, ℓ = La, finite, the Hamil-
tonian becomes

H = −
∫ ℓ

0

dx

[
v

2
(Ψ† d

dx
Ψ† −Ψ

d

dx
Ψ) + δΨ†Ψ

]
, (7)

with v = 2Ja and δ = 2(J − h). This is just a field the-
ory for the free Majorana fermion with the mass δ/v2. In
the critical case J = h, the above Hamiltonian describes
the CFT with central charge c = 1/2. Therefore, one
can anticipate the occurrence of holographic teleporta-
tion in the spin model (4) based on the AdS/CFT cor-
respondence, particularly for a sufficiently large size L
and when J ≈ h, with the caveat that the CFT is not
strongly coupled (as will be mentioned later).

Linear response theory— Let us consider the linear re-
sponse of the transverse-field Ising model with a finite
L, whose Hamiltonian is given by Eq. (4) or (6). The
perturbation of the Hamiltonian is

δH(t) = −
L∑

l=1

Jl(t)nl . (8)
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FIG. 3. Response for parameters δ = 0, σt = 0.4, σϕ = 0.4, Ω = 5 and M = 0. The number of sites is varied as L = 8, 16, 32, 64.
The color bar corresponds to |δ⟨nj⟩|. The rightmost panel shows time-dependence of the response for fixed ϕ-slices at ϕ = 0
(j = 0) and ϕ = π (j = L/2). The number of sites is fixed as L = 32.

where nj = c†jcj is the number operator of the fermion at

the j-th site and Jl(t) = J (t, ϕl) is the source function
of the form Eq. (3). Here, we introduced the spacial
coordinate of the l-th site on the ring as ϕl = (2π/L)(j−
L/2). From Eq. (5), the number operator nj is written as
nj = (1−σx

j )/2. Thus, Jl(t) is regarded as the transverse
magnetic field which depends on the time and space.

The linear response of the ground state to the dynamic
perturbation δH(t) is given by

δ⟨nj(t)⟩ = −
L∑

l=1

∫ ∞

−∞
dt′GR(t− t′, j − l)Jl(t

′) , (9)

where GR(t − t′, j − l) = −iθ(t − t′)⟨ [nj(t), nl(t
′)] ⟩ is

the retarded propagator with nj(t) = eiHtnje
−iHt, and

⟨· · · ⟩ represents the expectation value with respect to
the ground state. We have an explicit expression for the
retarded propagator as

GR(t, j) =
2

L2
θ(t)

∑

k,k′∈K

ukvk′(ukvk′ + uk′vk)

× sin
[
(ϵk + ϵk′)t− (k − k′)j

]
, (10)

where ϵk = 2J{(cos k − h/J)2 + sin2 k}1/2 is the en-
ergy of the “single particle state”. We have also defined
(uk, vk) = N (ϵk + zk, iyk) with zk = 2(h − J cos k) and
yk = 2J sin k where N is the normalization constant to
make |uk|2 + |vk|2 = 1. See supplemental material for
the derivation of the above expression. Using Eqs.(3)
and (10) in Eq. (9), we can compute the linear response.
Note that, in the linear response theory, we simultane-

ously describe the formulations for the cosine (real) and
sine (imaginary) parts of the source field in terms of the
“complex” form of Jl(t). In the experiments, one has to
measure the responses δ⟨nj(t)⟩ against Re[Jl] and Im[Jl]
separately, and then combined the results into the form
of |δ⟨nj(t)⟩|.

Holographic teleportation— Taking units of v = 1 and

ℓ = 2π, we have

a =
2π

L
, J =

L

4π
, h = J − δ

2
. (11)

The free parameters of the Hamiltonian are now given
by L and δ. We take the amplitude of the source as
A = J

√
2/(σtσϕL) so that

∑
j

∫
dt|J |2 ≃ J2 is satisfied.

Figure 3 shows the response |δ⟨nj(t)⟩| for δ = 0,
σt = 0.4, σϕ = 0.4, Ω = 5 and M = 0. The number
of sites are varied as L = 8, 16, 32, 64. As shown in the
figures, the response suddenly stands up around at the
points indicated in Fig. 2(b). This result shows that the
holographic teleportation can indeed be observed in the
realistic spin model on a finite-size lattice. Note that the
behavior of the holographic teleportation is already seen
even for a small L (around for L ∼ 16). For δ = 0 and
L → ∞, the transverse-field Ising model is described by
the free CFT as in Eq. (7). Generally in CFTs, a two-
point function is universally determined by the conformal
dimension of the operator regardless of whether the the-
ory is strongly coupled or not. It follows that the linear
response is also universally determined only by the con-
formal dimension of the operator coupling to the source
Jl. This is the reason why we obtained the consistent
result with the classical gravity even though the CFT is
not strongly coupled.
We show the time dependence of the response for fixed

ϕ = 0, π in the rightmost panel of Fig. 3, in which the
holographic teleportation is clearly seen. According to
the geodesic motion in the AdS3, the peaks of the re-
sponse should be at t = 0, 2π, 4π, · · · for ϕ = 0 and
t = π, 3π, 5π · · · for ϕ = π, but they seem to appear
a little later. The shift of the peak positions is caused
by the finite-L effect, and it actually gets smaller as L
increases.
Figure 4 shows the response for L = 32, σt = 0.4,

σϕ = 0.4, Ω = 5 and M = 0. Now the mass of the Majo-
rana fermion δ is changed as δ = −2, 0, 2. Although the
continuum limit of the system is not a CFT for δ ̸= 0,
we can still see the behavior of the holographic telepor-
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FIG. 4. Response for parameters L = 32, σt = 0.4, σϕ = 0.4,
Ω = 5 and M = 0. δ = −2, 0, 2.

FIG. 5. Response for parameters L = 32, δ = 0, σt = 0.4,
σϕ = 0.4, Ω = 5 and m = M/Ω = 0, 0.2, 0.4, 0, 6, 0.8.

tation, although it gets blurred as |δ| increases. We can
also observe the shift of peak points of the response for
δ ̸= 0.

Figure 5 shows the response for L = 32, δ = 0, σt =
0.4, σϕ = 0.4, Ω = 5. The angular momentum of the
null geodesic is varied as m = M/Ω = 0, 0.2, 0.4, 0.6, 0.8.
The position of the peak points does not depend on m so
much. This is consistent with the result of null geodesics
in AdS3. In the view of the gravity side, as the value
of |m| approaches 1, the null geodesic passes closer to
the boundary. (See Fig. 2(a).) Since the null geodesic
is realized as a localized configuration of a probe field in
AdS3, it actually has a tail. When the particle is close
to the AdS boundary, the response has a non-zero value
because of the tail. This is the origin of the right moving
tail in Fig. 5.

In this Letter, we have taken the unit of v = ℓ/(2π) =
ℏ = 1. We can easily restore the dimensions of the
quantities as (t,Ω, σt, δ) → (t/T,ΩT, σt/T, Tδ/ℏ) where
T = ℏL/(4πJ). Note that M and σϕ are dimensionless
quantities as they are. For example, in Figs. 3, 4 and 5,
we set Ω = 5. This implies Ω = 5× 4πJ/(ℏL).

On experimental realization— The experimental realiza-
tion and detection of our theoretical findings are feasi-
ble using Rydberg atoms trapped in an optical tweez-
ers array [18–22]. The state-of-the-art techniques devel-

oped in recent years have enabled us to simulate a pro-
grammable Ising-type quantum spin model with tunable
interactions [19], system sizes of up to hundreds [21, 22],
and arbitrary lattice geometries [20, 22]. The holographic
teleportation can be tested in a ring-shaped lattice [20] of
atoms near the quantum critical regime (J ≈ h), achieved
by global laser light that introduces the coupling between
the ground and Rydberg states. The initial null geodesics
on the critical vacuum can be created by temporary fo-
cused lasers in the shape of Eq. (3), and the response
in ⟨σx

i (t)⟩ = 1 − 2⟨ni(t)⟩ of the individual atoms can be
monitored at each time slice via the fluorescence imaging
after inserting a global π/2 pulse.

Conclusion and future directions— In this Letter, we
introduced the concept of “holographic teleportation,”
a phenomenon where a particle appears to “teleport,”
travelling in the dual higher-dimensional geometry, and
showed that this phenomenon actually takes place in the
transverse-field Ising model on a lattice ring. This phe-
nomenon is expected to be ubiquitous and working as a
probe of the dual higher-dimensional geometry.

Although holographic teleportation can be clearly un-
derstood in the gravity side, its physical interpretation
in the spin system is not trivial. This would result form
the long range correlation of the ground state of the spin
system near the critical point. Revealing the physical in-
terpretation of holographic teleportation is an interesting
future challenge.

The transverse-field Ising model reduces to the free
QFT in the continuum limit as in Eq. (7). There
has been attempts for dual descriptions of free quan-
tum theories. One of them is to consider a higher spin
gravity equivalent to a coset CFT with (SO(2N)k ×
SO(2N)1)/SO(2N)k+1 [25, 26]. Taking the limit k → ∞
gives a model with SO(2N)1, which admits a free N -
Majorana fermion representation. Therefore, at least
some higher spin gravity models may be a target for the
experimental probe of the dual higher-dimensional space-
time.

Studying finite temperature effects is one of the most
important future directions. For a free QFT such as
Eq.(7), its finite temperature effects is trivial. On the
other hand, for the SU(N) Heisenberg model for ex-
ample, the continuum limit is a Wess-Zumino-Witten
model [27] and can give non-trivial thermal effects. It
would allows us to probe quantum black hole spacetimes
through tabletop experiments.

Finally, let us suggest possible directions for the appli-
cation of the holographic teleportation. 1) It may provide
a new method in spintronics or magnonics. The telepor-
tation might be used for carrying spin-wave packets from
place to place, bypassing undesired operating elements
existing on the way. Topological materials whose edge
states are gapless CFT would be a suitable test ground
for it. 2) It is tempting to suggest a similarity between
the holographic teleportation and a time crystal. Figure
3 evidently forms a spacetime crystal-like structure in the
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two-dimensional spacetime. Although our teleportation
is not a spontaneous breaking of time translation, the
crystaline pattern formation would provide some novel
holographic understanding of critical materials. 3) Once
at a finite temperature a holographic quantum black hole
is realized, the quantum matter ring would serve as a
quantum “trash can”, when this ring is connected to
quantum circuits. Black holes are the fastest scramblers
[28], and information is effectively lost, which could be
efficiently used in quantum information science. These
are just a list of interesting suggestions, and we like to
explore them in the forthcoming papers.
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The transverse-field Ising mode is a solvable spin model, which reduces to a conformal field
theory (CFT) at the critical point. In this supplemental material, we give a brief review of the
diagonalization of the Hamiltonian of the transverse-field Ising model. Analytical calculations of
the two-point function and linear response are also demonstrated. We take the CFT limit of the
two point function and find that it coincides with that from the the general argument of the CFT.

I. TRANSVERSE-FIELD ISING MODEL

The Hamiltonian of the transverse-field Ising model on
the L-site ring is

H = −J

L∑

i=1

σz
i σ

z
i+1 − h

L∑

i=1

σx
i , (1)

where σa
i (a = x, y, z) is the Pauli matrix which acts on

the i-th spin and σL+1 = σ1. In this section, we give a
brief review of the diagonalization of the transverse-field
Ising model. (See also Refs. [1, 2] for nice reviews.) The
one-dimensional spin-1/2 chain can be mapped onto the
fermion system by the Jordan-Wigner transformation

σx
i = 1− 2c†i ci , −σz

i + iσy
i = 2

i−1∏

j=1

(1− 2c†jcj)ci . (2)

Its inverse transformation is given by

ci =
1

2

i−1∏

j=1

σz
j (−σz

i + iσy
i ) . (3)

The operator ci satisfies the canonical anti-commutation

relation, {ci, c†j} = δij . By the Jordan-Wigner transfor-
mation, the transverse field Ising model reduces to the
system of the fermions as

H = −J

L∑

i=1

(c†i ci+1 + c†i+1ci + c†i c
†
i+1 + ci+1ci)

− h

L∑

i=1

(1− 2c†i ci) , (4)

where c†i and ci are the creation and annihilation oper-
ators of fermions at i-th site. We assume that the to-
tal number of fermions is even: N =

∑L
j=1 c

†
jcj ∈ 2Z.

Then, ci satisfies the anti-periodic boundary condition
cL+1 = −c1.

We apply the Fourier transformation of the operator
cj as

cj =
1√
L

∑

k∈K

eikjck . (5)

From the anti-periodic boundary condition in Eq. (4),
the domain of the wave number k is given by

K =

{
2π

L

(
n− 1

2

) ∣∣∣∣n = −L

2
+ 1, · · · , L

2

}
. (6)

In the momentum space, the Hamiltonian becomes

H = −J
∑

k∈K

(2 cos k c†kck + eikc†kc
†
−k + e−ikc−kck)

+ h
∑

k∈K

(2c†kck − 1) (7)

Rewriting the Hamiltonian (4) in terms of ck, we find the
coupling between modes with k and −k. However, after
the Bogoliubov transformation

(
ck
c†−k

)
=

(
uk −v∗k
vk u∗

k

)(
γk
γ†
−k

)
. (8)

we obtain the diagonalized Hamiltonian as

H = E0 +
∑

k∈K

ϵkγ
†
kγk . (9)

where

ϵk = 2J

√
(cos k − h

J
)2 + sin2 k ,

(
uk

vk

)
=

1√
2ϵk(ϵk + zk)

(
ϵk + zk
iyk

)
,

(10)

with zk = 2(h−J cos k) and yk = 2J sin k. The constant
term in Eq. (9) is the energy of the ground state given
by E0 = −∑k∈K ϵk/2.
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From Eq. (9), we find that the ground state |0⟩ is the
state which is annihilated by γk:

γk|0⟩ = 0 (∀k ∈ K) . (11)

Excited states are constructed by multiplying the cre-
ation operators to the ground state as

|m⃗⟩ =
∏

k∈K

(γ†
k)

mk |0⟩ (mk = 0 or 1) , (12)

where m⃗ represents the list ofmk. As assumed in Eq. (4),
the total fermion number

∑
k∈K mk should be even.

Their energy eigenvalues are E(m⃗) = E0 +
∑

k∈K mkϵk.

II. RETARDED PROPAGATOR AND LINEAR
RESPONSE

We define the two-point function in the transverse-field
Ising model as

Cs(t) = ⟨nj+s(t)nj(0)⟩ . (13)

where ⟨· · · ⟩ is the expectation value with respect to the
ground state. We denoted the number operator of the

fermion at the j-th site by nj = c†jcj , and introduced its

Heisenberg picture as nj(t) = eiHtnje
−iHt. We can also

express nj in terms of γk defined in Eq. (8) as

nj =
1

L

∑

k,k′∈K

ei(k
′−k)j

× (u∗
kγ

†
k − vkγ−k)(uk′γk′ − v∗k′γ

†
−k′) . (14)

The two point function is rewritten as Cs(t) =
⟨0|nj+se

−i(H−E0)tnj |0⟩. From Eq. (14), we have

nj |0⟩ = − 1

L

∑

k,k′∈K

ei(k
′−k)ju∗

kv
∗
k′ |k,−k′⟩

+
1

L

∑

k∈K

|vk|2|0⟩ , (15)

where we defined the two-particle state

|k,−k′⟩ ≡ γ†
kγ

†
−k′ |0⟩ . (16)

This satisfies

⟨0|k,−k′⟩ = 0 ,

⟨p,−p′|k,−k′⟩ = δpkδp′k′ − δp,−k′δp′,−k .
(17)

Since the ground state |0⟩ and the two-particle
state |k,−k′⟩ are energy eigenstates, we also have
e−i(H−E0)t|0⟩ = |0⟩ and e−i(H−E0)t|k,−k′⟩ =
e−i(ϵk+ϵk′ )t|k,−k′⟩. From these relations, the two-point

function is computed as

Cs(t) =
1

L2

(∑

k∈K

|vk|2
)2

− 1

L2

∑

k,k′∈K

e−i(ϵk+ϵk′ )t+i(k−k′)s

× ukvk′(ukvk′ + uk′vk) . (18)

The regarded propagator is defined as

GR(t− t′, j − l) = −iθ(t− t′)⟨ [nj(t), nl(t
′)] ⟩ , (19)

which is computed from the two point function (13) as
GR(t− t′, j− l) = −iθ(t− t′)(Cj−l(t− t′)−Cl−j(t

′ − t)).
Thus, we obtain the explicit expression for the regarded
propagator as

GR(t− t′, j − l) = − i

L2
θ(t− t′)

×
∑

k,k′∈K

ukvk′(ukvk′ + uk′vk)

×
∑

r=±1

reir(ϵk+ϵk′ )(t−t′)−ir(k−k′)(j−l) . (20)

Under the perturbation of the Hamiltonian,

δH = −
L∑

l=1

Jl(t)nl , (21)

its linear response is given by

δ⟨nj(t)⟩ = −
L∑

l=1

∫ ∞

−∞
dt′GR(t− t′, j − l)Jl(t

′) . (22)

We assume the time dependence of the source as

Jl(t) = Al exp

[
− t2

2σ2
t

− iΩt

]
. (23)

This is localized in time and oscillates with the fre-
quency Ω. Al describes the spacial dependence of the
source. Then, we can perform the t′-integration analyt-
ically in Eq. (22). Using the error function: erfc(z) =

2π−1/2
∫∞
z

e−t2dt, we can write the analytical form of
the linear response as

δ⟨nj(t)⟩ =
iσt

L2

√
π

2

∑

r=±1,k,k′

rukvk′(ukvk′ + uk′vk)

×
(

L∑

l=1

Ale
ir(k−k′)l

)
e−ir(k−k′)j

× exp

[
−σ2

t

2
{Ω+ r(ϵk + ϵk′)}2 + ir(ϵk + ϵk′)t

]

× erfc

[
− t√

2σt

− iσt√
2
{Ω+ r(ϵk + ϵk′)}

]
, (24)

For a given space dependence of the source Al, we can
numerically compute the summation of k, k′, r and l.
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III. CONFORMAL FIELD THEORY LIMIT OF
THE TRANSVERSE-FIELD ISING MODEL

Let us consider the the continuum limit of Eq. (4).
We introduce the fermion field Ψ(xj) = cj/

√
a where

a is the lattice spacing. For a → 0, Ψ(x) satisfies
{Ψ(x),Ψ(x′)} = δ(x − x′). Then, the Hamiltonian is
written as

H = −
∫ ℓ

0

dx

[
v

2
(Ψ† d

dx
Ψ† −Ψ

d

dx
Ψ) + δΨ†Ψ

]
, (25)

where

ℓ = La , v = 2Ja =
2Jℓ

L
, δ = 2(J − h) . (26)

This describe the theory for the free Majorana fermion
with the mass δ/v2. For the critical case J = h, above
Hamiltonian describes the conformal field theory (CFT)
with central charge c = 1/2. Thus, the CFT limit of the
transverse-field Ising model is given by

h = J , J → ∞ , L → ∞ , a → 0 , (27)

with fixed v and ℓ in Eq. (26). In the followings, we
take the unit of v = 1 and ℓ = 2π, i.e, 4πJ/L = 1 and
La = 2π.

We consider the CFT limit of the two point func-
tion (18). Since the first term of Eq. (18) is a constant,
we will omit it in the following expressions. We can de-
compose the summation of k and k′ as

Cs(t) = − 1

L2

(
Cuu

s (t)Cvv
−s(t) + Cuv

s (t)Cuv
−s(t)

)
, (28)

where

Cuu
s (t) ≡

∑

k∈K

e−iϵkt+iksu2
k ,

Cuv
s (t) ≡

∑

k∈K

e−iϵkt+iksukvk ,

Cvv
s (t) ≡

∑

k∈K

e−iϵkt+iksv2k .

(29)

In the critical case J = h, the dispersion relation becomes
gapless as

ϵk = 4J

∣∣∣∣sin
k

2

∣∣∣∣ . (30)

We also have

uk =

√
1 + | sin k

2 |
2

, vk =
i cos k

2 sgn(k)√
2(1 + | sin k

2 |)
. (31)

For the regularization, we shift the time coordinate
to the complex plane as t → t − iε. For the shift
parameter ε, we assume 1/J ≪ ε. Although this is

bounded from below, after taking the CFT limit (27),
we can eventually take the limit of ε → +0. Due to
the imaginary part of the time coordinate, only the re-
gion of |k| ≲ 1/(Jε) ≪ 1 contributes in the summation
of Eq. (29). In this region, we can write ϵk ≃ 2J |k|,
uk ≃ 1/

√
2 and vk ≃ i sgn(k)/

√
2. Thus, we have

Cuu
s (t− iε) → 1

2

∑

k∈K

e−2iJ|k|(t−iε)+iks

=
1

2

∞∑

n=−∞
e−i|n−1/2|(t−iε)+i(n−1/2)ϕ

=
1

4i

(
1

sin (t−iε)−ϕ
2

+
1

sin (t−iε)+ϕ
2

)
,

(32)

where we introduced the coordinate of the s-th spin site
as ϕ = 2πs/L. Similarly, we also obtain

Cuv
s (t− iε) → 1

4

(
1

sin (t−iε)−ϕ
2

− 1

sin (t−iε)+ϕ
2

)

Cvv
s (t− iε) → − 1

4i

(
1

sin (t−iε)−ϕ
2

+
1

sin (t−iε)+ϕ
2

) (33)

Therefore, from Eq. (28), the CFT limit of the two point
function becomes

Cs(t− iε) → − 1

4L2

1

sin (t−iε)+ϕ
2 sin (t−iε)−ϕ

2

. (34)

Let us consider the two point function from the general
argument of CFT. For Euclidean CFT in R2, the two-
point function for the operator with conformal weight
(h, h̄) is given by

⟨O(z1, z̄1)O(z2, z̄2)⟩ =
1

z2h12 z̄
2h̄
12

, (35)

where z12 = z1 − z2. Here we will consider the spinless
field: h = h̄ = ∆/2. We can move to the CFT in the
cylinder R × S1 by the conformal transformation, z =
e−iw. From O(z, z̄) = (∂z/∂w)−h(∂z̄/∂w̄)−h̄O(w, w̄)
and Eq. (35), we obtain

⟨O(τ, ϕ)O(0)⟩ ∝ 1
(
sin ϕ+iτ

2 sin ϕ−iτ
2

)∆ , (36)

where we write the complex coordinate in R × S1 as
w = ϕ + iτ . The two-point function in the Lorentzian
signature is given by the analytic continuation of the Eu-
clidean time as τ = it+ ε [3, 4]. Thus, we have

⟨O(t, ϕ)O(0)⟩ ∝ 1
(
sin (t−iε)+ϕ

2 sin (t−iε)−ϕ
2

)∆ . (37)

This coincides with Eq. (34) by setting ∆ = 1.
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