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Hamiltonian of a flux 
qubit‑LC oscillator circuit 
in the deep–strong‑coupling 
regime
F. Yoshihara1*, S. Ashhab1,2, T. Fuse1, M. Bamba3,4 & K. Semba1,5

We derive the Hamiltonian of a superconducting circuit that comprises a single‑Josephson‑junction 
flux qubit inductively coupled to an LC oscillator, and we compare the derived circuit Hamiltonian 
with the quantum Rabi Hamiltonian, which describes a two‑level system coupled to a harmonic 
oscillator. We show that there is a simple, intuitive correspondence between the circuit Hamiltonian 
and the quantum Rabi Hamiltonian. While there is an overall shift of the entire spectrum, the 
energy level structure of the circuit Hamiltonian up to the seventh excited states can still be fitted 
well by the quantum Rabi Hamiltonian even in the case where the coupling strength is larger than 
the frequencies of the qubit and the oscillator, i.e., when the qubit‑oscillator circuit is in the deep–
strong‑coupling regime. We also show that although the circuit Hamiltonian can be transformed via 
a unitary transformation to a Hamiltonian containing a capacitive coupling term, the resulting circuit 
Hamiltonian cannot be approximated by the variant of the quantum Rabi Hamiltonian that is obtained 
using an analogous procedure for mapping the circuit variables onto Pauli and harmonic oscillator 
operators, even for relatively weak coupling. This difference between the flux and charge gauges 
follows from the properties of the qubit Hamiltonian eigenstates.

Superconducting circuits are one of the most promising platforms for realizing large-scale quantum informa-
tion processing. One of the most important features of superconducting circuits is the freedom they allow in 
their circuit design. Since the first demonstration of coherent control of a Cooper pair  box1, various types of 
superconducting circuits have been demonstrated.

The Hamiltonian of a superconducting circuit can be derived using the standard quantization procedure 
applied to the charge and flux variables in the  circuit2. The Hamiltonian of an LC circuit is well known to be 
that of a harmonic oscillator. The Hamiltonians of various kinds of superconducting qubits have also been well 
 studied3–7 and these Hamiltonians can be numerically diagonalized to obtain eigenenergies and eigenstates that 
accurately reproduce experimental data. On the other hand, the Hamiltonian of circuits containing two or more 
components, e.g., qubit-qubit, qubit-oscillator, or oscillator-oscillator systems, are usually treated in such a way 
that the Hamiltonian of the individual components and the coupling among them are separately  obtained8–11. 
This separate treatment of individual circuit components works reasonably well in most circuits. Even for flux 
qubit-oscillator circuits in the ultrastrong-coupling  regime12,13, where the coupling strength g is around 10% 
of the oscillator’s frequency ω and the qubit minimum frequency �q , or the deep–strong-coupling  regime14–16, 
where g is comparable to or larger than �q and ω , the experimental data can be well fitted by the quantum Rabi 
 Hamiltonian17–19, where a two-level atom and a harmonic oscillator are coupled by a dipole-dipole interaction. 
However, the more rigorous approach based on the standard quantization procedure has not been applied to 
such circuits except in a few specific  studies20–22, and the validity of describing a flux qubit-oscillator circuit by 
the quantum Rabi Hamiltonian has been demonstrated in only a few specific  circuits23,24.

In this paper, we apply the standard quantization procedure to a superconducting circuit in which a single-
Josephson-junction flux qubit (an rf-SQUID qubit or a fluxonium-equivalent circuit) and an LC oscillator are 
inductively coupled to each other by a shared inductor (Fig. 1a), and derive the Hamiltonian of the circuit. 
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Our model with a single Josephson junction should be sufficient for the purposes of the present study, and the 
results can be applied to circuits of commonly used multi-Josephson-junction flux  qubits25,26, including the 
fluxonium. Note that single-Josephson-junction flux qubits with different parameters have been experimentally 
demonstrated using superinductors, which have been realized by high-kinetic-inductance  superconductors27,28, 
granular  aluminum29, and Josephson-junction  arrays30. The derived circuit Hamiltonian consists of terms associ-
ated with the LC oscillator, the flux qubit (and its higher energy levels), and the product of the two flux operators. 
Excluding the qubit’s energy levels higher than the first excited state, this circuit Hamiltonian takes the form 
of the quantum Rabi Hamiltonian, which describes a two-level system coupled to a harmonic oscillator. To 
investigate contributions from the qubit’s higher energy levels, we numerically calculate the transition frequen-
cies of the circuit Hamiltonian. We find that the qubit’s higher energy levels mainly cause a negative shift of the 
entire spectrum, and that the calculated transition frequencies are well fitted by the quantum Rabi Hamiltonian 
even when the qubit-oscillator circuit is in the deep–strong-coupling regime. The circuit Hamiltonian can be 
transformed to one that has a capacitive coupling term by a unitary transformation. We show, however, that 
the spectrum of the circuit Hamiltonian cannot be fitted by the variant of the quantum Rabi Hamiltonian that 
has different Pauli operators in the qubit and coupling terms. This situation arises when we perform the map-
ping from circuit variables to Pauli operators for a circuit Hamiltonian that has a capacitive coupling term, i.e. 
a Hamiltonian expressed in the charge gauge. We explain the advantage of the flux gauge over the charge gauge 
in this regard based on the properties of the eigenstates of the flux qubit Hamiltonian.

Results
Circuit Hamiltonian. Following the standard quantization procedure, nodes are assigned to the circuit as 
shown in Fig. 1a. Before deriving the circuit Hamiltonian, the circuit in Fig. 1a is transformed to the one shown 
in Fig. 1b by applying the so-called Y-� transformation, by which a �-shaped network of electrical elements is 
converted to an equivalent Y-shaped network or vice versa, to the inductor network. Thus, node 3 surrounded 
by the inductors is eliminated. The inductances of the new set of inductors are given as

and

The Lagrangian of the circuit can now be obtained relatively  easily2:

where CJ and EJ = Ic�0/(2π) are the capacitance and the Josephson energy of the Josephson junction, Ic is the 
critical current of the Josephson junction, �0 = h/(2e) is the superconducting flux quantum, and �̂k and ˙̂�k 
(k = 1, 2) are the node flux and its time derivative for node k. The node charges are defined as the conjugate 

(1)Lg1 = (LcL1 + LcL2 + L1L2)/L2,

(2)Lg2 = (LcL1 + LcL2 + L1L2)/L1,

(3)L12 = (LcL1 + LcL2 + L1L2)/Lc .
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Figure 1.  Circuit diagrams. (a) A superconducting circuit in which a single-Josephson-junction flux qubit and 
an LC oscillator are inductively coupled to each other by a shared inductor. (b) Equivalent circuit obtained by 
applying the so-called Y-� transformation to the inductor network in circuit (a). (c) The outer loop of circuit (a), 
which forms an LC oscillator. (d) The inner loop of circuit (a), which forms a single-Josephson-junction flux 
qubit.
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momenta of the node fluxes as q̂k = ∂L̂circ/∂
˙̂
�k . After the Legendre transformation, the Hamiltonian is obtained 

as

where

and

As can be seen from Eq. (5), the Hamiltonian Ĥcirc can be separated into three parts: the first part Ĥ1 consisting 
of the charge and flux operators of node 1, the second part Ĥ2 consisting of node 2 operators, and the third part 
Ĥ12 containing the product of the two flux operators.

Separate treatment of the qubit‑oscillator circuit. Let us consider an alternative treatment of the 
circuit shown in Fig. 1a, where the circuit is assumed to be naively divided into two well-defined components. 
The capacitor and the inductors in the outer loop of the circuit in Fig. 1a form an LC oscillator (Fig. 1c). The 
Josephson junction and the inductors in the inner loop form a single-Josephson-junction flux qubit (Fig. 1d). 
The LC oscillator and the single-Josephson-junction flux qubit share the inductor Lc at the common part 
of the two loops. It is now instructive to investigate the relation of the following pairs of Hamiltonians: Ĥ1 
and the Hamiltonian of the LC oscillator shown in Fig. 1c, Ĥ2 and the Hamiltonian of the flux qubit shown 
in Fig.  1d, and Ĥ12 and the Hamiltonian of the inductive coupling between the LC oscillator and the flux 
qubit MÎLCÎq = −Lc�̂1�̂2/[(Lc + L1)(Lc + L2)] , where we have used the relations of the oscillator current 
ÎLC = �̂1/(Lc + L1) , the qubit current Îq = �̂2/(Lc + L2) , and the mutual inductance M = Lc . Actually, only 
the inductances are different in the Hamiltonians of the two pictures: The inductances of the LC oscillator, the 
flux qubit, and the coupling Hamiltonians derived from the separate treatment are respectively Lc + L1 , Lc + L2 , 
and −(Lc + L1)(Lc + L2)/Lc , while those in Ĥcirc are LLC , LFQ , and −L12 . Figure 2 shows the inductances in 
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Figure 2.  (a) The inductances of the LC oscillator LLC , (b) the inductance of the flux qubit LFQ , and (c) the 
inverse inductance of Ĥ12 , 1/L12 obtained by Eqs. (9), (10), and (3) (solid lines) are plotted as functions of Lc 
together with their counterparts in the separate treatment (dotted lines) on condition that the inductance sums 
are kept constant at Lc + L1 = 800 pH and Lc + L2 = 2050 pH.
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the separate treatment and in Ĥcirc as functions of Lc on condition that the inductance sums are kept constant 
at Lc + L1 = 800 pH and Lc + L2 = 2050 pH. As Lc approaches 0, or more specifically when Lc ≪ L1, L2 , we 
obtain Lc + L1 ∼ LLC , Lc + L2 ∼ LFQ , and (Lc + L1)(Lc + L2)/Lc ∼ L12 . In this way, the Hamiltonian derived 
from the separate treatment has the same form as Ĥcirc , and the inductances in the separate treatment approach 
those of Ĥcirc.

Comparison to the quantum Rabi Hamiltonian. We compare the Hamiltonian Ĥcirc with the general-
ized quantum Rabi Hamiltonian:

The first part ĤLC represents the energy of the LC oscillator, where â† and â are the creation and annihilation 
operators, respectively. The second part ĤFQ represents the energy of the flux qubit written in the energy eigen-
basis at ε = 0 . The operators σ̂x,z are the standard Pauli operators. The parameters ��q and �ε are the tunnel 
splitting and the energy bias between the two states with persistent currents flowing in opposite directions around 
the qubit loop. The third part Ĥcoup represents the inductive coupling energy.

The relation between Ĥ1 and ĤLC is straightforward. The resonance frequency and the operators in ĤLC can 
be analytically described by the variables and operators in Ĥ1 as ω = 1/

√
LLCC and â+ â† → �̂1/(LLCIzpf ) , 

where Izpf =
√
�ω/(2LLC) is the zero-point-fluctuation current. To see the relation between Ĥ2 and ĤFQ , we 

numerically calculated the eigenenergies of Ĥ2 as functions of �x . In the calculation, we used the following 
parameters: Lc + L2 = 2050 pH, LJ = 990 pH ( EJ/h = 165.1 GHz), and CJ = 4.84 fF ( EC/h = 4.0 GHz). As 
shown in Fig. 3a the lowest two energy levels are well separated from the higher levels, which are more than 
40 GHz higher in frequency. The lowest two energy levels of Ĥ2 are well approximated by ĤFQ (Fig. 3b), which 
gives almost identical results obtained by the local basis reduction  method31, with σ̂x and σ̂z swapped. The eigen 
frequencies of the ground state ω0 and the first excited state ω1 are respectively fitted by ωos −

√

ε2 +�2
q/2 and 

ωos +
√

ε2 +�2
q/2 . Besides the offset ωos , the fitting parameters are �q and the maximum persistent current Ip , 

which is determined as the proportionality constant between the energy bias and the flux bias, 
ε = 2Ip(�x − 0.5�0) . We also numerically calculated the expectation values of the flux operator, 
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â†â+ 1

2

)

− 1

2
(εσ̂x +�qσ̂z)+ g σ̂x(â+ â†)
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Figure 3.  (a) Numerically calculated energy levels of Ĥ2 as functions of �x . (b) The lowest two energy levels of 
Ĥ2 . (c) The expectation values of the flux operator 
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 . In (b,c), the solid circles are 

obtained from numerical calculations of Ĥ2 , while the lines are obtained from fitting by ĤFQ . The black and red 
colors respectively indicate states 

∣

∣g
〉

 and |e� . In the calculation, we used the following parameters: 
Lc + L2 = 2050 pH, LJ = 990 pH ( EJ/h = 165.1 GHz), and CJ = 4.84 fF ( EC/h = 4.0 GHz).
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The only fitting parameter is determined by the ratio �2max = −
〈

i
∣

∣

∣
�̂2

∣

∣

∣
i
〉

/
〈

i
∣

∣σ̂x
∣

∣i
〉

 ( i = g , e ). The Pauli operator 

σ̂x is therefore identified as being proportional to the flux operator σ̂x → −�̂2/�2max . The relation between Ĥ12 
and Ĥcoup can now be obtained by using the relations for the oscillator and qubit operators identified above. This 
way we find that the Hamiltonian Ĥ12 can be expressed as −(LLC/L12)Izpf�2max σ̂x(â+ â†) , which is exactly the 
same form as Ĥcoup , with the coupling strength �g = −(LLC/L12)Izpf�2max . Note that Ĥcoup directly derived 
from the Lagrangian L̂circ is in the flux gauge, as the qubit-oscillator coupling term is of the form �̂1�̂2 , which 
is optimal for our system with a single oscillator mode 32–34. Excluding the qubit’s energy levels higher than the 
first excited states, Ĥcirc takes the form of ĤR . In other words, once the circuit parameters, i.e. �x , Lc , L1 , L2 , C, 
EJ , and CJ , are given, the corresponding parameters in ĤR ( ω , ε , �q , and g) are set. The relation between Ĥcirc 
and ĤR is summarized in Table 1. 

As previously mentioned, ĤR considers only the lowest two energy levels of the flux qubit, while Ĥcirc includes 
all energy levels. To investigate the effect of the qubit’s higher energy levels, we perform numerical calculations 
and compare the energy levels calculated by ĤR and Ĥcirc . The details of the numerical diagonalization of Ĥcirc 
are given in “Methods”. Since the contributions from the qubit’s higher energy levels are expected to become 
larger as the coupling strength increases, we consider parameters that cover a wide range of coupling strengths 
from the weak-coupling to the deep–strong-coupling regime. In the calculations, we fix Lc + L1 = 800 pH, 
Lc + L2 = 2050 pH, C = 0.87 pF, LJ = 990 pH ( EJ/h = 165.1 GHz), and CJ = 4.84 fF ( EC/h = 4.0 GHz), and 
sweep the flux bias �x around �0/2 at various values of Lc . These parameters are used in all the calculations for 
Figs. 4, 5, 6 and 7. Some of our calculations were performed using the QuTiP simulation  package35.

Transition frequencies of the qubit-oscillator circuit ωij corresponding to the transition |i� →
∣

∣j
〉

 numerically 
calculated from Ĥcirc around the resonance frequency of the oscillator ω are plotted in Fig. 4 for (a) Lc = 20 pH 
and (b) Lc = 350 pH, where the indices i and j label the energy eigenstates according to their order in the energy-
level ladder, with the index 0 denoting the ground state. The same circuit parameters as in Fig. 3 are used. In the 
case Lc = 20 pH, two characteristic features are observed: avoided level crossings between the qubit and oscillator 
transition signals approximately at �x/�0 = 0.497 and 0.503, and the dispersive shift that for example creates the 
separation between the frequencies of the transitions |0� → |2� and |1� → |3� , leading to the peak/dip feature at 
the symmetry point, i.e. �x/�0 = 0.5 . Note that transitions |0� → |2� and |1� → |3� around �x/�0 = 0.5 respec-
tively correspond to transitions 

∣

∣g0
〉

→
∣

∣g1
〉

 and |e0� → |e1� , where “g” and “e” denote, respectively, the ground 
and excited states of the qubit, and “0” and “1” the number of photons in the oscillator’s Fock state. In the case 
Lc = 350 pH, the characteristic spectrum indicates that the qubit-oscillator circuit is in the deep–strong-coupling 
 regime15. Transition frequencies of ĤR are also plotted in Fig. 4a,b. It should be mentioned that the parameters of 
ĤR are obtained in two different ways. Here, the parameters of ĤR are obtained from the relations described in 
Table 1. The overall shapes of the spectra of ĤR and Ĥcirc look similar. On the other hand, the shift of the entire 
spectrum becomes as large as more than 200 MHz for Lc = 350 pH. To quantify the difference of the spectra 
between ĤR and Ĥcirc , transition frequencies up to the third excited state numerically calculated from Ĥcirc are 
fitted by ĤR . In the fitting, ĤR with an initial approximate set of parameters is numerically diagonalized and 
then the parameters, ω , �q , g, and Ip(= ε/[2(�x − 0.5�0)]) , are varied to obtain the best fit. Figure 4c,d show 
that the same spectra of Ĥcirc in Fig. 4a,b are well fitted by ĤR , but with a different parameter set.

Figure 5 shows parameters of ĤR obtained from the relations described in Table 1, and by fitting the spec-
tra of Ĥcirc up to the third excited state to ĤR as a function of Lc . The parameters of ĤR obtained in these two 

Table 1.  Hamiltonians, operators, and variables in ĤR and their counterparts in Ĥcirc. Izpf =
√
�ω/(2LLC) 

and Vzpf =
√
�ω/(2C) are the zero-point-fluctuation current and voltage, respectively. The parameters �2max , 

Ip , and �q are obtained by numerically calculating the eigenenergies of Ĥ2 as functions of �x and fitting the 
lowest two energy levels by ĤFQ . Note that there is no analytic expression for σ̂z and �q.

ĤR Ĥcirc

ĤLC Ĥ1

ĤFQ Ĥ2

Ĥcoup Ĥ12

â+ â† �̂1/(LLCIzpf )

(â− â†)/i q̂1/(CVzpf )

σ̂x −�̂2/�2max

σ̂z –

ω 1/
√
LLCC

ε 2Ip(�x − 0.5�0)

�q Minimum qubit frequency (numerically evaluated)

g (LLC/L12)Izpf�2max/�
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different ways become quite different from each other at large values of Lc due to contributions of the qubit’s 
higher energy levels. Interestingly, the average of the squares of the residuals in the least-squares method for 
obtaining the parameters of ĤR by fitting, [δω0i/(2π)]2 (i = 1, 2, and 3), remains rather small, at most 25 MHz2 , 
which is consistent with the good fitting shown in Fig. 4c,d. In fact, the energy level structure of Ĥcirc up to 
the seventh excited state can still be fitted well by the quantum Rabi Hamiltonian as shown in Supplementary 
Information S136.

Hamiltonian in the charge gauge. The circuit Hamiltonian Ĥcirc is in the flux gauge, as the qubit-oscilla-
tor coupling term is of the form �̂1�̂2 . The Hamiltonian can be transformed into the charge gauge:

where

(12)

Ĥ
′
circ =Û

†
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,

Figure 4.  Transition frequencies of the qubit-oscillator circuit fitted with different approximate Hamiltonians. 
Numerically calculated transition frequencies from Ĥcirc are plotted as circles while the fitting spectra are 
plotted as lines. Two mutual inductance values, corresponding to different qubit-oscillator coupling strengths, 
are used: Lc = 20 pH (a,c,e,g) and Lc = 350 pH (b,d,f,h). The spectra are fitted with ĤR (a–d) and Ĥ′

R (e–h). 
(a,b) The parameters of ĤR are obtained from the relations described in Table 1: ω/(2π) = 6.033 GHz, 
�q/(2π) = 1.240 GHz, g/(2π) = 0.424 GHz, and Ip = 281.3 nA for Lc = 20 pH and ω/(2π) = 6.272 GHz, 
�q/(2π) = 2.139 GHz, g/(2π) = 7.338 GHz, and Ip = 282.5 nA for Lc = 350 pH. (c,d) The parameters 
of ĤR are obtained by fitting the spectra of Ĥcirc to ĤR : ω/(2π) = 6.033 GHz, �q/(2π) = 1.240 GHz, 
g/(2π) = 0.430 GHz, and Ip = 281.3 nA for Lc = 20 pH and ω/(2π) = 6.064 GHz, �q/(2π) = 2.388 GHz, 
g/(2π) = 7.822 GHz, and Ip = 282.9 nA for Lc = 350 pH. (e,f) The parameters of Ĥ′

R are obtained from the 
circuit parameters of Ĥ′

circ in the similar way as in Table 1: ω/(2π) = 6.085 GHz, �q/(2π) = 1.238 GHz, 
g ′/(2π) =0.043 GHz, and Ip = 281.3 nA for Lc = 20 pH, and ω/(2π) = 15.66 GHz, �q/(2π) = 1.238 GHz, 
g ′/(2π) =0.492 GHz, and Ip = 281.3 nA for Lc = 350 pH. (g,h) The parameters of Ĥ′

R are obtained by 
fitting the spectra of Ĥ′

circ to Ĥ′
R : ω/(2π) = 6.035 GHz, �q/(2π) = 1.220 GHz, g/(2π) = 0.089 GHz, and 

Ip = 281.3 nA for Lc = 20 pH and ω/(2π) = 6.034 GHz, �q/(2π) = 0.233 GHz, g/(2π) = 0.165 GHz, and 
Ip = 281.4 nA for Lc = 350 pH. Black, gray, orange, magenta, and red colors indicate transitions |0� → |1� , 
|0� → |2� , |0� → |3� , |1� → |2� , and |1� → |3� , respectively.
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The details of the calculations are given in Supplementary Information S236. As can be seen in Eq. (12), the 
Hamiltonian Ĥ′

circ can be separated into three parts: the first part Ĥ′
1 consisting of the charge and flux opera-

tors of node 1, the second part Ĥ′
2 consisting of the charge and flux operators of node 2, and the third part Ĥ′

12 
containing the product of the two charge operators. It is worth mentioning that the inductance in Ĥ′

2 is equal to 
Lc + L2 , which is the inductance of the flux qubit in the separate treatment:

(15)Ĥ
′
2 =

1

2CJ
q̂22 +

1

2

(

1

LFQ
− LLC

L212

)

�̂2
2 − EJ cos

(

2π
�̂2 −�x

�0

)

,

(16)Ĥ
′
12 =− LLC

CJL12
q̂1q̂2.

Figure 5.  Parameters of ĤR obtained from the relations described in Table 1, (red solid lines) and by fitting 
the spectra of Ĥcirc up to the third excited state to ĤR (black dashed lines) as a function of Lc . Panels (a–
d) respectively correspond to the oscillator frequency ω , qubit frequency �q , coupling strength g, and persistent 
current Ip in ĤR . (e) The average of the squares of the residuals in the least-squares method for obtaining the 
parameters of ĤR by fitting, [δω0i/(2π)]2 (i = 1, 2, and 3).

Figure 6.  Numerically calculated matrix elements 
〈

j
∣

∣q̂2
∣

∣i
〉

 for i = g , e and (a)  j = g , e , (b)  j = g , e, f , h, k, l , 
where 

∣

∣f
〉

 , |h� , |k� , and |l� respectively represent the second, third, fourth, and fifth excited states of Ĥ2 . 
Numerically calculated matrix elements 

〈

j
∣

∣

∣
�̂2

∣

∣

∣
i
〉

 for i = g , e and (c)  j = g , e , (d)  j = g , e, f , h, k, l . Note that the 
x axis ranges are smaller than those in Fig. 4.
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The overall form of Ĥ′

circ [Eq. (12)] is almost the same as that of Ĥcirc [Eq. (5)], with the exception that the 
coupling term is of the form q̂1q̂2 instead of �̂1�̂2 . When we examined the mapping between Ĥ2 and ĤFQ , we 
explained that the operator �̂2 can be identified as σ̂x . Similarly, if we calculate the matrix elements of the operator 
q̂2 for the two lowest qubit states, we find that 

〈

g
∣

∣q̂2
∣

∣g
〉

=
〈

e
∣

∣q̂2
∣

∣e
〉

= 0 and 
〈

g
∣

∣q̂2
∣

∣e
〉

= −
〈

e
∣

∣q̂2
∣

∣g
〉

�= 0 (Fig. 6a). 
We can therefore identify the operator q̂2 as the qubit operator σ̂y.

It then seems natural to look for a mapping of Ĥ′
circ to the variant of the quantum Rabi Hamiltonian:

Compared with ĤR , only Ĥcoup is replaced by Ĥ′
coup . It should be noted, however, that there is a physical dif-

ference between the two Hamiltonians and that there is no simple mapping between them. The operator σ̂x in 
Ĥcoup is the same as one of the Pauli operators in ĤFQ . In contrast, the operator σ̂y in Ĥ′

coup is different from 
the two operators ( ̂σx and σ̂z ) in ĤFQ . As a result, ĤR and Ĥ′

R are physically different and for example produce 
different spectra.

In Fig. 4 we plot a few of the transition frequencies in the circuit’s spectrum along with the corresponding 
transition frequencies obtained from Ĥ′

R . When the parameters of Ĥ′
R are read off Ĥ′

circ , similarly to what is 
shown in Table 1, Fig. 4e,f show that the fitting is poor in most parts of the spectrum, even for the relatively weak 
coupling case Lc = 20  pH. Here, g ′ = q1zpf q2maxLLC/(CJL12) ,  q1zpf =

√
�ω′C′/2  ,  ω′ = 1/

√
LLC×

√

(1/C)+ (L2
LC
/CJL

2
12) , 1/C′ = (1/C)+ [L2

LC
/(CJL

2
12)] , and q2max is numerically calculated as shown in Fig. 6a. 

Contrary to the open grey and red circles obtained from Ĥ′
circ , the solid grey and red lines obtained from Ĥ′

R are 

(17)

1

LFQ
− LLC

L212
= 1

L12
+ 1

Lg2
−

Lg1

L12(L12 + Lg1)

= Lc + L1

LcL1 + LcL2 + L1L2
− L2c

(LcL1 + LcL2 + L1L2)(Lc + L2)

= (Lc + L1)(Lc + L2)− L2c
(LcL1 + LcL2 + L1L2)(Lc + L2)

= 1

Lc + L2
.

(18)
Ĥ

′
R/� =ω

(

â†â+ 1

2

)

− 1

2
(εσ̂x +�qσ̂z)+ ig ′σ̂y(â− â†)

=
(

ĤLC + ĤFQ + Ĥ
′
coup

)

/�.

Figure 7.  Expectation values of photon number, flux, and current operators for (a–d) Ĥcirc and for (e,f) Ĥ′
circ . 

(a,e) Expectation numbers of photons in the oscillator in the ground state as a function of Lc . The solid curve 
corresponds to 

〈

0

∣

∣

∣
Ĥ1/�

∣

∣

∣
0

〉

/(1/
√
LLCC)− 0.5 , while the dashed line in panel (a) indicates the simple 

expression (g/ω)2 , which is valid in the limit �q ≪ ω . (b,f) [d,h] Expectation values of fluxes 2π
〈

�̂k

〉

/�0 

[Expectation values of currents 
〈

Îk

〉

 ] as functions of the flux bias �x in the case Lc = 350 pH. Black and red 
colors respectively indicate k = 1 and 2, and solid and dashed lines indicate the ground and the excited states, 
respectively. (c,g) Expectation value of flux 2π

〈

�̂1

〉

/�0 in the ground state as a function of Lc at 
�x/�0 = 0.498.
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larger and do not show the peaks and dips around the symmetry point. Even with a numerical optimization of 
the fitting parameters (Fig. 4g,h), only parts of the spectrum can be fitted well. In particular, the peaks and dips 
that occur in the spectrum at �x/�0 = 0.5 are not reproduced by Ĥ′

R.
Here it is useful to consider the two characteristic features in the spectrum, i.e. the avoided crossings and 

dispersive shifts, as being the result of energy shifts in the spectrum of an uncoupled circuit when the coupling 
term is added. The gap of an avoided level crossing, or in other words the Rabi splitting, is proportional to the 
matrix element of the coupling term between the relevant energy eigenstates of the uncoupled system. The 
dispersive shift of one energy level caused by another energy level is proportional to the square of the matrix 
element between the two energy eigenstates according to perturbation theory. The details of the dispersive shifts 
up to second order in perturbation theory are described in Supplementary information S336.

The difference between the spectra shown in the solid lines in Fig. 4a,e is attributed to the difference between 
the matrix elements of the qubit’s flux and charge operators, �̂2 and q̂2 . The flux bias dependences of the numeri-
cally calculated matrix elements of the qubit’s charge and flux operators are shown in Fig. 6. Regarding the matrix 
elements of the qubit’s flux operator 

∣

∣

∣

〈

j
∣

∣

∣
�̂2

∣

∣

∣
i
〉∣

∣

∣
 ( i = g , e ), those involving the higher qubit levels j = f , h, k, l are 

smaller than those of j = g , e . Here, 
∣

∣f
〉

 , |h� , |k� , and |l� respectively represent the second, third, fourth, and fifth 
excited states of Ĥ2 . Regarding the matrix elements of the qubit’s charge operator 

∣

∣

〈

j
∣

∣q̂2
∣

∣i
〉∣

∣ ( i = g , e ), on the other 
hand, some of those involving the higher qubit levels j = f , h, k, l are significantly larger than those of j = g , e 
in most of the flux bias range. This difference stems from the fact that the qubit Hamiltonian involves a double-
well potential of the flux variables, as explained in Supplementary information S436.

The matrix elements 
〈

g
∣

∣

∣
�̂2

∣

∣

∣
e
〉

 and 
〈

e
∣

∣

∣
�̂2

∣

∣

∣
g
〉

 have a peak at �/�0 = 0.5 , which directly leads to the peak/
dip feature at the symmetry point as shown in the solid lines in Fig. 4a. On the other hand, the matrix elements 
〈

g
∣

∣q̂2
∣

∣e
〉

 and 
〈

e
∣

∣q̂2
∣

∣g
〉

 are almost constant in the flux bias range of Fig. 6, which is consistent with the absence of 
a peak/dip feature at the symmetry point in the solid lines in Fig. 4e. Instead, the matrix elements 

〈

h
∣

∣q̂2
∣

∣g
〉

 and 
〈

f
∣

∣q̂2
∣

∣e
〉

 , which have somewhat similar flux-bias dependence to those of 
〈

g
∣

∣

∣
�̂2

∣

∣

∣
e
〉

 and 
〈

e
∣

∣

∣
�̂2

∣

∣

∣
g
〉

 , have peaks at 
�/�0 = 0.5 . As a result, for the flux gauge, the contribution from higher levels is just a small correction, while 
it cannot be neglected in the charge gauge. For this reason, the flux gauge turns out to be more convenient for 
purposes of mapping Ĥcirc to the quantum Rabi Hamiltonian.

It is worth mentioning that we are dealing with an inductively coupled circuit, and one might think that 
the nature of the coupling, i.e. inductive or capacitive, will determine which gauge is more suitable, especially 
because the two gauges differ mainly by the form of the coupling term. We show that the deciding factor is the 
qubit rather than the coupling. As a result, if we have a flux qubit capacitively coupled to the oscillator, the flux 
gauge will be more suitable for the purpose of approximating the circuit Hamiltonian by the quantum Rabi 
Hamiltonian. It is also worth mentioning that our results should apply to fluxonium-resonator circuits, since 
the fluxonium Hamiltonian close to the degeneracy point also involves a double-well potential of the flux vari-
ables. It should be noted, however, that the fluxonium’s transition frequencies to the higher energy levels, ω02 
and ω03 , are smaller than those of flux qubits, and, hence, the contribution from higher levels would be larger 
in fluxonium-resonator circuits.

We note here that the differences between the energy spectra obtained from Ĥcirc , ĤR , and Ĥ′
R in the case 

ε = 0 , �q = ω , and a quadratic-plus-quartic potential energy function were extensively studied in Ref.24. Con-
trary to the case of �q < ω , the spectra obtained from Ĥcirc and ĤR are almost identical for the lowest energy 
levels in the whole range of g/ω while that of Ĥ′

R deviates from the other two when g/ω � 0.1 . The Rabi split-
ting between the first two excited energy levels, which is symmetric and is proportional to g, is clearly visible for 
g/ω ≪ 0.1 , while the dispersive shift due to the higher energy levels is proportional to g2 , and can be observed 
only when g/ω � 0.1 . We also note that for Lc = 20 pH, g ′/(2π) = 0.043 GHz, which is much smaller than 
g/(2π) = 0.424 GHz. On the other hand, the gap of the avoided level crossings plotted as lines in Fig. 4e is not 
much smaller than that in Fig. 4a considering g ′ ∼ 0.1g . The gap of the avoided level crossings for Ĥ′

R is 2g ′ while 
that for ĤR is 2g�q/ω . The factor �q/ω = 0.206 partly explains why the avoided level crossings for ĤR and Ĥ′

R 
are not very different from each other.

Expectation values of the photon number and the field operator. One of the most paradoxical 
features of ĤR in the deep–strong-coupling regime is the non-negligible number of photons in the oscillator in 
the ground  state37. In terms of the creation and annihilation operators, the photon number operator is â†â . Con-
sidering the mapping between Ĥcirc and ĤR , the photon number operator in Ĥcirc is Ĥ1/(1/

√
LLCC)− 0.5 . As 

shown in Fig. 7a, a nonzero number of photons in the oscillator is obtained. Another paradoxical feature of ĤR 
in the deep–strong-coupling regime is a non-negligible expectation value of the field operator 

〈

â+ â†
〉

 when the 
qubit flux bias is �x  = 0.5�0 . The corresponding operator in Ĥcirc is �̂1/(LLCIzpf ) . Fig. 7b shows the expectation 

values of the fluxes, 
〈

�̂1

〉

 and 
〈

�̂2

〉

 , as functions of the flux bias �x for the ground and the first excited states in 
the case Lc = 350 pH. At �x/�0  = 0.5 , a nonzero expectation value 

〈

�̂1

〉

 is demonstrated. One may suspect 

that a nonzero 
〈

�̂1

〉

 is unphysical because it might result in a nonzero DC current through the inductor of an 
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LC oscillator in an energy eigenstate. The relation between the flux and current operators is explicitly given in 
the circuit model (Fig. 1a):

where Îk ( k = 1, 2 ) is defined as the operator of the current flowing from the ground node to node k. In the case 
Lc = 0 , Eq. (19) reduces to Î1 = �̂1/L1 and Î2 = �̂2/L2 which means that the operator �̂1 can indeed be under-
stood as a current operator. As shown in Fig. 7c, at �x/�0 = 0.498 , the expectation value 2π

〈

�̂1

〉

/�0 in the 
ground state is proportional to Lc and is zero only when Lc = 0 . Figure 7d shows the expectation values of the 
currents 

〈

Î1

〉

 and 
〈

Î2

〉

 as functions of �x in the case Lc = 350 pH. The expectation value 
〈

Î2

〉

 is nonzero at 

�x/�0  = 0.5 , while 
〈

Î1

〉

 is exactly zero at all values of �x . In this way, although 
〈

�̂1

〉

 is nonzero in the case 
Lc  = 0 , an unphysical DC current through the inductor of an LC oscillator is not predicted.

Next, we consider the case of Ĥ′
circ . Since unitary transformations do not change the eigenenergies of Ham-

iltonians, Ĥcirc and Ĥ′
circ have exactly the same eigenenergies. On the other hand, the photon-number and flux 

operators do not commute with the gauge transformation:

and

T h e  c o r r e s p o n d i n g  p h o t o n  nu m b e r  o p e r a t o r  i n  Ĥ′
circ  i s  Ĥ′

1/(�ω
′)− 0.5  ,  w h e r e 

ω′ = 1/
√
LLC ×

√

(1/C)+ (L2LC/CJL
2
12) is the resonance frequency of Ĥ′

1 . The corresponding field operator in 
Ĥ′

circ is �̂1/(LLCIzpf ) . As shown in Fig. 7e, the expectation number of photons in the charge gauge is much smaller 
than that in the flux gauge, and the non-negligible expectation number of photons in the oscillator in the ground 
state arises only in the flux-gauge. We note here that the resonance frequency of Ĥ′

1 is larger than 1/
√
LLCC ≃ 6.03

GHz: ω′/(2π) = 15.66 GHz in the case Lc = 350 pH. We can see that the expectation value of the operator �̂1 
in the case Lc = 350 pH is zero at all values of �x (Fig. 7f), which are also different from the case of the flux-gauge 
Hamiltonian. The expectation value of the current operator Î1 is zero at all values of �x , which is true in the flux 
gauge as well.

Discussion
We have derived the Hamiltonian of a superconducting circuit that comprises a single-Josephson-junction 
flux qubit and an LC oscillator using the standard quantization procedure. Excluding the qubit’s higher energy 
levels, the derived circuit Hamiltonian takes the form of the quantum Rabi Hamiltonian. We show that the 
Hamiltonian derived from the separate treatment, where the circuit is assumed to be naively divided into the 
two well-defined components, has the same form as the circuit Hamiltonian, and the inductances in the sepa-
rate treatment approach those of the circuit Hamiltonian as Lc approaches 0. The qubit’s higher energy levels 
mainly cause a negative shift of the entire spectrum, but the energy level structure can still be fitted well by the 
quantum Rabi Hamiltonian even when the qubit-oscillator circuit is in the deep–strong-coupling regime. We 
also show that although the circuit Hamiltonian can be transformed to a Hamiltonian containing a capacitive 
coupling term, the resulting circuit Hamiltonian cannot be approximated by the capacitive-coupling variant of 
the quantum Rabi Hamiltonian.

Methods
As a simple example, let us consider Ĥ1 in the main text:

where, EC = e2/(2C) , EL = [�0/(2π)]2/LLC , and φ̂ and n̂ are operators of dimensionless magnetic flux and 
charge, respectively, and satisfy [φ̂, n̂] = i . Using the relation φ̂ = −(1/i)∂/∂n , the Hamiltonian can be rewrit-
ten as

(19)
(

Lc + L1 Lc
Lc Lc + L2

)(

Î1
Î2

)

=
(

�̂1

�̂2

)

,

(20)

Û
†
Ĥ1Û

= Û
†

(

q̂21
2C

+ �̂2
1

2LLC

)

Û

=
[

q̂21
2C

+
(

�̂1 +
LLC

L12
�̂2

)2 1

2LLC

]

,

(21)
Û
†�̂1Û

= �̂1 +
LLC

L12
�̂2.

(22)Ĥ1 =
q̂21
2C

+ �̂2
1

2LLC
= 4ECn̂

2 + 1

2
ELφ̂

2,
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Let us calculate wavefunctions ψ(n) and their eigenenergies E of this Hamiltonian. We expand the wavefunction 
with plane waves as

Here, 2nmax is the length of the n-space. Considering the periodic boundary condition ψ(−nmax) = ψ(nmax) , 
the wave number k is given by

In numerical calculations in this work, we have used 32 waves for the qubit and 64 waves for the oscillator. Then, 
the equation for determining ψk and E is obtained as

where

The set of wavefunctions and eigenenergies are obtained by solving Eq. (26). Numerically, we can get fk−k′(n
2) 

by the fast Fourier transform (FFT) for discretized n-space. After solving the eigenvalue equation in Eq. (26), 
the wavefunctions ψ(n) are also obtained from ψk by the FFT. For the calculation of Ĥ2 in the main text, we use 
the following equation instead of Eq. (26),

where ECJ = e2/(2CJ ) , ELFQ = [�0/(2π)]2/LFQ , and kx = 2π�x/�0 . Note that a fluxonium-resonator circuit 
that has the identical circuit diagram but different circuit parameters was numerically diagonalized using the 
harmonic oscillator  basis22.
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