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The Dicke model describes the cooperative interaction of an ensemble of two-level atoms with a
single-mode photonic field and exhibits a quantum phase transition as a function of light–matter cou-
pling strength. Extending this model by incorporating short-range atom–atom interactions makes
the problem intractable but is expected to produce new phases. Here, we simulate such an extended
Dicke model using a crystal of ErFeO3, where the role of atoms (photons) is played by Er3+ spins
(Fe3+ magnons). Through magnetocaloric effect and terahertz magnetospectroscopy measurements,
we demonstrated the existence of a novel atomically ordered phase in addition to the superradiant
and normal phases that are expected from the standard Dicke model. Further, we elucidated the
nature of the phase boundaries in the temperature–magnetic-field phase diagram, identifying both
first-order and second-order phase transitions. These results lay the foundation for studying mul-
tiatomic quantum optics models using well-characterized many-body condensed matter systems.

The Dicke model in quantum optics describes the co-
operative, coherent coupling of an ensemble of two-level
atoms with a single-mode light field [1]. Despite its sim-
plicity, the model hosts a rich variety of phenomena that
are significant in diverse contexts, such as cavity quan-
tum electrodynamics [2], condensed matter physics [3],
and quantum information science [4, 5]. A prominent
feature of the model is a second-order quantum phase
transition (QPT), known as the superradiant phase tran-
sition (SRPT), which occurs when the light–matter cou-
pling strength, g, exceeds a threshold [6, 7]. When
the system enters the superradiant phase, atomic and
photonic polarizations spontaneously emerge, producing
a unique many-body ground state that enables stud-
ies of unusual light–matter entanglement [8], two-mode
squeezed states [9–11], and quantum chaos [12].

Although the atomic ensemble in the original Dicke
model was assumed to be noninteracting, it has been
known from the early days that atom–atom interactions
are important for explaining, for example, the dephasing
and intensity correlation functions of fluorescent spec-
tra [13, 14]. Hence, there has long been interest in ex-
tending the Dicke model to include an atom–atom inter-
action (represented by strength J); see Fig. 1. Such an

extended Dicke model, or the g–J model, should display
an interplay of two types of interatomic interactions –
i.e., the photonic-field-mediated long-range interaction,
and the direct short-range interaction. Intuitively, one
can expect the ground state of the system to crucially
depend on the ratio g/J , with a superradiant phase (an
atomically ordered phase) favored for large (small) g/J .
However, no analytical solutions can be obtained for the
g–J model, motivating one to simulate it using a well-
characterized many-body quantum system.

Computational studies of the g–J model under vari-
ous approximations have revealed an array of new phe-
nomena, such as a first-order QPT [15–19], a shift
of the SRPT boundary [20, 21], amplification of the
integrablity-to-chaos transition [22], modifications of
matter–matter entanglement [20, 23], and alteration of
the nature of an excited-state QPT [18, 24]. Mean-field
solutions to the g–J model framed in complex networks
have implications even for social sciences [25], describing
opinion formation within the communicating agents of a
social group sharing a common information field. To ex-
amine these phenomena, several experimental platforms,
including atomic Bose–Einstein condensates [26, 27], su-
perconducting qubits [28, 29], and quantum dots [15],
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FIG. 1. The extended Dicke model, or the g–J model, where
an ensemble of mutually interacting two-level atoms collec-
tively couples with a bosonic field. The cooperative boson–
atom interaction, with strength g, mediates long-range atom–
atom interactions, whereas the direct atom–atom interaction,
with strength J , is short-ranged.

have been proposed as quantum simulators, but success-
ful simulations have not been achieved.

Here, we present a novel protocol of using a crystal
of erbium orthoferrite (ErFeO3), an antiferromagnetic
(AFM) insulator, as a solid-state quantum simulator of
the g–J model. The magnetic properties of ErFeO3 are
governed by the moments carried by the Er3+ and Fe3+

spin subsystems and their interplay [30]. A previous
study has revealed Dicke cooperativity in the Er3+–Fe3+

interaction [31], demonstrating the resemblance of the
magnetic Hamiltonian of ErFeO3 to the Dicke Hamilto-
nian. Namely, the paramagnetic Er3+ ions (the magnons
of ordered Fe3+ spins) play the role of the atomic en-
semble (light field), and the spin–magnon interaction is
formally similar to the g-term in the Dicke model. What
further strengthens this analogy is a magnetic phase tran-
sition of the crystal that exhibits all traits that would
be expected for a Dicke SRPT. When the temperature
(T ) becomes lower than 4 K, the Er3+ lattice develops
C-type AFM order [32] (with the ferromagnetic chains
along z), and a zone-boundary Fe3+ magnon mode con-
denses, displacing the staggered moments away from the
xz plane [33, 34]; this corresponds to the emergence of
atomic and photon polarizations in the standard SRPT.
In Bertaut’s notation, the magnetic transition is of the
Γ2 → Γ12 type [Fig. 2(a)]. Mean-field calculations us-
ing a realistic spin model captures the simultaneous or-
der parameter (OP) onsets of both the Er3+ and Fe3+

spin components, 〈Σ−z 〉 and 〈Sy〉, respectively [Fig. 2(b)],
indicating that the Γ2 → Γ12 transition is a magnonic
SRPT [35], with the Γ2 and Γ12 phases corresponding to
the normal (N) and superradiant (S) phases, respectively.

The J-term is inherently built into the magnetic
Hamiltonian of ErFeO3 since the Er3+–Er3+ exchange in-

teraction, albeit being weak, is known to be present [36].
Spectroscopic measurements have also revealed a fine fre-
quency splitting within the Er3+ electron paramagnetic
resonance lines [31], which is attributable to the Er3+–
Er3+ exchange interaction. The presence of both the
g- and J-terms sets the stage for ErFeO3 to simulate
the g–J model. Nonetheless, although the g-term-driven
S phase can find correspondence to the Γ12 phase in
ErFeO3, the g/J ratio set for the crystal stipulates that a
pure atomic (A) phase, which is driven exclusively by the
J-term, would not appear in equilibrium. For ErFeO3,
the A phase would be an Er3+ ordered phase without
involving any OP onset in the Fe3+ subsystem. There-
fore, to achieve quantum simulation of the g–J model,
we must search for a way to invoke an explicit A phase
through an S→A transition.

Our theoretical consideration suggests that subjecting
ErFeO3 to a static magnetic field (H) along the z axis
can potentially induce an S→A transition. This can be
understood by writing the simplified magnetic Hamilto-
nian [37] in the second-quantized form as

Ĥ/~ = ωπâ
†
πâπ + ωErΣ̂

+
x + ωzΣ̂

+
z + g

√
2

N0
i(â†π − âπ)Σ̂−z

+J
6

N0~
[(Σ̂+

x )2 + (Σ̂+
z )2 − (Σ̂−x )2 − (Σ̂−z )2],

(1)
where a two-sublattice approximation is adopted for both
Er3+ and Fe3+ for a total of N0 unit cells. Here, ωπ,
â†π, and âπ are the energy, creation and annihilation
operators for the Fe3+ quasi-antiferromagnetic (qAFM)
magnon mode, respectively; ωEr is the frequency of Er3+

spins as two-level systems at H = 0; ωz = |gzµBµ0H|/~,
where gz is the Landè g factor, µB is the Bohr magne-
ton, and µ0 is the vacuum permeability, is the H-induced
Zeeman frequency of Er3+; and g and J are the Er3+–
magnon and Er3+–Er3+ coupling strengths, leading to
the g- and J-terms of the g–J Hamiltonian, respectively.
Σ̂p =

∑2N0

i=1 σ̂i,p/2, where σ̂p are Pauli matrices and
p ∈ {x, y, z}, is the collective Er3+ spin operator, with its
superscript “+” (“−”) denoting the sum (difference) of
the two sublattices. The way these operators appear in
Eq. (1) is crucial for interpreting the ground-state ener-
getics. Specifically, the g-term features a product of the
Fe3+ magnon field operator i(â†π − âπ) and the Σ̂−z com-
ponent of Er3+ spins, thereby favoring antiparallel align-
ment of Er3+ sublattices and Fe3+ magnon condensation
in the S phase [the onsets of 〈Σ̂−z 〉 and 〈Sy〉 in Fig. 2(b)],
whereas the J-term couples Er3+ antiferromagnetically;
larger 〈Σ̂−x 〉 and 〈Σ̂−z 〉, where 〈...〉 denotes expectation
values, are energetically more favorable.

It is important to note that supplying the Zeeman
term ĤZeeman/~ = ωzΣ̂

+
z provides quantum controllabil-

ity. The term promotes |〈Σ̂+
z 〉|, the net moment of Er3+

sublattices, through Zeeman coupling to H ‖ z. Due to
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FIG. 2. Γ2 → Γ12 transition in ErFeO3 as a magnonic analog
of the SRPT. (a) Lattice structure and spin configurations
within the Γ12 and Γ2 phases. Brown polyhedra represent oc-
tahedrally coordinated FeO6 cages. (b) Temperature depen-
dence of the Er3+ and Fe3+ spin components (normalized)

across the phase transition at 0 T. Σ̂p, where p ∈ {x, y, z},
is the collective Er3+ spin operator, with its superscript “+”
(“−”) denoting the sum (difference) of the two sublattices.

Ŝp are the components of Fe3+ spins.

the commutation relation

[Σ̂+
z , Σ̂

−
z ] = 0 6= [Σ̂+

z , Σ̂
−
x ], (2)

modification to 〈Σ̂+
z 〉 would impact 〈Σ̂−x 〉much more than

〈Σ̂−z 〉. This would tip the balance between the g-term and
the J-term, since Σ̂−x appears only in the J-term but not
in the g-term.

As shown in Fig. 3(a), an S→A transition is indeed
recovered in the calculated mean-field phase diagram of
the spin Hamiltonian [37] within the T -µ0H parameter
space, for T < 2.8 K, with a critical field ranging from
0.35 T to 0.5 T, depending on T . Increasing the field to
above 1 T and elevating T to above 4 K would both push
the system across the thermodynamic phase boundary
into the N phase. A triple point (at 2.8 K and 0.5 T,
decorated by a yellow star) marks the location where
the S, A, and N phases converge. Figure 3(b) shows
the calculated normalized spin components as the OPs
of the magnetic phases, for a line cut along the H axis at
T = 0 K, traversing sequentially the S→A and the A→N
boundaries. We identify that the Fe3+ OP, represented
by 〈Sy〉 (which is proportional to the magnon conden-
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FIG. 3. Mean-field solution for the spin Hamiltonian of
ErFeO3 inH ‖ z. (a) Theoretical T -H phase diagram mapped
by Er3+ spin components. (b) H-dependent evolution of the
Er3+ and Fe3+ spin components (normalized) at T = 0 K.
(c) Schematics of the spin configurations in each phase.

sate density), is finite both in the S and A phases, but
〈Sy〉 6= 0 in the S phase and 〈Sy〉 ≈ 0 in the A phase.
The Er3+ OP, on the other hand, is finite in both the S
and A phases, but undergoes a switch from the 〈Σ̂−z 〉 6= 0,
〈Σ̂−x 〉 ≈ 0 type (S phase) to the 〈Σ̂−z 〉 ≈ 0, 〈Σ̂−x 〉 6= 0 type
(A phase). Further, the OP evolution indicates that the
S→A boundary is an abrupt-type, first-order phase tran-
sition, while the A→N boundary is a continuous-type,
second-order phase transition.

Summarizing the mean-field calculation results,
Fig. 3(c) pictorially shows the predicted Fe3+ and Er3+

spin order in each phase. Starting from the N phase,
the two sublattices of Fe3+ are antiparallel along z with
zero y-component, while Er3+ spins remain paramagnetic
(no order). The A phase is characterized by Fe3+ order
that is identical to that of the N phase, but the Er3+

subsystem develops canted AFM order where the sublat-
tice moments are antiparallel along x (〈Σ̂−x 〉 6= 0), with
canting along z (〈Σ̂+

z 〉 6= 0). In the S phase, the Er3+

order takes the 〈Σ̂+
x 〉 6= 0, 〈Σ̂−z 〉 6= 0 configuration, and

the staggered moment of the Fe3+ sublattices undergoes
a rotation about the x axis, bringing its y-component
to nonzero, exactly corresponding to the formation of a
qAFM magnon condensate.

We performed magnetocaloric effect (MCE) and ter-
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FIG. 4. (a) Experimental T -H phase diagram of ErFeO3 in H ‖ z. Phase boundaries determined by THz measurements (solid
circles) are overlaid on the dT/d(µ0H) color map determined from MCE measurements. Red (blue) dashed line denotes a first-
(second-) order phase boundary. (b) MCE data traces at select temperatures (1.8 K to 4.2 K with 0.4 K interval) showing
T − T0 (T0 being the initial temperature) vs µ0H (left) and dT/d(µ0H) vs µ0H (right); curves are offset. Red and blue arrows
mark the boundaries outlined by red and blue dashed lines in (a), respectively. (c)-(e) THz absorption spectra mapped vs µ0H
for select T values. (f)-(h) THz absorption spectra mapped vs T for select µ0H values. Red and blue dashed lines mark the
same boundaries as those in (a). All features except for those labeled “qFM” are qAFM modes of Fe3+.

ahertz (THz) magnetospectroscopy experiments to map
out the T -H phase diagram of ErFeO3, and the obtained
results are summarized in Fig. 4(a). MCE measurements
capture the differential change in sample temperature
with respect to the magnetic field, µ−10 (∂T/∂H)S , which
is a sensitive reporter of the magnetic entropy land-
scape. We configured a MCE measurement in a Physi-
cal Property Measurement System in the quasi-adiabatic
condition, and took raw data traces of sample tempera-
ture variation versus magnetic field at a ramping rate of
5× 10−3 T/s with dH > 0 [Fig. 4(b) left]; the sensitiv-
ity of temperature variation of our instrument reached
5× 10−4 K. To identify H-induced phase transitions, the
first-order derivative dT/d(µ0H) traces were computed
[Fig. 4(b) right], whose local extremes correspond to the
transition boundaries [38]. The traces clearly exhibit two
maxima for T < 2.8 K, corresponding to the S→A [red
arrows in Fig. 4(b) and red dashed line in Fig. 4(a)] and
A→N (blue arrows and blue dashed line) boundaries, and
one maximum for 2.8 K < T < 4 K, corresponding to the
S→N (blue arrows and blue dashed line) boundary.

THz magnetospectroscopy experiments provided ad-
ditional details on the nature of the transition bound-
aries and the spin order in each phase. The measure-

ments were performed on a z-cut ErFeO3 crystal using
a transmission-type THz time-domain spectrometer in
the Faraday geometry. Absorption coefficient (α) spec-
tra, derived from the imaginary part of the refractive in-
dex [37], were measured within the same T -H parameter
space as that of the MCE experiments. Figures 4(c)-
(e) and Figs. 4(f)-(h) show the H-dependence of α spec-
tra at select T values and the T -dependence of α spec-
tra at select µ0H values, respectively. We found that
the bright absorption lines can be assigned to either the
quasi-ferromagnetic (qFM) mode or the qAFM mode,
which have been thoroughly studied in previous stud-
ies [39]. It is the evolution of these modes in distinct
phases of the g–J model that is of interest here.

In the H-dependent color map at 1.4 K [Fig. 4(c)],
three lines are observed. The lowest frequency line, which
does not pick up intensity until 0.8 T, is the qFM mode,
while the other two are both qAFM magnons, albeit
belonging to distinct phases. The middle (upper) line,
which is located at 0.8 THz at 0 T (1 THz at 0.5 T), is the
qAFM mode of the S (A & N) phase. The S→A transi-
tion is identified to occur at 0.5 T (red dashed line) where
the upper line emerges. The qAFM magnons belonging
to the S and A phases coexist within 0.5 T < µ0H < 1 T,



5

consistent with the prediction that the S→A transition is
of first order and is thus inhomogeneous, until the middle
line vanishes at>1 T (blue dashed line) owing to entrance
into the N phase. The 3.2 K map [Fig. 4(d)] shows a dif-
ferent behavior; the qAFM magnon (0.88 THz at 0 T)
of the S phase continuously shifts to connect with that
of the N phase in frequency, forming an OP-like onset
for µ0H < 0.7 T (blue dashed line), signaling a second-
order N→S transition boundary. Such a frequency shift
is absent in the 4.4 K map [Fig. 4(e)] since the N phase
persists throughout the whole H range.

T -dependent color maps at constant H further corrob-
orate our assignments of the phase transitions. Starting
from the 0 T map [Fig. 4(f)], a continuous OP-like onset
of the qAFM mode shift is again observed at the N→S
transition boundary (< 4 K, blue dashed line). This
echoes Fig. 4(d) in showing the continuous nature of the
N→S transition, and establishes that the frequency shift
of the qAFM magnon in the S phase from that in the N
phase is a sensitive reporter of the qAFM magnon con-
densate density, namely, the Fe3+ OP of the S phase.
Intriguingly, this OP is demonstrated to be zero in the A
phase. We read this fact from the 0.75 T map [Fig. 4(g)],
for which an N→A transition is expected upon lowering
T . Although a residual mode pertaining to the S phase
exists [as mentioned earlier when discussing Fig. 4(c)],
the qAFM mode (unlabeled line) frequency does not un-
dergo any noticeable OP-like anomaly across the N→A
transition; it is as featureless as the qAFM mode within
the 1.25 T map [Fig. 4(h)], for which the N phase per-
sists throughout the whole T range. This unambiguously
demonstrates that the spin order in the A phase only in-
volves Er3+ ordering but not any Fe3+ OP, consistent
with our expectation depicted in Fig. 3. Finally, phase
boundaries determined by the THz experiments are over-
laid (as solid circles) on top of the MCE phase diagram
in Fig. 4(a), showing overall agreement.

In summary, through magnetocaloric effect and THz
magnetospectroscopy experiments, we studied a crystal
of ErFeO3 to simulate the g–J model, which is an ex-
tended Dicke model that includes not only the bosonic-
field-mediated long-range interatomic interactions but
also direct short-range interactomic interactions. In ad-
dition to the superradiant and normal phases expected
from the standard Dicke model, we identified a new
phase, an atomic phase, which is driven by the short-
range J-term in the Hamiltonian. Further, we eluci-
dated the nature of the various phase boundaries, dis-
tinguishing between first-order and second-order tran-
sitions. These results demonstrated the potential of
ErFeO3 as a unique simulator of quantum optics Hamil-
tonians. More specifically, in the context of Dicke
physics, this condensed matter platform may lead to the
possibilities of assisting quantum chaos [22] and modify-
ing matter–matter entanglement [20, 23] with tunability
given by an external magnetic field. Bridging the gap be-

tween quantum optics and many-body correlated physics,
our results will find broader application in the design
of hybrid quantum systems with superior controllability,
such as the Dicke-Ising machine [28, 40] and the Dicke-
Lipkin-Meshkov-Glick model [18, 23]. Furthermore, the
ability to transition between the superradiant and atomic
phases via a nonthermal knob provides opportunities to
study unconventional quantum criticality [41] and chaos-
assisted thermalization [42].
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S1 Theoretical Model

In this section we briefly outline the steps of mapping the magnetic Hamiltonian of

ErFeO3 onto an extended Dicke model. Following prior work, the spin Hamiltonian taking

into account all the spin subsystems and their mutual interactions is first introduced. The

model is subsequently second quantized to have a form that resembles the extended Dicke

Hamiltonian.

A. Spin Hamiltonian

We analyzed the ErFeO3 spin system from a microscopic model originally derived in

Ref. [1]. The total microscopic Hamiltonian is

H = HFe +HEr +HFe−Er. (S1)

HFe, HEr, and HFe are Fe3+, Er3+, and Fe3+–Er3+ interaction Hamiltonian, respectively. As

in our previous studies [2, 3] and Herrmann’s model [4], we take the two-sublattice model

both for Er and Fe spins.

The Fe3+ Hamiltonian is

HFe =
∑

s=A,B

N0∑

i=1

µBµ0Ŝ
s
i · gFeH + JFe

∑

n.n.

ŜA
i · ŜB

i′

−DFe
y

∑

n.n.

(
ŜA
i,zŜ

B
i′,x − ŜB

i,zŜ
A
i′,x

)

−
N0∑

i=1

(
AxŜ

A2
i,x + AzŜ

A2
i,z + AxzŜ

A
i,x ŜA

i,z

)

−
N0∑

i=1

(
AxŜ

B2
i,x + AzŜ

B2
i,z − AxzŜB

i,x ŜB
i,z

)
.

Ŝsi is the Fe3+ spin operator with S = 5/2 at the i-th site and s sublattice. JFe, D
Fe
y , Ax(z,xz)

are a Fe3+ isotropic exchange constant, Dzyaloshinskii-Moriya interaction for the y(b)-axis,

and the single ion anisotropy for the x(z, xz) spin components.
∑

n.n. is a summation for

the nearest neighbors and the number of nearest neighbors is zFe = 6. N0 is the number of
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unit cells in ErFeO3. The g-factor of Fe3+ is

gFe =




gFex 0 0

0 gFey 0

0 0 gFez


 .

µB is the Bohr magneton and H is an external magnetic field.

The Er3+ Hamiltonian is

HEr =
∑

s=A,B

N0∑

i=1

µ0

2
σ̂s
i · gEr ·H + JEr

∑

n.n.

σ̂A
i · σ̂B

i′ .

σ̂s
i is the Er3+ spin operator at the i-th site and s sublattice. JEr represents Er3+–Er3+

isotorpic exchange constant. The g-factor of Er3+ is

gEr =




gx 0 0

0 gy 0

0 0 gz


 .

Finally, the Fe3+–Er3+ interaction Hamiltonian is

HEr−Fe =

N0∑

i=1

∑

s,s′=A,B

[
Jσ̂s

i · Ŝs
′
+Ds,s′ ·

(
σ̂s
i × Ŝs

′
)]
.

In our Fe3+–Er3+ interaction Hamiltonian, Fe3+ and Er3+ interact within the same unit cell.

J is a Fe3+–Er3+ isotropic exchange constant. Ds,s′ is the Dzyaloshinskii-Moriya interaction

and

DA,A = (Dx, Dy, 0)t ,

DA,B = (−Dx,−Dy, 0)t ,

DB,A = (−Dx, Dy, 0)t ,

DB,B = (Dx,−Dy, 0)t .

The state of spins are determined by the equations of motion in which we assume each

individual spin experiences a uniform mean field supplied by its surrounding magnetic ions.

Assuming the dynamics within all unit cells are identical, we can replace spins dependent

on unit cells, Ssi and σsi , with uniform spins, Ss and σs keeping the sublattice dependence.
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From the Heisenberg equation from the Hamiltonian [Eq. (S1)], the equations of motion are

~
∂

∂t
σs = −σs × µ0gµBH

s
Er({σA/B}, {SA/B}), (S2)

~
∂

∂t
Ss = −Ss × µ0gµBH

s
Fe({σA/B}, {SA/B}). (S3)

g is the free electron g-factor. Hs
Er and Hs

Fe are the mean-fields for Er3+ and Fe3+ spins,

respectively. The mean-fields are defined as derivatives of the total Hamiltonian [Eq. (S1)]

with respect to the corresponding spin variables, for example gµ0µBH
s
Er = 2∂H/∂σs. The

phase diagrams shown in Fig. 2 and 3 of the main text are calculated by the following

procedure.

From the equations of motion, the equilibrium spins (σ̄A/B and S̄A/B) are parallel to

the mean-fields H̄s
Er = Hs

Er({σ̄A/B}, {S̄A/B}) and H̄s
Fe = Hs

Fe({σ̄A/B}, {S̄A/B}). They are

connected as

σ̄s = 〈σ̂s〉 = 〈σ̂s‖〉usEr, σ̂s‖ = σ̂s · usEr, usEr = H̄s
Er/|H̄s

Er|, (S4)

S̄s = 〈Ŝs〉 = 〈Ŝs‖〉usFe, Ŝs‖ = Ŝs · usFe, usFe = H̄s
Fe/|H̄s

Fe|. (S5)

We determine the equilibrium spins (σ̄A/B and S̄A/B) in the following self-consistent equa-

tions

〈σ̂s‖〉 = − ∂

∂ys
lnZs

Er = −tanh(ys), (S6)

〈Ŝs‖〉 = − ∂

∂xs
lnZs

Fe = −SBS(Sxs), (S7)

BJ(z) is the Brillouin function

BJ(z) =
2J + 1

2J
coth

(
2J + 1

2J
z

)
− 1

2J
coth

( z

2J

)
,

and the partition functions are

Zs
Er ≡ Tr

[
e−Ĥ

s
Er/kBT

]
=
∑

m=±1
e−mys = 2cosh(ys), (S8)

Zs
Fe ≡ Tr

[
e−Ĥ

s
Fe/kBT

]
=

S∑

m=−S
e−mxs =

sinh[(S + 1/2)xs]

sinh(xs/2)
, (S9)

ys =
gµ0µB|H̄s

Er|
2kBT

, xs =
gµ0µB|H̄s

Fe|
kBT

.
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kB is Boltzmann constant and T is temperature. Finally, the effective Hamiltonians of given

mean-fields H̄s
Er and H̄s

Fe are

Ĥs
Er =

1

2
gµ0µBσ̂

s · H̄s
Er =

1

2
gµ0µBσ̂

s
‖|H̄s

Er|,

Ĥs
Fe = gµ0µBŜ

s · H̄s
Fe = gµ0µBŜ

s
‖|H̄s

Fe|.

Here, σ̂s and Ŝs are vectors of the Pauli operators and angular momentum with the mag-

nitude S.

To determine the ground state, we calculate free energy from the partition functions, Eqs.

(S8-S9), and pick the configuration with the lowest energy. The free energies are defined as

F s
Er = −kBT lnZs

Er,

F s
Fe = −kBT lnZs

Fe.

The total free energy of Er3+ and Fe3+ spins are

F =
∑

s=A,B

(F s
Er + F s

Fe) /2. (S10)

B. Extended Dicke model

Second quantization of the spin Hamiltonian Eq. S1 has been carried out by Ref. [1].

We omit the derivation here since details can be found in the reference. For the sake of

consistency, notation will follow those in Ref. [1], but will be substituted by those used in

Eq. 1 of the main text eventually. Ref. [1] expressed the total Hamiltonian as

Ĥ ≈
∑

K=0,π

~ωK â†K âK + ωErΣ̂
+
x +

∑

ξ=x,y,z

gErξ µBB
DC
ξ Σ̂+

ξ

+
8zErJEr
N

Σ̂A · Σ̂B +
2~gx√
N

(â†π + âπ)Σ̂+
x

+
i2~gy√
N

(â†0 − â0)Σ̂+
y +

2~g′y√
N

(â†π + âπ)Σ̂−y

+
i2~gz√
N

(â†π − âπ)Σ̂−z +
2~g′z√
N

(â†0 + â0)Σ̂
+
z . (S11)

Here, K = 0 and π corresponds to the qFM and qAFM magnon modes. Σ̂A/B is a spin-N
4

operator representing the rare-earth spins in the A/B sublattice, satisfying

Σ̂A/B ≡ 1

2

N0∑

i=1

R̂
A/B
i , (S12)
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where (1/2)R̂
A/B
i is a spin-1

2
operator for an Er3+ ion. We also define the sum and difference

of the two sublattice spins as

Σ̂± ≡ Σ̂A ± Σ̂B. (S13)

The total number of spin-1
2

spins (Er3+ spins) in the two sublattices is

N ≡ 2N0. (S14)

The five Er3+–magnon coupling terms were rewritten in terms of the annihilation (creation)

operators âK (â†K) of a magnon, with their respective coupling strengths defined as

~gx =
√

2S(J cos β0 −Dy sin β0)

(
b+ a

d− c

)1/4

= h× 0.051 THz, (S15a)

~gy =
√

2SJ

(
d+ c

b− a

)1/4

= h× 0.041 THz, (S15b)

~g′y =
√

2S(Dx sin β0)

(
b+ a

d− c

)1/4

= h× 3.1× 10−5 THz, (S15c)

~gz =
√

2SDx

(
d− c
b+ a

)1/4

= h× 0.116 THz, (S15d)

~g′z =
√

2S(−J sin β0 −Dy cos β0)

(
b− a
d+ c

)1/4

= h× (−0.040 THz). (S15e)

The numerical values of these coupling strengths are evaluated by the set of parameters, a,

b, c, d, J , β0, Dx, Dy, which are defined and quantitatively given in Ref. [1]. We found that

the ~gz is the dominant term, for which we retain in Eq. (1) in the main text and all other

Fe3+–Er3+ coupling terms are dropped as an approximation.

Regarding the Er3+–Er3+ interaction term, while the Er3+ spin ensemble is described

by six operators, Σ̂+
x,y,z and Σ̂−x,y,z, in the extended Dicke Hamiltonian, only Σ̂+

x and Σ̂−z

are relevant to the low temperature phase transition. Σ̂+
x corresponds to the paramagnetic

alignment by the Fe3+ magnetization along the a axis, and Σ̂−z corresponds to the antiferro-

magnetic ordering along the c axis. Then, for analyzing the thermal-equilibrium values of the
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spins, we need to consider only the following terms in the Er3+–Er3+ exchange interactions:

8zErJEr
N

Σ̂A · Σ̂B =
2zErJEr
N

∑

ξ=x,y,z

[
(Σ̂+

ξ )2 − (Σ̂−ξ )2
]

→ 2zErJEr
N

[
(Σ̂+

x )2 + (Σ̂+
z )2 − (Σ̂−x )2 − (Σ̂−z )2

]
. (S16)

After this substitution, a notation substitution of gz → g and JEr → J , and incorporating

the aforementioned simplification about the coupling terms, Eq. S11 becomes Eq. (1) in the

main text. Numerical values of the material parameters therein are:

J = 0.037 meV (S17)

g = 0.48 meV (S18)

ωπ = 2π × 0.896 THz (S19)

ωEr = 2π × 0.023 THz. (S20)

S2 Materials and Methods

A. Sample preparation

Polycrystalline ErFeO3 was first synthesized by a conventional solid state reaction method

using Er2O3 (99.9%) and Fe2O3 (99.98%) powders. According to the stoichiometric ratio, the

original reagents were weighted carefully and pulverized with moderate anhydrous ethanol

in an agate mortar. Mixtures were sintered at 1300 °C for 1000 minutes and then cooled

down to room temperature. The sintered powders were thoroughly reground and pressed

into a rod that is 70 mm in length and 5-6 mm in diameter by a Hydrostatic Press System

(Riken Seiki CO. Ltd, model HP-M-SD-200) at 70 MPa, and then sintered again at 1300

°C for sufficient reaction. Single crystal sample was then grown by an optical floating zone

furnace (FZT-10000-H-VI-P-SH, Crystal Systems Corp; heat source: four 1 kW halogen

lamps). The polycrystalline samples were melted in an airflow. Conditions like the melting

power and the rate of sample rotation were stabilized and controlled in the molten zone.

B. THz Magnetospectroscopy

We performed time-domain THz transmission magnetospectroscopy measurements in the

Faraday geometry. The sample is placed in a liquid-helium-cooled magneto-optical cryostat
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(Oxford Instruments Spectromag-10T) with variable temperatures T between 1.4 and 300 K

and static magnetic fields µ0H up to 10 T. We generate THz pulses via optical rectification

using a Ti:sapphire regenerative amplifier (775 nm, 0.7 mJ, 150 fs, 1 kHz, Clark-MXR, Inc.,

CPA2001) as a laser source that pumps a (110) zinc telluride (ZnTe) crystal, while detection

is accomplished through electro-optical sampling in another ZnTe crystal.

Index of Refraction and Absorption Coefficient

In this section we derive the standard equations used in the extraction of the complex

index of refraction of a sample using THz-TDS. Let Ẽ0(ω) be the Fourier transform of an in-

coming THz pulse E0(t) incident on two linear media surrounding a homogeneous dielectric

slab of thickness d (the sample). We assume that trailing pulses due to multiple reflections

within the sample (the Fabry-Pérot effect) are well separated in time from the main trans-

mitted THz pulse and that the incidence is normal to the sample surfaces (assumed parallel

and flat). Experimentally, two separate measurements are consecutively carried out. First,

the THz electric field transmitting without a sample in place is measured and the reference

electric field Ẽr(ω) is obtained. Second, both the sample and its surroundings is measured

and Ẽs(ω) is extracted. Under these assumptions, each transmitted electric field can be

written as [5, 6]:

Ẽr(ω) = t̃13(ω)P̃vac(ω, d)Ẽ0(ω) (S21)

Ẽs(ω) = t̃12(ω)P̃s(ω, d)t̃23Ẽ0(ω) (S22)

where t̃jk =
2ñj

ñj+ñk
is the complex Fresnel transmission coefficient between mediums j and

k, P̃j(ω, dj) = eik0dj ñj = ei(ωdj/c)ñj is the propagator through medium j, and the subscripts

vac, r, and s refer to vacuum, reference, and sample, respectively. The ratio between Ẽr(ω)

and Ẽs(ω) is the transfer function H̃(ω), and it follows from Eqs. S21 and S22 that:

H̃(ω) =
Ẽs(ω)

Ẽr(ω)
=
t̃12t̃23

t̃13

P̃s(ω, d)

P̃vac(ω, d)
=

2ñ2(ñ1 + ñ3)

(ñ1 + ñ2)(ñ2 + ñ3)
ei(ωd/c)(ñs−1) (S23)

The bulk samples characterized in this work are single crystals grown without a substrate,

and therefore, the surrounding mediums can be taken as vacuum by setting ñ1 = ñ3 = 1

in Eq. S23. With this simplification, the coefficient in front of the exponential becomes

4ñs

(ñs+1)2
, where we have change the subscript ñ2 to ñs for convenience. Furthermore, we
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can set ñs = ns(ω) for t̃jk and solve Eq. S23 for ñs = ns(ω) + iκs(ω) in the exponential.

Here, ns(ω) is the index of refraction of the sample, and κs(ω) its extinction coefficient.

This approximation is justified by the fact that the sample absorption is negligible in the

Fresnel transmission coefficient compared to the exponential term and is thus used in the

data analysis here described. We obtain:

H̃(ω) =
4ns(ω)

(ns(ω) + 1)2
ei(ωd/c)(ñs−1) =

4ns(ω)

(ns(ω) + 1)2
ei(ωd/c)(ns(ω)−1)e−(ωd/c)κs(ω) (S24)

Taking the modulus and phase of Eq. S24 leads to:

Φ[H̃(ω)] =

(
ωd

c

)
(ns(ω)− 1)→ ns(ω) = 1 +

c

ωd
Φ[H̃(ω)] (S25)

|H̃(ω)| = 4ns(ω)

(ns(ω) + 1)2
e−(ωd/c)κs(ω) → κs(ω) = − c

ωd
ln

[
(ns(ω) + 1)2

4ns(ω)
|H̃(ω)|

]
(S26)

We can also re-write this result in terms of the absorption coefficient α(ω) of the sample

as:

n(ω) = 1 +
c

ωd
Φ[H̃(ω)] (S27)

α(ω) =
2ω

c
κ(ω) = −2

d
ln

[
(n(ω) + 1)2

4n(ω)
|H̃(ω)|

]
(S28)

where we have dropped the subscript s for convenience. In conclusion, by Fourier transform-

ing Ẽr(t) and Ẽs(t), which are obtained experimentally, the transfer function H̃(ω) can be

calculated as Ẽs(ω)/Ẽr(ω), and n(ω) and α(ω) follow from Eqs. S27 and S28, respectively.
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