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Abstract: We have developed a supersonic pulsed plasma jet device capable of long-distance and
high-speed processing, and investigated its basic characteristics for surface treatment applications,
mainly in the material and medical fields. The developed apparatus is equipped with a mechanism to
transport active species in the plasma to the object to be treated by jetting the generated high-density
plasma outward with supersonic pulse jets, which allows the gas flow velocity to increase significantly
during pulse jetting compared with plasma generation. This enables the active species in the plasma
to reach the treatment target before deactivation, thereby realizing surface treatment at a distance.
Measurements using the Schlieren method revealed that the velocity of the jet flow reached Mach 1.7.

Keywords: ultrasonic pulsed plasma; schlieren method; hydrophilic effect

1. Introduction

Atmospheric-pressure plasma has been applied to the decomposition and treatment of
industrial waste, trace element analysis, and cutting and processing of high-melting-point
materials because it does not require a vacuum vessel or exhaust system and can generate
higher-density plasma than low-pressure plasma [1–8]. Recently, however, the develop-
ment of atmospheric-pressure low-temperature plasma, a type of atmospheric-pressure
nonequilibrium plasma, has attracted attention for its application in various industrial and
medical fields. This plasma is low-temperature and does not cause thermal damage to the
irradiated object; therefore, a wide range of application research is underway, including
hydrophilization of surfaces and improvement of adhesive strength in the material field
and hemostasis, sterilization, and wound healing in the medical field [9–13]. In a typical
atmospheric-pressure low-temperature plasma generator, plasma is generated by supply-
ing plasma-generating gas from a cylinder to a discharge unit and applying a high voltage
to the electrodes to cause a discharge. The generated plasma is ejected outward by the gas
flow. The active species generated in the plasma are then sprayed onto the material to be
treated, causing a variety of useful reactions. However, because the active species in the
plasma are deactivated in a short time in the air [14], only objects within a short distance of
a few millimeters can be effectively treated, and the treatment efficiency decreases as the
distance between the plasma generator and the object to be treated increases [14,15]. If the
gas flow rate is increased to allow the active species to reach the target at a distance from the
plasma generator, the discharge power density per unit gas volume decreases, causing the
plasma density to decrease, which in turn reduces the amount of active species generated,
resulting in lower treatment efficiency. Conversely, if the gas flow rate is reduced, it is
possible to generate a high-density plasma with a high-power density; however, because
the gas flow velocity is reduced, fewer active species reach the target, which also reduces
the treatment efficiency [15]. If a sufficient amount of active species can be irradiated onto
the target object while maintaining a long distance between the plasma generator and the
sample to be treated, it would be useful in actual applications. In this study, a supersonic
pulsed plasma jet was developed to realize the high-speed treatment of a sample at a long
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distance from an atmospheric-pressure low-temperature plasma generator. In this system,
atmospheric-pressure plasma generated between electrodes is pulsed outward with pulsed
high-pressure gas, and the active species generated in the plasma are transported to distant
objects to be treated. This paper describes the basic characteristics of a supersonic pulsed
plasma jet and the results of its surface hydrophilization.

2. Materials and Methods
2.1. Concept and Construction of the Ultrasonic Pulsed Plasma Jet Source

Figure 1 shows a conceptual diagram of the supersonic pulsed plasma jet source.
First, high-density plasma was generated by supplying low-speed plasma-producing gas
to the discharge. Next, the generated high-density plasma was jetted outward with a
supersonic pulse jet to transport the active species in the plasma to the target. The gas flow
velocity in the pulse jet is much higher than that in the plasma generation process, allowing
the dense active species in the plasma to be irradiated to a distant target before they are
deactivated [16]. In the case of short distances, more active species can reach the target; thus,
a faster treatment is expected. As the flow velocity increased, the discharge power density
per flow rate decreased, resulting in a decrease in treatment effectiveness. In addition, the
gas consumption increased; therefore, a short pulse method was used. Figure 2 shows the
structure of the supersonic pulsed plasma jet. The housing of the plasma device is made
of polyacetal, which is an insulator with two gas channels inside. The discharge section
consists of a 2 mm thick machinable ceramic plate, which is an insulator sandwiched
between two 2 mm thick copper plate electrodes with a 1 mm hole drilled in the center.
Plasma gas was supplied from a cylinder through a gas flow meter and check valve to the
enclosure. Pulse jets were generated by briefly opening a 0.5 MPa high-pressure gas with
a pulse-controlled solenoid valve (K2-100HA-04-XS0-25, Koganei Corp., New Koganei,
Tokyo, Japan). We confirmed that nitrogen, carbon dioxide, air, helium, and argon plasmas
were stably generated at a plasma gas flow rate of 3 L/min.
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Figure 1. Conceptual diagram of the supersonic pulsed plasma jet: (a) continuous plasma jet; (b) pulsed
plasma jet.
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Figure 2. Structure of the supersonic pulsed plasma jet.

2.2. Observation of Ultrasonic Pulsed Plasma Jet

To investigate the extension of the plasma by the pulse jet, a high-speed camera (k5,
8000 fps; Kato Kohken Co., Ltd., Isehara, Kanagawa, Japan) was used to observe the pulsed
plasma jet. The plasma jet was generated by opening the solenoid valve of the 0.5 MPa
high-pressure gas at a frequency of 1 Hz and a pulse width of 100 ms. The same gas species
was used for plasma generation, and high-pressure gases, including nitrogen and helium,
were used as the gas species. The schlieren method was used to visualize the plasma gas
flow to measure the flow velocity of the supersonic pulsed plasma jet. A high-speed camera
(k5, 10,000 fps, Kato Kohken Co., Ltd.) and Schlieren apparatus (SS50 II-L, Kato Kohken
Co., Ltd.) were used for the measurements. Plasma gas (3 L/min) was used to generate the
plasma, and a solenoid valve was opened at 1 Hz and 100 ms for 0.5 MPa high-pressure
gas. The plasma was ejected by opening the solenoid valve of the 0.5 MPa high-pressure
gas at 1 Hz for 100 ms.

2.3. Measurement of Electrical Characteristics

The current and voltage characteristics of the prototype device were investigated, and
the discharge power was determined. The discharge waveforms were observed using
a high-voltage probe (HVP39pro, Pintek Electronics Co., New Taipei, Taiwan), current
probe (TCP303, TCPA300, Tektronix Co., Beaverton, OR, USA), and oscilloscope (TDS-
680B, Tektronix Co., USA). Plasma was generated using 3 L/min plasma gas, and then the
solenoid valve of the 0.5 Mpa high-pressure gas was opened at 1 Hz for 100 ms to eject the
plasma. The same gas species were used as the plasma generator gas and high-pressure
gas: nitrogen, carbon dioxide, air, argon, and helium.

2.4. Dependence of Hydrophilic Effect on Plasma Gas Species

The hydrophilic effect of plasma has been reported to depend on the gas species [17]. In
addition, gas species may be limited by gas price and safety considerations. The hydrophilic
effect of plasma on each gas species was evaluated using supersonic pulsed plasma jets.

The contact angle was determined by measuring the contact angle of a water droplet
resting on a copper plate (C1100P) surface and the evaluation was based on the magnitude
of the angle. The smaller the contact angle of a solid surface, the more hydrophilic the
surface, and the easier it is for water and other solvents to wet it, whereas the larger the
contact angle, the less hydrophilic the surface, and the easier it repels water.

The contact angle measurement method is defined by JIS as the JIS R 3257 Wettability
test method for glass substrate surfaces [18]. The principle of the contact angle measurement
method is illustrated in the figure. A drop of water was then placed on the horizontal
specimen. If the volume of the droplet is 4 µL or less, the shape of the droplet can be
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regarded as a part of a sphere, and the following relationship is established between the
contact angle θ and droplet shape.

θ = 2 tan−1 h
r

(1)

where r is the radius of the water droplet on the surface in contact with the specimen (mm)
and h is the height from the specimen surface to the apex of the droplet (mm). The values of
r and h were measured, and the contact angles were obtained using the relational equation.

In the experiment, a contact angle meter (PG-X, Matsubo Co., Ltd., Minato-ku, Tokyo,
Japan) was used to measure the contact angle between the specimen surface and water
droplets to evaluate the hydrophilic effect. The volume of each water droplet was 2 µL.

The plasma treatment time was 1 s, the plasma irradiation distance was 5–40 mm, and
the supersonic plasma was irradiated at 13 Hz and 10 ms. The gas species used for the
supersonic plasma were nitrogen, carbon dioxide, air, argon, and helium.

3. Results and Discussion
3.1. Observation of Plasma Stretching by Ultrasonic Pulsed Plasma

Figure 3 shows the observation of the nitrogen plasma. When plasma was generated,
the emission was weak, and the stretching distance of the nitrogen plasma was approx-
imately 3 mm; however, when the nitrogen plasma was pulsed jetted, strong emission
was observed, and the stretching distance increased to approximately 6 mm. The exten-
sion distance of the plasma was approximately twice that of the plasma generated by
the pulsed jet. Figure 3 shows the observation results for the helium plasma. During
plasma generation, the helium plasma could not be captured by the camera because of
weak luminescence; however, the luminescence became stronger when the helium plasma
was ejected by the pulse jet, and the extension distance of the helium plasma increased
to approximately 7 mm. In addition, a luminescence that appeared as a shock diamond-
shaped shock waves, called shock diamonds, was observed in the plasma. These results
indicate that the plasma can be jetted far away by the pulsed jet and that the plasma jet
velocity may reach supersonic speeds.
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3.2. Measurement of Plasma Gas Flow Rate by the Schlieren Technique

The schlieren method is a technique for visualizing the flow of transparent media, such
as air or water, and the visualized image can reveal the flow state and velocity. Therefore,
it is widely used as a method for analyzing the flow of plasma jets [19,20]. In a typical
configuration of the schlieren method, light from a light source is collimated by a convex
lens or concave mirror, and the object is placed in the collimated light. The object was
placed under collimated light. The light was then focused again by a convex lens, and a
knife edge was placed such that it slightly covered the focal point from one side. When
the density of the fluid changes with the subject, the refractive index of light changes.
The path of the collimated light rays passing near the subject was bent, causing the focal
point to change when the light was focused. This change intercepts light that is deflected
to the knife-edge side, resulting in a brightness difference in the image captured by the
camera ahead, enabling the visualization of the density field of the fluid [21]. The larger
the density gradient, the more clearly the schlieren method can visualize the density field;
therefore, it is often applied to scenarios such as high-speed flows and combustion but
rarely to low-speed flows. However, because plasma causes a density change in the fluid
owing to heating by the discharge, visualization is possible even when the flow velocity
of the plasma jet is relatively slow [22]. The sound waves generated at an arbitrary point
in the gas in the plasma jet then spread from that position to the surroundings at the
speed of sound a. If the gas through which the sound wave travels is stationary relative to
source P, the sound wave travels spherically to infinity at a given time. If the gas moves
at velocity v relative to the source, the sound wave travels at the speed of sound relative
to the flow. Therefore, the sound wave propagates at a speed of a + v in the direction of
the flow and a− v in the direction opposite to the flow. When velocity v of the gas exceeds
the speed of sound a and becomes supersonic, multiple sound waves overlap, generating
a shock wave [23]. Shock waves are formed in the same manner when the gas is jetted
out of a nozzle at supersonic speeds. However, the shockwave varies depending on the
expansion state of the gas. For example, if the nozzle outlet pressure Pe is greater than
the atmospheric pressure Pa (Pe > Pa), an underexpanded jet is formed. When Pe = Pa, an
appropriate expansion jet was produced. If Pe < Pa, the jet is overexpanded. In the case of
an appropriately expanded jet and an underexpanded jet, the following relationship holds
for the Mach number of the flow M1 and shock wave angle β [24].

sin β =
a
v
=

1
M1

(2)
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where v is the gas velocity, a =
(√

κRT/M
)

is the sound velocity, and is a function of
specific heat ratio κ, R, T, and M. In the case of an overexpanded jet, the flow narrows at
a turning angle θ to approach an oblique shockwave. The following relationship is then
established among Mach number M1, shock wave angle β, turning angle θ, and specific
heat ratio κ [25]:

tan θ =
2 cot β

(
M2

1sin2β− 1
)

M2
1(κ + cos 2β) + 2

(3)

Using these relations, the Mach number can be calculated from the value of the shock
wave angle β obtained from the schlieren image. The gas velocity can also be calculated
from the product of the Mach number and the sound velocity of the gas.

3.3. Extension of Ultrasonic Pulsed Plasma Jet

Figure 4 shows a schlieren image of a supersonic pulsed plasma jet for each gas
species, and Table 1 shows the maximum values of the Mach number and gas velocity. In
the schlieren image, the left side is the plasma jet side, and the right side is the atmospheric
side. In the nitrogen, carbon dioxide, air, and argon plasmas, shock waves were generated
2 ms after the solenoid valve was opened, and diamond-shaped shock waves were observed
after 3 ms. The bright and dark areas in the shock diamonds caused by the compressional
and expansive waves suggest that the flow of the pulsed plasma jet is an underexpanded
jet. The shock diamonds extended toward the atmosphere with a narrowing of the shock
wave angle every 1 ms, reaching their maximum extension distance after 6 ms in argon
plasma and after 7 ms in nitrogen, carbon dioxide, and air plasma. The maximum Mach
number was calculated to be Mach 1.6 for argon plasma and Mach 1.7, for nitrogen, carbon
dioxide, and air plasmas, with gas velocities of 501, 585, 452, and 575 m/s, respectively.
In contrast, the helium plasma was confirmed to have a Mach number of 1 (1014 m/s) or
higher by observing a shock wave near the plasma jet; however, it was difficult to calculate
the detailed gas flow velocity because the schlieren image was unclear compared with the
plasma of other gas species.
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Table 1. Mach number of plasma and gas flow velocities for each gas type.

Plasma Gas
Type Mach Number

Sound Velocity
[m/s]

(25 ◦C)

Gas Velocity
[m/s]

Ar 1.6 322 501
N2 1.7 352 585

CO2 1.7 271 452
Air 1.7 347 575
He >1 1014 >1014

On the basis of Mach number measurements, the gas flow velocities of pulsed plasma
jets of each gas species were compared with those of a conventional plasma system without
pulsed operation, that is, a conventional plasma system. The gas flow velocity of the conven-
tional system was 64 m/s, calculated from the gas flow rate (3 L/min) and plasma jet outlet
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area (0.79 mm2). Therefore, the pulsed plasma jets of each gas type evidently emit plasma
with a velocity approximately 7–16 times higher than that of the conventional system.

3.4. Evaluation of Hydrophilic Effect Dependence on Plasma Gas Type

Figure 5 shows the results of hydrophilic treatment with plasma for each gas type.
The horizontal axis represents the irradiation distance, and the vertical axis represents the
contact angle. The contact angle was measured at five points and the average value was
obtained. This procedure was repeated three times, and the mean value and standard
deviation were further obtained. When nitrogen and carbon dioxide supersonic plasmas
were irradiated at a distance of 5 mm, the contact angles were 33◦ and 53◦, respectively, and
the maximum contact angle was 14◦ lower than that of the conventional system. For helium
and argon supersonic plasmas, the contact angles were lower than those of the conventional
system when the irradiation distance was ≥10 mm. In particular, in helium supersonic
plasma, the contact angle decreased by a maximum of 20◦ when the irradiation distance
was 10 mm, and the irradiation distance at which the hydrophilic effect appeared increased
from approximately 20 to 40 mm. The sound velocity of helium is 1014 m/s, which is more
than three times higher than those of nitrogen (352 m/s) and carbon dioxide (271 m/s).
Therefore, compared with supersonic plasmas of other gases, the active species are ejected
farther in a shorter time, which is thought to improve the hydrophilicity of the plasma. In
contrast, when helium and argon plasma were irradiated at a distance of 5 mm, the contact
angles were 58◦ and 55◦, respectively, in the conventional system, but increased to 61◦ and
68◦ in the supersonic plasma. This is because the plasma and atmospheric components
did not react sufficiently, and the active species of oxygen and nitrogen that contribute
to hydrophilicity were not generated. These results confirm the improved hydrophilicity
of nitrogen, carbon dioxide, argon, and helium supersonic plasmas. Evidently, nitrogen
supersonic plasma is effective in improving hydrophilicity for short-distance treatment,
whereas helium supersonic plasma is effective for long-distance treatment.
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Figure 5. Relationship between irradiation distance and hydrophilic effect: (a) helium plasma; (b) argon
plasma; (c) nitrogen plasma; (d) air plasma; (e) carbon dioxide plasma.

4. Conclusions

This study describes the development of a supersonic pulsed plasma jet device capable
of long-distance and high-speed processing and investigates the basic characteristics of the
device for surface treatment applications, mainly in the material and medical fields. The
developed device was equipped with a mechanism to transport the active species in the
plasma to the object to be treated by jetting the generated high-density plasma outward
with a supersonic pulse jet. The high-density active species in the plasma can be irradiated
to distant targets before they are deactivated. In the case of short distances, more active
species can reach the target; thus, faster processing can be expected. If the constant flow
velocity is increased, the discharge power density per flow rate decreases, and the treatment
effect decreases. In addition, gas consumption increases; therefore, a short-pulse method
was used. Observation of the plasma by a high-speed camera confirmed that the plasma
emission intensity increased, and the extension distance increased when the plasma was
discharged by a pulsed jet. The velocity of the supersonic pulsed plasma jet was measured
using the schlieren method, and it was found that the pulsed plasma jet was a short knife
jet. The maximum Mach number was calculated to be Mach 1 or higher for helium plasma,
Mach 1.6 for argon plasma, and Mach 1.7 for nitrogen, carbon dioxide, and air plasma.
Power measurements confirmed that the helium and argon plasmas during the pulsed jet
increased in power, whereas the carbon dioxide plasma decreased in power. The difference
in the power is considered to depend on the breakdown voltage. The above results suggest
that the reachable distance of the active species is extended, and the efficiency of surface
treatment by plasma is improved. The effect of the plasma gas type on the hydrophilic
effect was investigated. The maximum hydrophilic effect was observed when the nitrogen
supersonic plasma was irradiated at 13 Hz for 10 ms, and the contact angle was reduced
by a maximum of 14◦. Additionally, it was found that nitrogen supersonic plasma was
effective in improving hydrophilicity for short-distance treatment and helium supersonic
plasma for long-distance treatment.
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