論文

2014年7月

Spectral analysis of non-commutative harmonic oscillators: The lowest eigenvalue and no crossing

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
  • Fumio Hiroshima
  • ,
  • Itaru Sasaki

415
2
開始ページ
595
終了ページ
609
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.jmaa.2014.01.005
出版者・発行元
ACADEMIC PRESS INC ELSEVIER SCIENCE

The lowest eigenvalue of non-commutative harmonic oscillators Q(alpha,beta) (alpha > 0,beta > 0, alpha beta > 1) is studied. It is shown that Q(alpha,beta) can be decomposed into four self-adjoint operators,
[GRAPHICS]
and all the eigenvalues of each operator Q(sigma p) are simple. We show that the lowest eigenvalue of Q(alpha,beta) is simple whenever alpha not equal beta. Furthermore a Jacobi matrix representation of Q(sigma p) is given and spectrum of Q(sigma p) is considered numerically. (C) 2014 Elsevier Inc. All rights reserved.

Web of Science ® 被引用回数 : 6

リンク情報
DOI
https://doi.org/10.1016/j.jmaa.2014.01.005
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000334897400006&DestApp=WOS_CPL

エクスポート
BibTeX RIS