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Shock-capturing finite-volume schemes often give rise to anomalous results in hypersonic 
flow. We present a wide-ranging survey of numerical experiments from twelve different flux 
functions in one- and two-dimensional contexts. Included is a recently developed function 
that satisfies the second law of thermodynamics. It is found here that there are at least two 
kinds of shock instabilities: one is one-dimensional, and the other is multidimensional. 
According to the results, the former does not appear if a flux function satisfies the second 
law of thermodynamics, and the latter is suppressed by an additional dissipation with a 
multidimensional character. However, such dissipation has no effect on the one-dimensional 
mode. Among the flux functions investigated, no universally stable schemes are found that 
are free from both one- and multidimensional shock instabilities. These instabilities appear 
depending on relative positioning of the shock on the grid. 

Nomenclature 
e = internal energy, (p/ρ)/(γ-1) 
et = total energy, e+(1/2)(u2+v2) 
H = total enthalpy, et+p/ρ 
i, j = cell indices 
M = Mach number 
p = pressure 
S = entropy, ln p- γ ln ρ 
u, v = velocity components 
x, y = Cartesian coordinates 
α = entropy coefficient in the entropy-consistent Roe scheme 
γ = specific heat ratio, 1.4 
δ = grid stretch parameter, 0, 1/8, ... , 1 
ε = shock-position parameter, 0.0, 0.1, ... , 0.9 
ρ = density 
 
Subscripts 
L = left state (prestate) of the shock 
M = intermediate state (internal state) of the shock 
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R = right state (poststate) of the shock 
0 = freestream value 

I. Introduction 
HE computation of hypersonic flows has proved surprisingly troublesome on account of anomalies, such as 

carbuncle phenomenon [1], which afflict shock-capturing schemes. The carbuncle phenomenon appears to be very 

complex [2], but theoretical discussion is hampered by the fact that the carbuncle is a real physical solution, and so 

cannot be excluded by the application of any simple physical principle. We feel convinced that there is no single 

cause, nor is there any single cure. Several schemes have been published with claims that they do not suffer from 

such effects. However, it is difficult to establish such claims theoretically, because we still lack an accepted 

explanation for the breakdowns. It is also difficult to establish them experimentally, because the phenomena depend 

on many factors (e.g., mesh geometry, mesh size, flow Mach number, and specific heat ratio) [2, 3]. In this paper, 

we pursue an experimental comparison from a viewpoint that is partly physical and partly numerical. We will pay 

particular attention to those schemes known to fail [4, 5] and to schemes specifically claimed to avoid the 

phenomenon [6-10]. Also, we will focus on a recently published method [11-14] that is an entropy-consistent 

development of the Roe scheme. 

T 

We have organized our investigation as follows around the hypothesis that part of the mechanism for generating 

the carbuncle is one-dimensional (1-D), and part is multidimensional: 

1） In the 1-D problem, we begin by analyzing the apparently trivial problem of a steady shock in one 

dimension. The parameter here is the shock location on the grid and the flow Mach number. 

2） In the 1-1/2-D problem, our next experiments are what we refer to as 1-1/2-dimensional, in which we 

simply stack identical 1-D problems on top of each other to form a two-dimensional (2-D) mesh of 

squares. The parameter here is the shock location, and the objective is to see whether the same outcome 

can be drawn as in the previous test. Several authors have proposed fluxes that are intended to cure the 

carbuncle by an additional dissipation term with a multidimensional character. It is also investigated 

whether such terms are effective in cure for the shock instabilities. 

3） In the 2-D problem, as a more practical test, we consider the flow past a circular cylinder, using a grid in 

which one mesh line (set of cell interfaces) coincides with the shock obtained from a shock-fitting code. 

Naively, one might expect that mesh alignment of this kind would make it easy to capture the shock, but 

the 1-1/2-D test refutes this expectation. We made a series of tests in which the mesh was progressively 



dilated until, near the shock, the mesh lines were displaced by precisely one cell width. Thus, the shock 

took up all possible locations relative to the grid line, just as in the previous experiments. 

According to the results, 1-D and multidimensional effects in shock instabilities are discussed separately, and 

more insight in these instabilities will be explored. A final remark for developing a reliable flux function will follow.  

II. Numerical Methods 

A. Governing Equations 

The governing equations are two-dimensional compressible Euler equations as follows: 
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where ρ is density, u and v are velocity components in Cartesian coordinates, p is pressure, et is total energy, and H 

is total enthalpy (H=et+p/ρ). The calorically-perfect-gas model is assumed for air with the specific heat ratio γ =1.4. 

These equations are solved by the finite volume method. Both the spatial and the time accuracies are first order if 

not mentioned otherwise. As for the numerical flux at each cell interface, twelve different functions are used, 

including a recently published entropy-consistent (EC) Roe scheme. A brief introduction for this scheme appears in 

the next subsection. 

B. Entropy-Stable and Entropy-Consistent Schemes 
The new entropy-stable scheme is described in [11-14]. Basically, the standard formula 
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where FC is a special averaging (^) of the left and right states which conserves entropy, 
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S is a scaling factor, 
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and the dissipation term is not driven by the jump Δu in the conserved variables, but by the jump Δv in the entropy 

variables: 
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The diagonal matrix of eigenvalues is replaced by ΛΛΛ Δ+→ αˆˆ , where the additional term ΛΔα  is 

introduced to ensure that the entropy produced by a shock is of third order, as it should be. The coefficient alpha is 

not rigorously derived. For a weak shock sharply resolved, it should be 1/6. For stronger or less-well-resolved 

shocks, it needs to be larger, and we are presently engaged in trying to make this more precise (α=0.2 or 0.8 in the 

present paper). This entropy-consistent scheme is called the EC-Roe scheme in this paper. Because the analysis on 

which it is based is only semidiscrete, we have employed a small Courant-Friedrichs-Lewy (CFL) number when 

applying this scheme (see Table 1). 

III. Numerical Experiments 

A. One-Dimensional Problem: Steady Normal Shock 

From the viewpoint of continuum mechanics, a shock wave is regarded as a thin jump discontinuity, but a 

captured shock has numerical internal structure. However, it is hard to establish what this internal structure should 

be [3, 15, 16]. For example, the Godunov and Roe schemes produce an intermediate state that lies on the Hugoniot 

curve joining uR to uL, but such a state does not preserve mass flux inside the shock. On the other hand, at least one 

intermediate state is needed to allow representation of a shock that is not precisely located at a mesh interface. 

Therefore, we prescribe initial conditions that include an intermediate state and boundary conditions that force the 

shock to remain in its initial position. The grid comprises 50 equally spaced cells, as in Fig. 1, with initial conditions 

for left (L: i≤12) and right (R: i≥14): 
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following the Rankine-Hugoniot conditions across the normal shock. The internal shock conditions (M: i=13) are as 

follows: (5) 

1) The density is given as 

 ρM= ε ρL+(1-ε)ρR 

where the shock-position parameter ε = 0.0, 0.1, ... , 0.9. 

2) The other variables are calculated based on ρM so that all variables lie on the Hugoniot curve, connected to uL and 

uR, as in [16].§

At the outflow boundary we prescribe the mass flux at the ghost cell (i=imax+1): 

( ) ( ) 10,1max ==+ uu ji ρρ  (6) 

for the mass in the whole computational domain to remain constant and for the shock to be fixed at the same 

position; meanwhile, other values are simply extrapolated (e.g., ρimax+1, j= ρimax, j). In other words, this set of the 

outflow boundary conditions mimics the situation in which a normal shock sits in front of a wall constantly. Under 

the standard wall condition, the shock goes upstream, of course, until it reaches the inflow boundary. If another 

outflow condition is applied, the outflow boundary no longer behaves as the wall and different results are 

obtained.**

The inflow boundary has the freestream values. The freestream Mach number is chosen in the range 

1.5≤M0≤20.0. If a scheme is always stable for all those values of ε and M0, the scheme can be labeled as 1-D stable. 

Then the computations are conducted until when time steps multiplied by the CFL number reached 20,000 (e.g., 

100,000 steps with CFL=0.2), and the CFL number is chosen depending on M0, as in Table 1, based on stability 

                                                           
§ Though there are some alternative ways to determine internal shock states, e.g., all the primitive variables can be given as uM=ε 
uL+(1-ε) uR, we confirmed that these have minor effects on our conclusions. 
** Private communication with Tomoyuki Hanawa, Chiba University, Japan, Nov. 2007. 



limit of the EC-Roe scheme [11]. To see how well upwind schemes preserve the initial shock position, we compare 

results of the following widely used or recently proposed schemes, such as Godunov’s exact Riemann solver [4]; 

Roe’s (original) scheme [5], which is a linear approximate Riemann solver; Roe scheme with Harten’s entropy fix 

(E-fix) [17], which removes expansion shock; AUSM+ [6], AUSM+-up [7], AUSMPW+ [8] and RoeM2 [9] 

schemes which preserve total enthalpy H in steady flow; and HLLE [10], which is widely believed to be a 

carbuncle-free but notoriously dissipative scheme. 

The behaviors of those schemes are summarized in Fig. 2. If the L2-norm of density residual dropped at least 

three orders of magnitude, the computation is stable (Ο in the figure). If, on the other hand, the shock was moving 

back and forth and the computation did not converge, it is unstable (× in the figure). These typical solutions are 

shown in Fig. 3. In stable cases the contours are identical from 10,000 (not shown) through 50,000 steps, but not in 

the unstable cases, as the shock is still moving. 

As can be seen from Fig. 2, 

1） Roe scheme with E-fix and the EC-Roe scheme with a large entropy-coefficient (α=0.8) are 1-D stable in 

all cases, whereas others are not. The other schemes are stable only for low Mach numbers (M0<2.0, 

except for AUSM+ and AUSM+-up schemes) or for particular shock positions, depending on the schemes. 

Thus, most schemes that are claimed as carbuncle-free are actually not stable in a 1-D calculation. This 

aspect of the carbuncle has been largely ignored by researchers, but our contention is that one-dimensional 

stability is crucial for curing the carbuncle. In the following subsections, we will extend this discussion to 

two-dimensional problems. We also point out here that those two successful fluxes can resolve 

shear/boundary-layers well, as reported in [11, 18, 19]. 

2） The shock location ε for the unstable results are generally different for different schemes. However, the 

results for the exact (Godunov) Riemann solver and the unmodified Roe scheme are almost identical, as 

pointed out by Barth [3]. According to the present criterion which divides stable and unstable cases, only 

one exception is seen at M0=4.0 and ε=0.7. In addition, these solutions for ε=0.0 are not necessarily stable 

under the current setup where the downstream boundary plays a significant role, though these two 

Riemann solvers are that were designed to accurately capture the shock when it properly sits on the mesh 

line. 



B. One-and-One-Half-Dimensional Problem: Steady Normal Shock 

Next we solved a steady shock that is initially aligned in one direction in a 2-D field (Fig. 4). We expect that 

such a computed flowfield should behave in a 1-D manner unless multidimensional instability is introduced, and 

thus, we call this problem a 1-1/2-D problem. This is a simplified carbuncle problem that was developed first by 

Quirk [20] and modified by Dumbser et al. [21], but we used a grid that is extended farther downstream from the 

shock. We found that this made the development of unstable solutions more likely. In particular, we employ a grid 

with 50×25 cells spaced evenly without any perturbation (no other kinds of perturbations are introduced either). The 

freestream Mach number chosen is M0=6.0, because the solutions in the 1-D problem are almost the same for 

M0≥6.0 (Fig. 2). The periodical condition is imposed for the boundaries of j direction, whereas the other initial 

conditions and boundary conditions are the same as in the 1-D tests. The computations were conducted for 40,000 

steps with CFL=0.5. If a scheme is stable for all the shock positions ε, the scheme can be labeled as 1-1/2-D stable. 

Our computations are summarized in Table 2, showing a comparison with 1-D results. In this table, the 

following notations are used: 

1） S denotes a case in which the code converged steadily and exponentially toward a satisfactory solution. 

2） U denotes a case in which the residual hung up at some stage and the solution remained of poor quality. This 

case resembles 1-D unstable or a carbuncle solution. 

3） A denotes a case similar to U, but in which the residual eventually began to decrease again, with convergence to 

an unsatisfactory solution, usually asymmetric and in the form of a carbuncle. 

As can be seen, there is no 1-1/2-D stable scheme. Overall, the case that was stable in 1-D was more likely to be 

1-1/2-D stable than 1-D unstable case, and almost no case that was unstable in 1-D proved to be stable in 1-1/2-D 

(with few exceptions). In addition, if there are both 1-D and 1-1/2-D stable cases and 1-D and 1-1/2-D 

unstable/asymmetric cases, these cases are sometimes separated by 1-D stable but 1-1/2-D unstable/asymmetric (or 

vice versa) cases. Therefore, we claim that 1-D stability is crucial for 1-1/2-D stability. 

1. Shock Locations That are Stable in One Dimension 

Here, we show only cases that were stable in 1-D. In Fig. 5, Mach number contours at 40,000 time steps are 

shown for typical cases, and Fig. 6 shows representative profiles of the L2-norm of density residual histories for 

these calculations. The tests reported in this sub-subsection determine how the 1-1/2-D instability develops. The 



instabilities that appeared sometimes took the form of local oscillations confined to the shock [Stage 1 (Fig. 5d)], 

streaks of vorticity streaming behind the shock [Stage 2 (Fig. 5e)] or total breakdown [Stage 3 (Figs. 5f, 5g)] [11, 

22]. In the last case, the density behind the shock is no longer that behind a normal shock, and even under our new 

boundary condition, the shock is free to move and may eventually disappear off the grid (Fig. 5h). In this case, the 

residual suddenly drops to the machine zero level when the shock is wiped out (Fig. 6b). The following features of 

these results are noteworthy from Table 2 and Figs. 5 and 6: 

1） The only two schemes that were universally stable in 1-D (the EC-Roe scheme with α=0.8 and Roe’s scheme 

with Harten’s E-fix) both failed this test. Thus, it is found that there is 1-1/2-D stability that is distinct from 1-D 

stability. Moreover, many of the schemes that were stable in 1-D for some particular combination of M0 and ε are 

unstable here. Hence, 1-D stability is not sufficient for the 1-1/2-D stability. 

2） Comparing the results of the EC-Roe scheme with α=0.2 and α=0.8, we can see that the latter is more 

unstable than the former in this test, in contrast to 1-D tests. Thus, while adding dissipation in a direction normal to a 

shock enhances 1-D stability, we think another strategy has to be considered for a direction parallel to the shock in 

order to establish a 1-1/2-D stable scheme. This also holds for a comparison of the original Roe and Roe (E-Fix). 

3） The AUSM+ solution has a surprising feature when ε=0.7: after the residual once converged to O(10-11) with 

an apparently stable solution (shown in Fig. 7a), the flowfield suddenly destabilized around 10,000 steps. Then, the 

residual grew exponentially, and remained at a significant magnitude (Fig. 6c). Eventually, the calculation reached 

the stage 1 carbuncle solution [20,000 steps (Fig. 7b) and 40,000 steps (Fig. 5d)]. Further explanation will appear 

later; this scheme cannot be called 1-1/2-D stable. 

4） The AUSM+-up scheme showed the stage 2 carbuncle solution for ε=0.8 (Fig. 5e) and the residual stagnated 

around O(10-5) (not shown). This scheme, again, is not 1-1/2-D stable. 

5） The AUSMPW+ scheme has a multidimensional term and is claimed to be carbuncle-free. With this term, as 

can be expected, the results were stable whenever the 1-D case was stable (Table 2). However, when that 

multidimensional term was eliminated, the solutions did not converge in some cases (e.g., ε=0.0, 0.5, and 0.6). 

Hence, the multidimensional term properly works as is designed. 

6） The RoeM2 scheme also has a multidimensional term and is claimed to be carbuncle-free. With this term, in 

contrast to AUSMPW+, the results were either stable or unstable when the 1-D case was stable (Table 2 and Fig. 5c). 

When the multidimensional term was eliminated, the solutions were either stabilized or destabilized depending on ε 



(Table 2). This may be attributed to the aforementioned fact that too much dissipation addition to the direction 

parallel to the shock can lead to unstable solutions. Moreover, with multidimensional term for ε=0.5, the solution 

was once destabilized around 24,000 steps, similarly to AUSM+ (ε=0.7), but in this case, the solution remained 

stable (according to the present criteria) for 200,000 steps (shown in Fig. 8). 

7） The HLLE scheme, the only scheme known to be carbuncle-free among widely used schemes (though it 

lacks resolution of contact-discontinuities/boundary-layers) showed a stable result whenever the 1-D case was stable. 

In search of more insight, we measured how the unstable 1-1/2-D solutions deviated from the stable 1-D 

solutions; specifically, we computed the L1-norm of differences of the primitive variables (ρ, u, v, p). Figure 9 

shows the time histories of the deviations from the 1-D solutions for selected results (only u and v are shown, for 

brevity, because ρ and p behaved as the same manner as u). The deviation of v stands for the amount of 1-1/2-D 

instability. A noteworthy conclusion is that in all of the unstable cases except two, the deviation grew rapidly and 

immediately in all variables (e.g., Figs. 9b and 9c). The exceptions were AUSM+ [ε=0.7 (Fig. 9e)] and RoeM2 

[ε=0.5 (Fig. 8c)], for which the growth was very gentle. This accounts for the apparently satisfactory stability of 

these schemes at early times; that is, the 1-D instability did not appear and the solution went toward the convergence 

while the 1-1/2-D instability subliminally grew. Thus, one should pay careful attention when applying AUSM+ or 

RoeM2 until the computation fully converges to a satisfactory solution. As proved here, the deviation of the 1-1/2-D 

solution from the 1-D solution is a powerful tool for investigation of instability of a flux function.  

2. Shock Locations That are Unstable in One Dimension 

According to Table 2, all of the cases that were unstable in 1-D were, with few exceptions, unstable in 1-1/2-D. 

This includes even the cases of AUSMPW+ and RoeM2 that feature multidimensional dissipation. In Fig. 10, we 

present the results of these schemes for cases that were unstable in 1-D. It seems that in case of AUSMPW+ (ε=0.9), 

the dissipation is able to suppress both the 1-D and the multidimensional modes. In the case of RoeM2 (ε=0.0), 

however, the 1-D mode remains. RoeM2 without the multidimensional dissipation (ε=0.0) is one of the few 

exceptions. As shown before, however, this version of the RoeM2 scheme failed this test for another choice of shock 

location. Thus, by eliminating the multidimensional dissipation, the scheme just changed its favorite shock location. 

The HLLE scheme, because of its inability to sustain contact discontinuities, has a built-in dissipation that also 



completely suppresses the additional modes but leaves the 1-D mode in place. Thus, HLLE is not carbuncle free, 

although it has been believed to be so. 

We confirmed our expectation that if a scheme is unstable in 1-D, then it remains unstable in 1-1/2-D even if a 

multidimensional dissipation is added. This suggests that the scheme of Sanders et al. [23] would also be unstable in 

1-1/2-D for certain cases, although we have not confirmed this by experiment. 

In summary, we have found 1-D stable schemes [EC-Roe scheme (α=0.8) and Roe (E-fix)] but no 1-1/2-D stable 

schemes. The following schemes are stable only under certain shock locations; Roe, EC-Roe (α=0.2), AUSM+, 

AUSM+-up, AUSMPW+ (with and without multidimensional dissipation), RoeM2 (with and without 

multidimensional dissipation), and HLLE. 

A natural question arises here: “What if a 1-D stable scheme is equipped with a multidimensional dissipation?” 

One example to answer this is found in our latest work [24], where an anomalous result of EC-Roe (α=0.8) is 

greatly (not perfectly, though) improved with a surface-tension-like multidimensional dissipation that is applicable 

to unstructured grids. Thus, it is said that such a combination is very promising for development of a carbuncle-free 

scheme in a strong sense. This result supports our claim that 1-D and multidimensional dissipations should be 

separately considered. 

In addition, we leave a few comments on very recent results in [18, 19]. It was reported therein that a 

combination of Roe (E-Fix) and HLLE (what they call ‘Rotated-RHLL’ flux) successfully passed all the 1-1/2-D 

tests, as well as Van Leer type flux-vector-splitting (FVS) schemes [25, 26], on the limitation of the present criterion. 

We do not pursue those results in the present work, but these fluxes are, according to the discussions here, likely to 

produce proper amount of dissipations both in the normal and parallel directions to the shock. 

C. Two-Dimensional Problem: Hypersonic Flow over a Blunt Body with a Shock-Aligned Grid 

Finally, we will go on to a fully 2-D problem. Figure 11 shows the computational grid and conditions in this case. 

The grid has 48×120 cells and has initially been designed so that a fitted bow shock lies on an i=const line for 

M0=6.0.†† We checked that our version of this grid was perfectly symmetric by removing some very small rounding 

errors that arose due to translation from the format in which the grid was received. We then stretched this grid 

outward, controlling the motion of the i=const line that theoretically coincides with the shock position. We 

introduced a parameter δ such that if δ=0, we recover the original grid, but if δ=1, the adjacent grid line moves to the 
                                                           
†† Private communication with Jeffery White et al., NASA Langley Research Center, Apr. 2007. 



theoretical shock location. We varied this parameter by intervals of 1/8 so that, just as in the earlier tests, the shock 

took up a variety of locations relative to the grid line. We expected that if our results were stable for δ=0, they were 

also stable for δ=1. However, there were a few exceptions, perhaps because the captured shocks were not exactly 

aligned with the grid. As the parameter δ changes by unity so does the parameter ε, but they are not the same 

because the captured shocks will not be in exactly the same position as the fitted shock. 

The specified condition at the inlet (i=0) is just freestream Mach number of M0=6.0 with reference density and 

pressure. The slip condition is applied at the wall (i=imax+1), and the simple extrapolation is employed at the outlet 

(j=0 and jmax+1). Computations were conducted with CFL=0.5 for 50,000 time steps unless the residual converged to 

machine zero. The spatial accuracy is first order or second order by using the MUSCL scheme [27] with Van 

Albada’s limiter [28]. 

Two examples of computed flowfields are shown in Fig. 12. Compared here are results of second-order Roe 

scheme with δ=0 (no displacement) and δ=4/8 (half cell displacement). The bow shock exactly lies on an i=const 

line and the solution converged successfully for δ=0; however, for δ=4/8, the shock seemed to look for a 

comfortable position rather than settle down on a particular i=const line, and the solution did not converge. This 

observation is similar to that shown in the previous test cases. 

In Table 3 we summarized the results for various flux functions investigated in the preceding subsections. 

Computed flowfields selected from each scheme are shown in Fig. 13. According to these results, the following 

discussions have been drawn: 

1） All the schemes presented here showed unstable (U) or asymmetric (A) results for some conditions. In every 

case, we find some set of consecutive positions for which the solution is stable (S) and another set for which it is 

unstable (U). Sometimes these sets are separated by an example of case A. This behavior was also noted in the 1-

D and 1-1/2-D tests. 

2） The shock locations for stable and unstable are different for different schemes, again as in the 1-D and 1-1/2-

D tests. 

3） These shock locations are also different for different orders of spatial accuracies (e.g., the EC-Roe scheme 

with α=0.2 favors 3/8≤δ≤6/8 for first order, and 4/8≤δ≤7/8 for second order). This difference would be due to 

difference of computed shock standoff distances. 

4） Entropy-fix slightly helped Roe scheme to be stable for second order, but not for first order computations.  



5） The EC-Roe scheme with α=0.8 failed all the cases, in contrast to 1-D tests, but as in 1-1/2-D cases. The 

effect of adding dissipation is seen from Figs. 13d and 13e by comparing the thickness of the captured shocks. If 

too much dissipation is added on a flux function (and the shock is broadened), the flux function seems more 

likely to be vulnerable to the multidimensional shock instability, as mentioned in 1-1/2-D tests. 

6） Schemes equipped with multidimensional effects (AUSMPW+ and RoeM2) still suffered from shock 

instability, although they worked well for limited cases. 

7） Schemes that are claimed to be carbuncle free, including HLLE, are not actually shock stable. 

These results are broadly similar to the 1-1/2-D results. For most of the schemes, the proportions of stable and 

unstable cases were about the same. Again, there is no stable scheme. 

An extension of the present discussions to 3-D, viscous problems appears in [19], in which further degrees of 

freedom triggers the multidimensional instability. 

IV. Conclusions 

We have conducted a broad range of investigations of hypersonic shock stability within the common framework 

of upwind shock-capturing schemes. We have focused on the role played by the relative positioning of the shock on 

the grid. 

1） There are at least two kinds of shock instabilities: one is one-dimensional (1-D) and the other is 

multidimensional. 

2） All but two of the flux functions investigated were unstable, even in 1-D, for at least some combinations 

of shock location and freestream Mach number. The exceptions, Roe with entropy-fix and EC-Roe 

(α=0.8), satisfy the second law of thermodynamics (i.e., proper entropy creation across the shock). 

3） All the fluxes, including those two fluxes, showed unstable results in 1-1/2-D and 2-D tests. Thus, we 

think it likely that some form of multidimensional dissipation is required, which may take the form of a 

dissipation added to a finite-volume method, or a more radically multidimensional formulation. On the 

limited basis of the present tests, the dissipation in the context of AUSMPW+ [5] seems more reliable than 

that for RoeM2 [6]. However, they are effective only when the multidimensional instability standalone is 

present; they do not work well if 1-D mode also appears at the same time. Moreover, neither is formulated 

for use on unstructured grids. 



Acknowledgments 

This work was carried out at the University of Michigan, Ann Arbor, MI, while the first author was studying 

there as an exchange student from Nagoya University, Japan. He is grateful to Bram van Leer (University of 

Michigan); Yoshiaki Nakamura, Tsutomu Nomizu and International Academic Exchange Office (Nagoya 

University) for their relevant supports. 

This work was partly supported by JAXA’s Engineering Digital Innovation (JEDI) center (managed by Eiji 

Shima), Yoshiaki Nakamura and his colleagues (Nagoya University), and Ken Powell (University of Michigan). 

Jeffery White and his colleagues (NASA Langley Research Center) supplied us with a computational grid for a 

Mach 6 blunt-body problem. Tomoyuki Hanawa (Chiba University, Japan), Hiroaki Nishikawa (National Institute of 

Aerospace), Akihiro Sasoh and Katsuya Ishii (Nagoya University), and colleagues of the first author at JEDI center 

gave us constructive comments. We thank them all for their cooperation. 

References 

[1] Peery, K.M. and Imlay, S.T., “Blunt-Body Flow Simulations,” AIAA Paper 88-2904, 1988. 

[2] Pandolfi, M. and D’Ambrosio, D., “Numerical Instabilities in Upwind Methods: Analysis and Cures for the “Carbuncle” 

Phenomenon,” Journal of Computational Physics, Vol. 166, No. 2, 2001, pp.271-301. 

[3] Barth, T.J., “Some Notes on Shock-Resolving Flux Functions Part 1: Stationary Characteristics,” NASA TM-101087, 1989. 

[4] Godunov, S.K., “A Finite Difference Method for the Numerical Computation of Discontinuous Solutions of the Equations of 

Fluid Dynamics,” Matematicheskii Sbornik, Vol. 47, No. 3, 1959, pp.271-306. 

[5] Roe, P.L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” Journal of Computational Physics, 

Vol. 43, No. 2, 1981, pp.357-372. 

[6] Liou, M.S., “A Sequel to AUSM: AUSM+,” Journal of Computational Physics, Vol. 129, No. 2, 1996, pp.364-382. 

[7] Liou, M.S., “A Further Development of the AUSM+ Scheme Towards Robust and Accurate Solutions for All Speeds, AIAA 

Paper 2003-4116, 2003. 

[8] Kim, K.H., Kim, C., and Rho, O.H., “Methods for the Accurate Computations of Hypersonic Flows 1. AUSMPW+ Scheme,” 

Journal of Computational Physics, Vol. 174, No. 1, 2001, pp.38-80. 

[9] Kim, S.S., Kim, C., Rho, O.H., Hong, S.K., “Cures for the Shock Instability: Development of a Shock-Stable Roe Scheme,” 

Journal of Computational Physics, Vol. 185, No. 2, 2003, pp.342-374. 

[10] Einfeldt, B., “On Godunov-Type Methods for Gas Dynamics,” SIAM Journal on Numerical Analysis, Vol. 25, No.2, 1998, 

pp.294-318. 



[11] Ismail, F., “Toward a Reliable Prediction of Shocks in Hypersonic Flow – Resolving Carbuncles with Entropy and Vorticity 

Control,” Ph.D. Dissertation, University of Michigan, Ann Arbor, Michigan, 2006. 

[12] Ismail, F., Roe, P.L. and Nishikawa, H., “A Proposed Cure to the Carbuncle Phenomenon,” U18, The Fourth International 

Conference on Computational Fluid Dynamics, Ghent, Belgium, 2006. 

[13] Roe, P.L., “Affordable, Entropy-Consistent, Euler Flux Functions 1: Analytical Results,” Journal of Computational Physics, 

(Under Review). 

[14] Ismail, F. and Roe, P.L., “Affordable, Entropy-Consistent, Euler Flux Functions 2:  Entropy Production at Shocks,” Journal 

of Computational Physics, (In Preparation). 

[15] Roe, P.L., “Fluctuations and Signals — A Framework for Numerical Evolution Problems,” Numerical Methods for Fluid 

Dynamics, Edited by Morton KW and Baines MJ, 1982, pp.232–236. 

[16] Chauvat, Y., Moschetta, J.M., and Gressier, J., “Shock Wave Numerical Structure and the Carbuncle Phenomenon,” 

International Journal for Numerical Methods in Fluids, Vol. 47, No. 8-9, 2005, pp.903-909. 

[17] Harten, A., “High Resolution Schemes for Hyperbolic Conservation Laws,” Journal of Computational Physics, Vol. 49, No. 

3, 1983, pp.357-393. 

[18] Nishikawa, H. and Kitamura, K., “Very Simple, Carbuncle-Free, Boundary-Layer-Resolving, Rotated-Hybrid Riemann 

Solvers,” Journal of Computational Physics, Vol. 227, No. 4, 2008, pp.2560-2581. 

[19] Kitamura, K., Nakamura, Y., and Shima, E., “An Evaluation of Euler Fluxes 2: Hypersonic Surface Heating Computation,” 

AIAA Paper 2008-4275, 38th AIAA Fluid Dynamics Conference and Exhibit, Seattle, WA, 2008. 

[20] Quirk, J.J., “A Contribution to the Great Rimann Solver Debate,” International Journal for Numerical Methods in Fluids, 

Vol. 18, No. 6, 1994, pp.555-574. 

[21] Dumbser, M., Moschetta, J.M. and Gressier, J., “A Matrix Stability Analysis of the Carbuncle Phenomenon,” Journal of 

Computational Physics, Vol. 197, No. 2, 2004, pp.647-670. 

[22] Roe, P.L., Nishikawa, H., Ismail F. and Scalabrin L., “On Carbuncles and Other Excrescences,” AIAA Paper 2005-4872, 

2005. 

[23] Sanders, R., Morano, E. and Druguetz, M.C., “Multidimensional Dissipation for Upwind Schemes: Stability and 

Applications to Gas Dynamics,” Journal of Computational Physics, Vol. 145, No. 2, 1998, pp.511-537. 

[24] Roe, P.L. and Kitamura, K., “Artificial Surface Tension to Stabilize Captured Shockwaves,” AIAA Paper 2008-3991, 38th 

AIAA Fluid Dynamics Conference and Exhibit, Seattle, WA, 2008. 

[25] Van Leer, B., “Flux Vector Splitting for the Euler Equations,” Lecture Notes in Physics, Vol. 170, 1982, pp. 507-512. 

[26] Hänel, D, Schwane, R., and Seider, G., “On the Accuracy of Upwind Schemes for the Solution of the Navier-Stokes 

Equations,” AIAA Paper 87-1105, 1987. 



[27] Van Leer, B., “Towards the Ultimate Conservative Difference Scheme 5: A Second-Order Sequel to Godunov’s Method,” 

Journal of Computational Physics, Vol. 32, No. 1, 1979, pp.101-136. 

[28] Van Albada, G.D., Van Leer, B. and Roberts, W.W., Jr., “A Comparative Study of Computational Methods in Cosmic Gas 

Dynamics,” Astronomy and Astrophysics, Vol. 108, No. 1, 1982, pp.76-84. 



Figures 

 
 ishock=12+ε 

M0 

i 
 

Fig. 1 Computational grid and conditions for the 1-D steady shock test problem. 
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  c) Roe (E-fix) 
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Fig. 2 One-dimensional stability limits for upwind schemes 
(freestream Mach number 1.5≤M0≤20.0 and shock position ε = 0.0, 0.1, ... , 0.9). 

 



    

   
 a) Stable (Roe, ε=0.5, 50,000 
steps) 

b) Unstable (Roe, ε=0.0, 49,000 
steps) 

c) Unstable (Roe, ε=0.0, 50,000 
steps) 

Fig. 3  Typical examples of Mach number contours for the 1-D steady shock 
(freestream Mach number M0=2.0). 
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Fig. 4 Computational grid and conditions for 1-1/2-D steady shock test problem. 

 

 



 

 

 

 

 
       
   

 
 
a) Stable (Roe, ε=0.1) 

 
 
b) Stable (EC-Roe 
(α=0.2), ε=0.0) 

    
d) Stage 1 unstable 
(AUSM+, ε=0.7) 

c) 1-D unstable (RoeM2, 
ε=0.7) 

  
     

     g) Stage 3 unstable (Roe 
(E-fix), ε=0.0) 

h) Stage 3 unstable: 
disappeared (Godunov, 
ε=0.5) 

f) Stage 3 unstable  (Roe, 
ε=0.5) 

e) Stage 2 unstable  
(AUSM+-up, ε=0.8)    

   
Fig. 5 Typical examples of Mach number contours at 40,000 time steps for the 1-1/2-dimensional steady 

shock (freestream Mach number M0=6.0 and shock position ε is one-dimensionally stable). 

 
a) Roe, stable (ε=0.1) and 

unstable (ε=0.5) 
 

 
b) Godunov, unstable: 
disappeared (ε=0.5) 

 
c) AUSM+, stable (ε=0.0) and 

unstable (ε=0.7)  
Fig. 6 Residual histories for 1-1/2-dimensional steady shock (freestream Mach number M0=6.0 and shock 

position ε is one-dimensionally stable). 

 b) a)  
Fig. 7  Mach number contours at a) 10,000 and b) 20,000 time steps for the 1-1/2-dimensional steady shock 

(AUSM+, freestream Mach number M0=6.0 and shock position ε=0.7). 



  

 
  
   

b) a) c) 
   

Fig. 8  Plots of a) Mach number contours at 200,000 time steps, b) residual histories, and c) histories of 
deviations of primitive variables from 1-D solutions for the 1-1/2-dimensional steady shock 

(RoeM2, freestream Mach number M0=6.0 and shock position ε=0.5). 
 

   

      
c) Godunov (ε=0.5), unstable: b) Roe (ε=0.5), unstable  a) Roe (ε=0.1), stable 

disappeared  
 

   

 
  

e) AUSM+ (ε=0.7), unstable d) AUSM+ (ε=0.0), stable  
  

Fig. 9 Histories of deviations of primitive variables from 1-D solutions (freestream Mach number M0=6.0 
and shock position ε is one-dimensionally stable). 

 



  

  
a) AUSMPW+ (ε=0.9), stable b) AUSMPW+ without multidimensional term 

(ε=0.9), stage 2 unstable  
 
  

  
  

c) RoeM2 (ε=0.0), 1-D unstable d) RoeM2 without multidimensional term (ε=0.0), 
stable  

 
Fig. 10 Effects of multidimensional terms in AUSMPW+ and RoeM2: 

Mach number contours at 40,000 time steps for the 1-1/2-dimensional steady shock 
(freestream Mach number M0=6.0 and shock position ε is one-dimensionally unstable). 
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Fig. 11 Computational grid and conditions for the blunt-body problem. 
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Fig. 12 Pressure contours with grid around 2-D cylinder at 50,000 time steps (Roe, second order). 
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Fig. 13 Typical examples of pressure at 50,000 time steps; first order (upper) and second order (lower) 

around the 2-D cylinder. 
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Fig. 13 Typical examples of pressure at 50,000 time steps; first order (upper) and second order (lower) 

around the 2-D cylinder (continued). 



 

Tables 

  
 Table 1 CFL number chosen for each 

freestream Mach number M0  
 

M0 1.5-6.0 10.0 20.0  
 CFL 0.5 0.2 0.1 
  
 

 



Table 2 Summary of computed results for the 1-D and the 1-1/2-D M0=6.0 steady shock with various schemes 
(S: symmetry and converged, A: asymmetry and converged, U: not converged) 

Scheme Test problem 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ε=0.0 

1-D U S S S S S S U U U 
Godunov 

1-1/2-D U U U U U U U U U U 

1-D U S S S S S S U U U 
Roe 

1-1/2-D U S S S U U U U U U 

1-D S S S S S S S S S S 
Roe (E-fix) 

1-1/2-D U U U U U U U U U U 

1-D S S S S S U U U U S 
EC-Roe (α=0.2) 

1-1/2-D S S S U U S U U U S 

1-D S S S S S S S S S S 
EC-Roe (α=0.8) 

1-1/2-D U U U U U U U U U U 

1-D S S S S U U U S S S 
AUSM+ 

1-1/2-D S S S S U U U U S S 

1-D S S S S S U U U S S 
AUSM+-up 

1-1/2-D S S S S S A U U U S 

1-D S S S S S S S U U U 

 

 

 S S S S S S S U U S AUSM
PW+ 1-1/2-D (without 

multidimensi
onal term) 

U S S S S A U U U U 

1-D U S S S S S S S U U 

 U A A A A S A U U U  RoeM2 
1-1/2-D (without 

multidimensi
onal term) 

S S S S S A A S S S 

1-D U S S S S S S U U U 
HLLE 

1-1/2-D U S S S S S S U U U 
 



Table 3 Summary of computed results for the M0=6.0 2-D cylinder with various schemes 
(S: symmetry and converged, A: asymmetry and converged, U: not converged) 

Order of 
accuracy δ=0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1 Scheme 

First A A A U U S S S S 
Godunov 

Second S S U A U U S S S 

First A A A U U A A A U 
Roe 

Second S U U U U U S S S 

First A A A A A A A A A 
Roe (E-fix) 

Second S S U U U U S S S 

First U U A S S S S A U 
EC-Roe (α=0.2) 

Second U U U U S S S S U 

First U A A U U U A U U 
EC-Roe (α=0.8) 

Second U U U U U U U U U 

First S S S S S A U S S 
AUSM+ 

Second S S U U U U S S S 

First U U U S S S S A U 
AUSM+-up 

Second S S U U S U U U U 

First S S S S S S U S S 
AUSMPW+ 

Second S S S U U S S S S 

 
 
 

First S S S A U A U S S (without 
multidime

nsional 
term) 

 
Second S S S U U S S S S 

First S S S A U S S S S 
RoeM2 

Second S S S S U U S S S 

First S S S U U S S S S (without 
multidime

nsional 
term) 

 
Second S S U U U U S S S 

First S S S U U S S S S 
HLLE 

Second S S S U U U S S S 
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