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In hypersonic flow computations, it is a key issue to predict surface heating accurately, 
though this is still challenging because there always are possibilities of resulting in 
anomalous solutions. In this paper, we first propose three properties for flux functions: i) 
shock stability/robustness, ii) conservation of total enthalpy, and iii) resolving boundary-
layer. Then, numerical experiments are performed for widely used or recently developed 
flux functions, and these fluxes are categorized into five major groups based on how they 
satisfy the three properties. These tests reveal that no flux functions investigated here 
possesses all the three properties. In particular, the first one is not satisfied by any flux 
functions, including flux-vector-splittings. Finally, contributions of those properties are 
compared in a two-dimensional, viscous hypersonic blunt-body problem. Results showed 
that the first and the third properties are crucial, and the second one is preferred to predict 
hypersonic heating. A group of flux functions that best satisfies these properties is suggested, 
and they are recommended either to be used or designed for hypersonic heating 
computations. 

Nomenclature 

AR = cell aspect-ratio 

Cp = specific heat at constant pressure 

E = total energy 

E, F = inviscid flux vectors (in x, y direction, respectively) 

Ev, Fv = viscous flux vectors (in x, y direction, respectively) 

H = total enthalpy 

i, j = cell indices 
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M = Mach number 

P = pressure 

Pr = Prandtl number, 0.72 

q = heat-transfer rate 

Q = (conservative) state vector 

Q* = Jameson’s modified (conservative) state vector 

r = radius of cylinder, 20 mm 

Re  = Reynolds number 

ρ = density 

T = temperature 

u, v = velocity components 

x, y = Cartesian coordinates 

φ = angle from the stagnation point (nose) of cylinder 

γ = specific heat ratio, 1.4 

κ = thermal conductivity, κ = μCp/Pr 

μ = molecular viscosity 

 

Subscripts 

cell = value based on the minimum cell width 

F-R = Fay-Riddell’s theoretically predicted value 

∞ = freestream value 

w = value on the wall 

0 = stagnation value 

1 = post-shock value 

2 = pre-shock value 

+, - = right and left running wave components 
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I. Introduction 

N hypersonic flow computations, it is a key issue to predict surface heating accurately. However, it is still 

challenging to compute hypersonic flows, because there always are possibilities of resulting in anomalous**  

(unstable or oscillatory) solutions (Fig. 1). The most notorious example is the carbuncle phenomenon first 

reported by Peery and Imlay [1]. The carbuncle is a shock-induced instability and such anomalies appear depending 

on the following factors and their combinations [2, 3]: flow conditions (Mach number, Reynolds number, and 

specific heat ratio), mesh (size, aspect ratio, etc.), and numerical methods (flux function, accuracy, etc.). In 

particular, the authors [4] recently made clear that there are at least two causes of the shock anomalies: one is one-

dimensional (1-D), and the other is multidimensional (Multi-D) effect. The former appeared to be alleviated by 

satisfying the entropy condition (the second law of thermodynamics), while the latter can be suppressed by Multi-D 

dissipation terms such as those introduced in [5] and [6]. However, when both of the two causes arise at the same 

time, these dissipations do not work well. Thus, a flux function which is free from those two kinds of anomalies is 

needed, yet we have not had it: Any flux functions investigated in [4] can lead to at least either of 1-D or Multi-D 

anomalous solutions depending on the shock location relative to grid lines. Furthermore, Henderson et al. [7] 

confirmed Pandolfi et al.’s report [2] that cell aspect-ratio (AR) plays a role on occurrence of Multi-D shock-

anomalies. They showed in Quirk’s odd-even decoupling test [8] that elongation of cells in a direction parallel to the 

shock, and similarly, clustering the grids in a direction normal to the shock, are both effective in cure for the Multi-

D anomalies. However, investigations in both [2] and [7] are limited to flux functions known to be vulnerable to the 

shock anomalies, thus an extension of their discussions to other fluxes is questionable. Therefore, in the present 

work, we will first extend our previous investigations [4] to a wider range of grids with different ARs and number of 

cells along with additional fluxes not tested in [4]. 

Moreover, Gnoffo and White [9] examined how asymmetry of surface heating appeared in tetrahedral 

unstructured grids. Mazaheri and Kleb [10] performed a grid study on hypersonic heating using initially shock-

aligned, but intentionally deformed structured grids. These studies showed that, even with their version of Roe flux 

[11], stagnation heating deviated as much as 18% associated with perturbation of grids and hence, captured shock 

shapes as well as boundary-layers. As reviewed above, accurate computation of surface heat transfer rates is still one 

of extremely difficult subjects in CFD. This is partly due to the shock anomalies, but there remain other two factors 
                                                           
**  This expression has been replaced from ‘unstable,’ in order to stand for both ‘unstable’ and ‘oscillatory’ (Private 
communication with Meng-Sing Liou, NASA Glenn Research Center, Jan. 2009). This will be used throughout the paper. 
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to be considered: total enthalpy and boundary-layers. If the total temperature numerically changes, and even if this 

error itself is insignificant, it could lead to poor prediction of the surface heating because the heat flux is 

proportional to temperature gradient from Fourier’s law of heat conduction. Therefore, from this point of view, it 

would be preferred to adopt a flux function which is designed to conserve the total enthalpy across the shock wave, 

such as AUSM+ [12], AUSMPW+ [5], RoeM [6], Hänel [13], and H-CUSP [14]. 

To capture the temperature gradient near the wall, we also should take into account the capability of resolving 

boundary-layers. Flux-vector-splitting (FVS) fluxes (e.g., Stegar-Warming [15], Van Leer [16], Hänel [13]) are 

known to lack this character because they are not formulated to incorporate effects of contact discontinuities. These 

fluxes are to be examined here. 

Therefore, it is hypothesized that a flux function equipped with the following properties is suitable in hypersonic 

surface heat-transfer computations: 

I. Shock stability/robustness (i.e., free from both 1-D and Multi-D anomalies [4, 17]) 

II. Conservation of total enthalpy (and hence, total temperature) 

III. Resolving boundary-layer (and hence, temperature gradient near the wall) 

In this paper, based on the three properties proposed above, we begin with investigating widely used or recently 

developed flux functions by conducting numerical experiments: I. The aforementioned extension of [4] will be 

conducted with regard to shock stability/robustness; II. These fluxes will be tested for the constancy of total 

enthalpy in both 1-D and 2-D contexts with first and second order of spatial accuracy; III. Laminar boundary-layer 

over a flat plate will be solved and the solution accuracy will be compared. Then, flux functions are categorized into 

five groups depending on how they meet the three properties. Finally, contributions of those properties are compared 

in a two-dimensional, viscous hypersonic blunt-body problem. 

Although individual significance of each of these properties has already been addressed by some researchers [2, 

6, 12-14], its direct influence on the resultant surface heating, or interactions of each of the properties has not been 

examined yet. In other words, criteria for choosing fluxes are still unclear for hypersonic heating computations, 

despite the fact that a great number of flux functions have been developed. To establish these criteria, the previous 

work by the authors [4] has been extended here with the following features: 

- Three properties are introduced for heating computations, and Euler fluxes are evaluated comprehensively 

based on how they satisfy these properties. 
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- In [4] only the first property was studied for limited cases. However, the current work covers a wider range 

of fluxes and grids, along with new findings and an improved rating for fluxes. 

Therefore, provided here are very useful pieces of information for those who are currently using upwind-

schemes in their finite-volume codes, as well as who are developing CFD (computational fluid dynamics) 

algorithms. 

II. Computational Method 

A. Governing Equations 

The governing equations are the two-dimensional, compressible Euler or Navier-Stokes equations: 

where ρ is density, u, v are velocity components in Cartesian coordinates, E is total energy, p is pressure, H is total 

enthalpy [H = E + (p/ρ)], and T is temperature. The working gas is assumed to be air approximated by the 

calorically-perfect-gas model with the specific heat ratio γ =1.4. The Prandtl number is Pr=0.72. The molecular 

viscosity μ is calculated by the Sutherland’s formula, and the thermal conductivity κ is given by κ = μCp/Pr, where 

Cp is specific heat at constant pressure. 

B. Computational Method 

The following methods are used for computations herein, if not mentioned otherwise. 
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As for spatial discretization, the primitive variables at each cell-interface are interpolated to achieve second order 

accuracy by using MUSCL reconstruction [18] with Van Albada’s limiter [19]. Then, inviscid fluxes at the cell-

interface are calculated from the following flux functions: 

1) Group 1 (Exact or three-wave approximate Riemann fluxes): Property II. - No; Property III. - Yes 

1. Godunov [20]: An exact Riemann solver. 

2. Roe [11]: A three-wave approximate Riemann solver; a flux-difference-splitting (FDS) scheme. 

3. Roe (E-Fix): Roe [11] with Harten’s entropy-fix [21]. 

4. EC-Roe (α=0.2) [22-25]: An entropy-consistent Roe flux with small amount of dissipation addition. 

5. EC-Roe (α =0.8) [22-25]: An entropy-consistent Roe flux with large amount of dissipation addition. 

2) Group 2 (Two-wave approximate Riemann fluxes): Property II. - No; Property III. - No 

6. HLLE [26]: A two-wave approximate Riemann solver; a contact discontinuity is ignored. 

7. Van Leer [16]: A flux-vector-splitting (FVS) scheme; a contact discontinuity is ignored.  

3) Group 3 (Total enthalpy preserving, two-wave approximate Riemann flux): Property II. - Yes; Property III. - No 

8. Hänel [13]: A variant of Van Leer’s flux which preserves total enthalpy in steady flow. 

4) Group 4 (Total enthalpy preserving fluxes): Property II. - Yes; Property III. - Yes 

9. AUSMDV [27]: A variant of AUSM [28] (a simplified Van Leer’s FVS), but developed to have boundary-

layer-resolving nature of FDS and robustness of FVS, and to preserve total enthalpy H in steady flow. 

10. AUSM+ [12]: A variant of AUSM which preserves total enthalpy H in steady flow. This flux also can be 

regarded as a mixture of FDS and FVS. 

11. AUSM+-up [29]: A variant of AUSM+ which is extended for use in low-speed flows. 

12. AUSMPW+ [5]: A variant of AUSM+ which features multidimensional dissipation term. 

13. RoeM [6]: A variant of Roe which preserves total enthalpy H and features multidimensional dissipation term. 

5) Group 5 (Hybrid fluxes) 

14. AUSMDV (Shock-Fix) [27]: A combination of AUSMDV in the shock-normal direction and Hänel in the 

shock-parallel direction. These two fluxes should be manually selected by users. 

15. Rotated-RHLL [30]: A hybrid of HLLE in the shock-normal direction and Roe (E-Fix) in the shock-parallel 

direction. These two fluxes are automatically activated depending on the relative direction of the shock to 

the cell-interface. 
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These fluxes have been categorized into the above five groups, based on how the second and the third properties 

are satisfied, and the flux is whether a single or hybridized one. Note that Property I. was not used for the grouping 

since this property cannot be answered “Yes or No,” but we shall rate those above fluxes by quantizing it in the next 

section. 

Viscous fluxes are computed by using second order central difference, while for time integration, second order 

Runge-Kutta method, or LU-SGS [31] is employed. 

 

III. Three Properties for Hypersonic Surface Heating Computations 

A. Property I.: Shock Stability/Robustness 

1. 1-D and Multi-D Shock Anomalies 

As mentioned above, there are at least two kinds of shock anomalies at work, that is, one-dimensional (1-D) and 

multidimensional (Multi-D) modes. The 1-1/2-D test (Fig. 2) in [4], in which 1-D shock is located in 2-D uniform 

grid (consisting of squares without perturbation), was shown to be very effective in investigating those two 

anomalies separately (Fig. 1). It was also demonstrated therein that the 1-1/2-D test can roughly but successfully 

predict outcome of a 2-D blunt-body simulation, in terms of shock anomalies. Thus, we start from reviewing the 

results of [4] and [30], and then, carry out additional cases. The freestream Mach number is M∞=6.0, and the 

computations are conducted for 40,000 steps with Courant-Friedrichs-Lewy (CFL) number of 0.5 using first order 

schemes both in space and time. Detailed explanation for the computational setup is found in [4]. 

The results in [4] and [30] are summarized as follows: 

1. All the flux functions investigated there exhibited 1-D oscillation, except for Roe (E-Fix) and EC-Roe (α=0.8: 

α stands for amount of dissipation addition [22-25]). These exceptions were the ones formulated to satisfy the 

entropy condition across the shock. 

2. 1-D oscillation was confined in one mesh size in a normal direction to the shock. 

3. HLLE did not show Multi-D anomalies, while it did 1-D mode (to be corrected later). 

4. Multi-D dissipation terms in AUSMPW+ or RoeM can partly suppress Multi-D anomalies under certain 

conditions, but not effective in 1-D anomalies. 

5. These anomalies appear depending on the relative location of the shock with the grid lines. 



 
American Institute of Aeronautics and Astronautics 

 

8 of 35

6.  Rotated-RHLL, inherently multidimensional, did not show Multi-D anomalies at least in their tests (to be 

corrected later). 

Then, we conducted the same survey for other fluxes: FVS schemes of Van Leer [16] and Hänel [13], and 

AUSMDV [27]. As is widely believed, FVS fluxes are considered to be free from either of the shock anomalies. 

AUSMDV, combined with Hänel (so-called “Shock-Fix”), is also claimed as carbuncle-free. The result is, 

7. FVS and AUSMDV (Shock-Fix) fluxes did not show 1-D and Multi-D anomalies (to be corrected later). 

Both of those present and previous [4, 30] results are summarized in Table 1: Note that the notations for the 

rating system has been improved from the previous form of S (stable), A (asymmetry), and U (unstable) [4] to the 

following: 

- ‘2’: Stable and symmetric solutions with at least three orders of density residual reduction. 

- ‘1’: Asymmetry or oscillation of the shock confined in two cells of the shock normal direction. 

- ‘0’: Unstable solutions usually associated with total breakdown of the shock (“carbuncle”). The residual 

stagnated at a significant value. 

These points will be used later in the comprehensive evaluation of the flux functions. 

2. Modified 1-1/2-D Tests 

Now we considered ‘cruder’ extension of the 1-1/2-D test, in which ten times of cells in the shock parallel 

direction are packed in the same domain, i.e., the cell aspect-ratio (AR) is taken as ten (Fig. 2b). Modification of this 

kind for grids can, as shown in [2] and [7], provoke Multi-D shock anomalies. In the present test (referred to as 

‘modified test #1’), shock location parameter [4] is set to be ε=0.0, i.e., the shock is initially put exactly on the grid 

line (cell interface). Then, computations are conducted 200,000 time steps, which is as five times long as the original 

test, with CFL=0.5. 

The results are summarized in Table 2, and since there was no major difference found from the result of one flux 

to another, only the Van Leer’s case is shown in Fig. 3b, along with the results of the original test for comparison 

(Fig. 3a). Surprisingly, even FVS fluxes and AUSMDV (Shock-Fix) that were believed to be carbuncle-free showed 

Multi-D oscillations in this modified setup. This tendency is consistent with Pandolfi et al.’s finding [2], but their 

discussion was limited for a flux which was already known to suffer from carbuncles. The results also showed that 

all the fluxes that passed the (original) 1-1/2-D test failed in the modified 1-1/2-D test. RHLL, which showed no 

unacceptable results in the original test, yielded slight asymmetry (not shown due to space limitation). Furthermore, 
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HLLE flux, which showed only 1-D mode of the shock oscillations in the original test, also exhibited Multi-D mode 

in the present test (not shown, again). It turned out that the items three, six, and seven in the previous sub-subsection 

were false. These items are corrected as: 

3.  HLLE rarely shows Multi-D anomalies, and it sometimes does 1-D mode. 

6.  Rotated-RHLL rarely shows Multi-D anomalies. 

7.  FVS and AUSMDV (Shock-Fix) fluxes rarely show Multi-D anomalies, and they never do 1-D mode. 

Thus, we have no fluxes that are free from shock anomalies. 

Moreover, we also found the similar results, either in the following: 

1) Modified Test #2: The computational domain is extended in the shock-parallel direction by ten times in which the 

number of the cells is increased, but the AR is maintained (Fig. 2c). 

2) Modified Test #3: The computational domain is compressed to the one-tenth height in which the number of the 

cells are unmodified, while the AR is taken as ten (Fig. 2d). 

In particular, according to the results in Figs. 3c and 3d, the former case appears to be more catastrophic. 

Therefore, findings in [2] and [7] are true, but actually increment of the cell numbers in the shock-parallel direction 

plays a more significant role than the AR in the present cases. Even worse, the result tells that any flux functions 

have potential to yield full carbuncle solutions as in Fig. 3c. 

In addition, the anomalous solutions emerged after apparently satisfactory solutions were once obtained. This is 

confirmed from residual (L2-norm of density) histories shown in Fig. 4, in which the residuals in the cases of the 

modified tests suddenly began to deviate from the original (stable) case. This is consistent with the behavior of 

relatively robust fluxes such as AUSM+ and RoeM in [4], in which the Multi-D instability grew very gently. 

Unless the grid lines are aligned well with the captured shock as in the most practical situations (and of course, in 

unstructured meshes), it will be much harder to predict whether the computation will reach a stable or an 

unstable/oscillatory solution. For example, the more grid points are used near the shock, the more likely the Multi-D 

shock anomalies be invoked in certain cases. This will be demonstrated later. 

Nevertheless, we will use only the results of the original test for the present evaluation of flux functions. 

B. Property II.: Conservation of Total Enthalpy 

As mentioned in the Introduction, if a flux function is not designed to preserve total enthalpy H, the stagnation 

temperature T0, and hence, calculated wall heat-transfer rates qw, may include significant errors. This aspect of the 
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flux functions was already claimed by other researchers [6, 14], but its importance has not yet demonstrated in a 

quantitative sense. Thus, comparisons of various fluxes for this property are made here both in one-dimensional and 

two-dimensional contexts. 

As pointed out by Jameson [14], this property is satisfied, for instance, by modification of the state vector as 

follows:  

This modification is regarded as changing equations to be solved from the energy equation (in the fourth row of 

Eq. 1) to the equation of conservation of ‘products of mass flux and total enthalpy,’ i.e., the equation of ‘total 

enthalpy conservation’ (since the mass flux is already conserved in the first row of the Eq. 1). This strategy was 

adopted in H-CUSP [14], and also later in RoeM [6]. 

AUSM-family schemes (AUSMDV [27], AUSM+ [12], AUSM+-up [29], AUSMPW+ [5], etc.) and Hänel [13] 

employed another approach. In their formulations, total enthalpy H is not differentiated, but directly used: The final 

component of the flux vector can be expressed as: 

We call these flux functions above “H-preserving fluxes (Groups 3 and 4)” in the rest of the paper, while this 

property is not accommodated in other popular fluxes (“Non-H-preserving fluxes,” Groups 1 and 2), e.g., Godunov 

[20], Roe [11], and Van Leer [16]. 

Figure 5 presents total enthalpy profiles across normal shock in one-dimensional setup. The computations shown 

here are that of [4], conducted with first order schemes both in space and time. In [4] each flux function yielded 

either stable or oscillatory results depending on the shock position, but here H profiles are extracted only from the 

stable cases. As demonstrated here, the H-preserving fluxes showed constancy of total enthalpy even inside the 

shock where the Euler equations are no longer valid [3, 4, 32], while the other fluxes exhibited oscillations. 

Nevertheless, those values recovered to their original states past the shock, showing that the H-preserving property 

has minor effects in this test. 
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On the other hand, in the two-dimensional setup (48×120 cells, Fig. 6a), the total enthalpy calculated by a non-

H-preserving flux deviated at most 3% downstream the shock as well as inside the shock along j=60 cells [slightly 

below the symmetry line which lies on the interfaces of j=60 and 61 cells (Fig. 6b)]. These deviations are, however, 

greatly suppressed when second order reconstruction is employed (Fig. 6c: Note that the scale differs from Fig. 6b). 

This is because these errors are of the order of truncation, as explained in [33], although these fluxes still produce 

larger errors than H-preserving schemes. In addition, it is noted that even H-preserving fluxes suffer from oscillation 

of total enthalpy inside the shock. Thus, we can say that the H-preserving nature does improve the total enthalpy 

profiles, and accordingly, surface heating, but that its influence is dramatically reduced with second order (and 

presumably, higher order) reconstruction. More practical comparisons for viscous cases will be performed later. 

C. Property III.: Boundary-Layer Resolution 

To resolve boundary-layers is, of course, considered to be crucial for accurate prediction of surface heat-transfer 

rates, because the heat flux is proportional to temperature gradient in the boundary-layer. This property is not 

enjoyed by two-wave approximate Riemann fluxes (Groups 2 and 3) due to ignorance of a contact surface in the 

formulation. 

In order to confirm this property of each flux function, we conducted computations on a low speed flow over a 

flat plate as in [30]. The flow conditions are M∞ = 0.2; P∞   = 1.0128×105 Pa; T∞    = 294.4 K; and Rex = 2.19×104 

(Reynolds number based on where velocity profiles are extracted). The second order accurate, Van Albada-limited 

MUSCL reconstruction (κ=1/3) is adopted for cell-interface values, along with the second order central difference 

for viscous term, and the second order Runge-Kutta for temporal integration. The computations were conducted for 

50,000 steps with CFL=0.5, and all the computations achieved at least two-orders reductions of the residuals (L2-

norm of density). The results of different fluxes are compared in Fig. 7, as well as Blasius’ analytical solution for a 

laminar boundary-layer. As shown in these figures, most of the methods successfully reproduced the analytical 

velocity profile, while only two-wave solvers (Groups 2 and 3) failed, as expected from their formulations. 

 

All the results above are summarized in Table 3 along with overall ratings with the grand total of 80 points. As 

for Property I., the sum of points obtained for each flux (Table 1) is employed. The scaling of rating for each 

property is proposed based on its impact on the surface heating (explained later). As can be seen, no flux functions 

investigated here are found to be completely satisfying all the Three Properties. 
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The classification of fluxes discussed above is also included in Table 3. This table provides very useful 

information to both who are using and designing upwind-schemes. Having addressed Three Properties of flux 

functions and categorized 15 fluxes into five groups, we will show hypersonic viscous cases with regard to 

prediction of surface heat-transfer rates using these fluxes. 

Considering the fact that any combinations are generally possible for hybrid methods, we will focus on only 

‘single’ fluxes that can be candidate components of hybrid methods in the rest of the paper. 

IV. Hypersonic Heating Test: Hypersonic Viscous Flow over a Blunt-Body 

In this section, two-dimensional, viscous, hypersonic flow computations over a blunt-body (a circular cylinder) 

are conducted. To explain suggested weighting of the Three Properties in Table 3, comparisons are made for fluxes 

from different groups from 1 to 4. The surface heat-transfer rates computed by different fluxes from each group are 

compared also with theory. In contrast to [4], we used a grid not aligned with a theoretical shock shape, because  

shock-alignment is practically impossible, for instance, in shock/shock interacting problems [34-38]. For the shock-

aligned-grid cases, see [39]. 

We consider the experimental setup of a two-dimensional blunt-body with r=20mm radius mounted in Nagoya 

University Shock Tunnel (NUST) [40], whose freestream conditions are M∞ = 8.1; P∞   = 370.7 Pa; T∞    = 63.73 K; 

and Re = 1.3×105 (Reynolds number based on the radius r=20mm). The present computation employed the exactly 

the same freestream conditions. In addition, no-slip and isothermal (Tw=300K) conditions are imposed at the wall. 

The cell Reynolds number, which is based on the minimum cell size, is taken as Recell=1.3 in the baseline grid which 

satisfies Klopfer and Yee’s criterion of Recell≤3 [41]. 

A. Baseline Grid 

The grid employed here is shown in Fig. 8a in which 160×160 cells are used. Shown in Fig. 8b is the coordinate 

system whose origin is located at the cylinder stagnation point (nose), and the angle φ is taken as -75 [deg.] < φ  < 

+75 [deg.] (φ = 0 [deg.] corresponds to the nose).  

The following flux functions are employed: Roe (E-Fix) and EC-Roe (α=0.8) (Group 1); HLLE and Van Leer 

(Group 2); Hänel (Group 3); AUSM+, AUSMPW+, and RoeM (Group 4). All the computations were conducted for 

100,000 steps with CFL=200 using LU-SGS. The residuals (L2-norm of density) dropped at least three orders of 
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magnitude for the most of the cases. For the Roe (E-Fix), EC-Roe (α=0.8), and RoeM cases, the residuals stagnated 

around at the two orders of reduction from the initial stage. The solutions are shown in Figs. 8c-f. 

Roe (E-Fix) and EC-Roe (α=0.8) yielded wiggles that were evidences of shock anomalies, and AUSM+ 

exhibited slight oscillations near the shock away from the symmetry line, which is often experienced by this flux [5]. 

RoeM showed slight asymmetry. The results of the other fluxes seemed satisfactory. 

Figure 9 presents surface pressure and heat-transfer rate profiles. The horizontal axis is the angle φ defined in Fig. 

8b. All the fluxes except for Roe (E-Fix) and EC-Roe (α=0.8) (Group 1) gave identical pressure profiles, and the 

stagnation values agree well with theoretical one (Pitot pressure, P10/P∞=84.9). For heat-transfer, however, only 

AUSM+ and AUSMPW+ (Group 4) gave accurate stagnation value (Fay-Riddell [42]’s theoretical value, qFR =17.5 

W/cm2) along with smooth distributions. Results of HLLE, Van Leer (Group 2), and Hänel (Group 3) are smooth 

but underpredicted. The other fluxes [Roe (E-Fix), EC-Roe (α=0.8), and RoeM] showed poor distributions due to 

shock anomalies.  

Shown in Figure 10 are temperature and total enthalpy profiles for Roe (E-Fix) (Group 1), HLLE and Van Leer 

(Group 2), Hänel (Group 3), and AUSM+ (Group 4) on the j=80 cells (y≈0). Note that the horizontal axis (- x) is 

positive and stands for the distance from the origin (stagnation point) toward the incoming flow. It is seen from Figs. 

10a,b that all the four groups showed the similar trends with small differences near the shock (-x ≈ 0.009). These 

differences are more clearly seen in blow-up views of Figs. 10c,d , in which total enthalpies (Fig. 10d) past the 

shock deviated much more significantly (roughly one order larger magnitude) in Non-H-preserving fluxes [Roe (E-

Fix), HLLE, and Van Leer] than H-preserving fluxes (Hänel and AUSM+), and this affected temperature profiles 

(Fig. 10c). In the boundary-layer near the wall (Figs. 10e,f), however, the deviations in Non-H-preserving fluxes 

seemed to recover, as expected from the discussions above in “Property II. Conservation of Total Enthalpy,” except 

for HLLE. In Figs. 10g,h, only four cells near the wall are displayed for clarity, and all the results showed linear 

profiles. This means that enough grid resolution in the thermal boundary-layer is achieved in the present setup. In 

Fig. 10g, AUSM+, which gave the most accurate surface heating (Fig. 9d), showed the steepest temperature gradient, 

followed by Roe (E-Fix), Hänel, and finally, HLLE which gave the lowest surface heating (Fig. 9c). 

According to these results, the following conclusions can be drawn for the Three Properties: 

- Property I. Shock stability/robustness: Roe (E-Fix) and EC-Roe (α=0.8) of Group 1 both showed anomalous 

distributions of heating in Fig. 9c. This property is obviously crucial for heating computations. 
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- Property II. H-preserving: Comparing the results of Van Leer (Group 2) and Hänel (Group 3), the H-

preserving property (Property II) of Hänel seems to have minor effects on the calculated surface heating. 

According to Fig. 10d, Hänel has less than 0.1% error of H, which showed slight improvement over Van 

Leer (about 0.3%). As a result, differences of the heating (Fig. 9c) and temperature gradient (Fig. 10g) are 

smaller than 2%, which is not significant compared to other flux functions. 

- Property III. Boundary-layer resolution: This property also seems crucial according to the results of Hänel 

(Group 3) and AUSM+ (Group 4). Although Hänel exhibited the least error of H behind the shock (less than 

0.1% in Fig. 10d), the resultant heating showed at most 17% error (Fig. 9c). 

In summary, the Properties I and III are crucial, while the Property II is seemingly preferred to predict 

hypersonic surface heating accurately. This was reflected in the scaling of these properties in Table 3: 1D and Multi-

D shock stabilities of Property I. have 20 points in maximum for each, 10 points for Property II., and 30 points for 

Property III. According to this table, Group 4 fluxes are suitable for hypersonic heating computations. 

B. Fine Grid for Additional Discussions 

Finally, Group 4 fluxes, along with Roe (E-Fix) for reference, are applied for a finer grid in which the number of 

cells only in the direction normal to the wall (j-direction) has been doubled (320×160 cells, Recell≈0.7). The 

computations were conducted for 100,000 steps with CFL=400. All the computations showed at least two orders of 

residual reductions. 

The pressure contours and surface pressure/heating profiles are shown in Figs. 11 and 12, respectively. 

According to Fig. 11, Roe (E-Fix) showed an anomalous result, again. AUSM+, which showed a stable result at 

50,000 steps (not shown), exhibited shock anomalies at 100,000 steps. This is consistent with the finding in [4], in 

which AUSM+ showed Multi-D anomalies grown subliminally and very gently while the solution was apparently 

satisfactory. For AUSMPW+ and RoeM, there is no evidence of shock anomalies. In Fig. 12, as can be expected, 

Roe (E-Fix) and AUSM+ yielded small errors in pressure, and significant errors in heat-transfer rates. AUSMPW+ 

and RoeM showed identical results both in pressure and heating, and excellent agreement with theory at stagnation. 

It is noted that AUSM+, which showed a stable result on the baseline grid, exhibited anomalies on the fine grid; on 

the other hand, RoeM, which suffered from weak shock oscillations on the baseline grid, showed an improvement of 

the solution on the fine grid. 
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The failure of AUSM+ in this case is explained by the relative positioning of the captured shocks on the grid, 

following the discussion in [4]. Shown in Fig. 13 are blow-up views of the AUSM+ results both on the baseline and 

the fine grids. Note that the captured shock is thicker in the baseline case than the fine grid case, and this seemed to 

provide the shock with sufficient amount of dissipation that successfully suppressed the oscillations in the shock-

normal direction (1-D stable). On the fine grid, however, the shock was more likely to move back and forth near the 

line of symmetry, and it jumped from one set of a grid line to another. This would be the cause of the oscillation 

mode in this case. This jump was also seen in the baseline case, but away from the symmetry line, so its effect on 

the solution was subtle. This discussion is what we mentioned earlier in “Property I.: Shock stability/robustness,” i.e., 

clustering the grids in the shock-normal direction may or may not result in worse solutions. From this viewpoint, it 

would be better to use a 1-D stable flux, such as Roe (E-Fix) and EC-Roe (α=0.8), in combination with Multi-D 

dissipation [43, 44] which can suppress the additional mode associated with, for example, the jumps of the shock 

between grid lines, though we have not completed to design it. AUSMPW+ was the only method that showed stable 

results both on the two grids in the present cases, and this explains the highest score of this flux in Table 3. This is 

perhaps due to its Multi-D dissipation term, but this flux may exhibit the shock anomalies on another grid, according 

to [4]. Nevertheless, it is confirmed that some of Group 4 fluxes are more robust (i.e., Property I. is likely to be 

satisfied) than others, and have Properties II and III, so would be the most reliable methods for hypersonic heating 

computations at this stage. Roe (E-Fix) and EC-Roe (α=0.8) in Group 1 are also promising if an aforementioned 

Multi-D dissipation is established for a practical use [43]. Thus, we are currently engaged in developing a flux 

function of Group 4 with Multi-D dissipation [45, 46]. 

V. Conclusions 

An extensive, detailed evaluation of Euler fluxes has been conducted in the present study for hypersonic surface 

heating computations. We first proposed the following three properties for flux functions.  

I. Shock stability/robustness 

II. Conservation of total enthalpy (and hence, total temperature)  

III. Resolving boundary-layer (and hence, temperature gradient)  

It turned out that no flux functions investigated here possessed all the three properties. In particular, the first one 

is not satisfied by any flux functions, including flux-vector-splittings. These fluxes were believed to be carbuncle-
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free, but even they exhibit multidimensional shock anomalies for a mesh either with a large numbers of cells in the 

shock-parallel direction, or a large cell aspect-ratio. It is confirmed that the second property is strongly satisfied by 

fluxes that were designed to do so, but the other fluxes also provided comparable results to those fluxes in second 

order accurate computations. However, the second order extension did not compensate the lack of the third property 

unless the flux was formulated to resolve contact discontinuities. 

According to how these properties are satisfied, we categorized 15 popular or recently developed flux functions 

into the following five groups: 

1) Group 1 (Exact or three-wave approximate Riemann fluxes): Godunov, Roe, Roe (E-Fix), and EC-Roe. 

Property II. - No; Property III. – Yes. 

2) Group 2 (Two-wave approximate Riemann fluxes): HLLE and Van Leer. Property II. - No; Property III. – No. 

3) Group 3 (Total enthalpy preserving, two-wave approximate Riemann flux): Hänel. Property II. - Yes; 

Property III. – No. 

4) Group 4 (Total enthalpy preserving fluxes): AUSMDV, AUSM+, AUSM+-up, AUSMPW+, and RoeM. 

Property II. - Yes; Property III. – Yes. 

5) Group 5 (Hybrid fluxes): AUSMDV (Shock-Fix) and Rotated-RHLL 

Then, these fluxes are applied for two-dimensional, viscous, hypersonic flow computations over a blunt-body. It 

is concluded from the results that the first and the third properties are crucial, and the second one is preferred to 

predict hypersonic surface heating accurately. 

According to the present survey, Group 4 fluxes such as AUSMPW+ appeared to be promising for use, because 

these fluxes are relatively robust among the currently available fluxes (i.e., the first property is more likely to be 

satisfied than others), and possess the rest of the properties. 

In designing a flux function, it is recommended to develop or improve a flux of Group 4 or Group 1 with 

multidimensional dissipation which is readily applicable to unstructured grids [43-46], or in combination with a 

dissipative flux in a multidimensional and systematic manner [30]. 
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Fig. 1 a) Stable (2: Symmetry and Converged), b) 1-D anomaly (1: Oscillatory), c) Multi-D anomaly (1: 
Asymmetry), and d) Carbuncle (0: Breakdown of shock) results for 1-1/2-dimensional steady shock test (first-

order both in space and time; freestream Mach number M∞=6.0) [4]. 



 
American Institute of Aeronautics and Astronautics 

 

22 of 35

 
 
 
 
 
 

 
 
 
 

 
 

 
 
 a) 

 

 
b) 

 

 
c) 

 

 
 
 
 

d) 

Fig. 2 a) Original (50 × 25), b) modified #1 (50 × 250; AR=10), c) modified #2 (50 × 250), and d) modified #3 
(50 × 25; AR=10) grids for 1-1/2-dimensional steady shock tests. 
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Fig. 3 a) Original (50 × 25), b) modified #1 (50 × 250; AR=10), c) modified #2 (50 × 250), and d) modified #3 (50 × 
25; AR=10) 1-1/2-dimensional tests (Van Leer’s FVS, 200,000 steps). 
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Fig. 4 Residual histories for original and modified 1-1/2-dimensional tests (Van Leer). 
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Fig. 5 Total enthalpy preserving capabilities of flux functions across normal shock, a) grid system, b) typical 

Mach number contours,[4] and c) computed total enthalpy profiles. 
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Fig. 6 Total enthalpy preserving capabilities of flux functions across bow shock, a) typical pressure contours 
[4], and computed total enthalpy profiles ( j=60) of b) first order and c) second order results. 
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Fig. 7 Boundary-layer resolution capabilities of flux functions. 
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Fig. 8  a) Grid (every other grid lines are shown), b) coordinates, and results (Mach number contours at 
100,000 steps, baseline grid) of c) Roe (E-Fix), d) EC-Roe (α=0.8), e) HLLE, f) Van Leer, g) Hänel, h) 

AUSM+ i) AUSMPW+, and j) RoeM for blunt-body viscous test. 
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Fig. 9 Profiles of a), b) pressure and c), d) heat-transfer rates over blunt-body (100,000 steps, baseline grid). 
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Fig. 10 Temperature (left) and total enthalpy (right) profiles along symmetry line for blunt-body viscous test 
with different scales (100,000 steps, baseline grid). 
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Fig. 11 Mach number contours of a) Roe (E-Fix), b) AUSM+, c) AUSMPW+, and d) RoeM for blunt-body 
viscous test (100,000 steps, fine grid). 
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b) 

Fig. 12 Profiles of a) pressure and b) heat-transfer rates over blunt-body (100,000 steps, fine grid). 
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a)  b) 

Fig. 13 Comparison of Mach number contours of AUSM+ results of a) baseline and b) fine grids for blunt-
body viscous tests at 100,000 steps. 
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Tables 

Table 1. Summary of computed results for 1-D and 1-1/2-D M∞=6.0 steady shock tests with various flux functions 
[2: Symmetry and Converged, 1: Asymmetry or Oscillatory, and 0: Breakdown of Shock (Carbuncle)]. 

Scheme Test 
Problem ε=0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Total 

1-D 1 2 2 2 2 2 2 1 1 1 16 
Godunov 

1-1/2-D 0 0 0 0 0 0 0 0 0 0 0 
16 

1-D 1 2 2 2 2 2 2 1 1 1 16 
 

1-1/2-D 0 2 2 2 0 0 0 0 0 0 6 
22 

1-D 2 2 2 2 2 2 2 2 2 2 20 
Roe 

(E-Fix) 
1-1/2-D 0 0 0 0 0 0 0 0 0 0 0 

20 

1-D 2 2 2 2 2 1 1 1 1 2 16 
(α=0.2) 

1-1/2-D 2 2 2 1 1 2 0 0 1 2 13 
29 

1-D 2 2 2 2 2 2 2 2 2 2 20 
EC-Roe 

(α=0.8) 
1-1/2-D 0 0 0 0 0 0 0 0 0 0 0 

20 

1-D 1 2 2 2 2 2 2 1 1 1 16 
HLLE 

1-1/2-D 1 2 2 2 2 2 2 1 1 1 16 
32 

1-D 2 2 2 2 2 2 2 2 2 2 20 
Van Leer 

1-1/2-D 2 2 2 2 2 2 2 2 2 2 20 
40 

1-D 2 2 2 2 2 2 2 2 2 2 20 
Hänel 

1-1/2-D 2 2 2 2 2 2 2 2 2 2 20 
40 

1-D 2 2 2 2 2 2 2 2 2 2 20 
AUSMDV 

1-1/2-D 1 1 1 1 1 1 1 1 1 1 10 
30 

1-D 2 2 2 2 1 1 1 2 2 2 17 
AUSM+ 

1-1/2-D 2 2 2 2 1 1 1 1 2 2 16 
33 

1-D 2 2 2 2 2 1 1 1 2 2 17 
AUSM+-up 

1-1/2-D 2 2 2 2 2 1 1 1 1 2 16 
33 
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Table 1. Summary of computed results for 1-D and 1-1/2-D M∞=6.0 steady shock tests with various flux functions 
[2: Symmetry and Converged, 1: Asymmetry or Oscillatory, and 0: Breakdown of Shock (Carbuncle)], continued. 

Scheme Test 
Problem ε=0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Total 

1-D 2 2 2 2 2 2 2 1 1 1 17 
AUSMPW+ 

1-1/2-D 2 2 2 2 2 2 2 1 1 2 18 
35 

1-D 1 2 2 2 2 2 2 2 1 1 17 
RoeM 

1-1/2-D 1 1 1 1 1 2 1 1 1 1 11 
28 

1-D 2 2 2 2 2 2 2 2 2 2 20 AUSMDV (Shock-
Fix) 1-1/2-D 2 2 2 2 2 2 2 2 2 2 20 

40 

1-D 1 2 2 2 2 2 2 1 1 1 16 
Rotated-RHLL 

1-1/2-D 2 2 2 2 2 2 2 2 2 2 20 
36 

 

Table 2. Summary of computed results for original and modified 1-1/2-D M∞=6.0 steady shock tests with various 
flux functions [2: Symmetry and Converged and 1: Asymmetry or Oscillatory of Shock]. 

Scheme Original 
(ε=0.0) 

Modified #1 
(ε=0.0) 

Modified #2 
(ε=0.0) 

Modified #3 
(ε=0.0) 

HLLE 1 1 - - 

VanLeer 2 1 0 1 

Hänel 2 1 - - 

AUSMDV 
(Shock-Fix) 2 1 - - 

Rotated-RHLL 2 1 - - 
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Table 3. Evaluation of Euler Fluxes Based on Three-Properties for Hypersonic Heating 

Group 1 Group 2 Group 3 
Flux Functions 

Godunov  Roe EC-Roe 
(α=0.2) 

Roe 
(E-Fix) 

EC-Roe
(α=0.8) HLLE Van 

Leer Hänel 

1D (20) 16 20 16 20 20 I. Shock 
Stability/ 
Robustness 

Multi-D 
(20) 0 6 13 0 16 20 20 

II. H-preserving (10) 0 0 10 

III. B-L Resolution (30) 30 0 0 

Grand Total (80) 46 52 59 50 32 40 50 

 

Group 4 
Flux Functions 

AUSMDV AUSM+ AUSM+-up AUSMPW+ RoeM 

1D (20) 20 17 I. Shock 
Stability/ 
Robustness 

Multi-D 
(20) 10 16 18 11 

II. H-preserving (10) 10 

III. B-L Resolution (30) 30 

Grand Total (80) 70 73 75 68 
 


