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Abstract 

Hypersonic heating computations are still challenging due to difficulties in “A) robust capturing of shockwaves” 
and “B) accurate prediction of heating.”  Based on our numerical survey for A), we found that the dissipation inside 
the numerical shock wave structure (where no physical or mathematical explanation is valid) must be proportional to 
Mach number, in contrast to Mach independent dissipation provided by conventional AUSM fluxes.  Then, we 
developed schemes that have those two properties above by combining a) a proposed pressure flux (having Mach-
proportional dissipation within numerical shock), and b) a mass flux of an all-speed AUSM-family scheme (SLAU, 
AUSM+-up or LDFSS2001).  The new schemes, called “SLAU2,” “AUSM+-up2,” and “LDFSS2001-2,” are applied 
to numerical tests, and their desired performances are demonstrated for a wide spectrum of Mach numbers, 
including hypersonic heating (for the latter two schemes), a low speed flow, and 3D aerodynamic applications. 
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1.  Introduction 
Hypersonic heating computations are still challenging due to difficulties in “A) robust capturing of shockwaves” 

and “B) accurate prediction of heating,” in spite of great progresses of both CFD (Computational Fluid Dynamics) 
methods and computer technologies. The issue A) is represented by “carbuncle phenomenon (Fig. 1) [1-4].” It is 
very easy from simple examples such as in Fig.1 to find a “correct” solution; however, in practical simulations 
involving complex geometries with complex flow phenomena (Ref. [5], for instance), it is almost impossible to 
identify such anomalies, if any. This difficulty degrades the reliability of currently available CFD methods and 
afflicts the use of them in hypersonic flows. 

Those anomalies are sometimes called “shock instabilities [6,7],” because they occur at numerically resolved 
shock waves by finite-volume, shock-capturing methods [2]. Usage of those terminologies are scattered even among 
the related-researchers, and a part of the reasons lies in the fact that it is still an open question whether the carbuncle 
phenomenon is a numerical artifact or not. Until almost a decade ago, the carbuncle had been believed as a 
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numerical anomalous solution [2]; however, more recent studies [8-11] argued that the carbuncle was a rather 
mathematical or physical one. 

Recently, in an attempt to resolve this argument, Liou [12] tried to categorize carbuncle as a purely numerical 
artifact which appeared only for certain flux functions, and therefore, claimed that it was ‘operationally’ avoidable 
by, for instance, AUSM+-up flux [13]. This holds for most cases, but there are a few exceptions: When a large 
number of cells are piled up in a shock-parallel direction [14], carbuncle phenomenon does appear even when 
AUSM+-up [13] or Van Leer’s flux-vector-splitting (FVS) [15] is used, as shown in Fig. 2. Thus, we believe this 
dispute has not been settled yet. 

In the present study, we take the viewpoint that the shock anomalies are at least partly caused by the lack of 
mathematical expression for internal shock structure by the governing equations [14] on the grounds that 

- The carbuncle appears as one of the physical solutions, as if a spike is mounted ahead of a blunt-body in a 
hypersonic flow [16]. This fact excludes the following simple classification: A physical solution is “correct,” 
and a carbuncle solution is unphysical. 

- In the real physics, a shock wave has finite thickness and inside structure. From the viewpoint of 
continuum mechanics, on the other hand, a shock wave is regarded as a zero-thickness discontinuity. Euler 
equations to be solved are based on the latter, but a numerically captured shock (by shock-capturing methods) 
usually contains a few (at least one) computational cells forming numerical internal shock structure [17-19]. 

- The numerical shock structure violates Euler equations and/or the Rankine-Hugoniot relation [18, 19]. 
Both equations are valid only “across” the shock, not “inside” it. Further discussions are found in Refs. [4, 6, 17, 
20]. 

- There is no reported anomalous solution by a shock-fitting method which produces no shock width [2, 21, 
22]. 

Then, among the scattered terminologies, we had 
redefined in [23] the shock related anomalous solutions3 as 
in Table1, that is, “shock anomalies” are categorized into 
two phenomena of “shock oscillations” and “shock 
instabilities.” The carbuncle belongs to the latter family 
and appears only in multi-dimensions. “Oscillations” stand 
for the oscillatory behaviors of the captured shock, whether 
in time or space, usually confined within only two cells. Such situations often arise when, in a non-shock-aligned 
grid, the shock jumps from one set of mesh line to another [14, 24]. The spatially multi-dimensional oscillation is 
also referred to as “asymmetry.” 

It is known that ‘the shock anomalies should not have any single cause, nor is there any single cure [4].’ It is 
difficult to establish such cures theoretically, because we still have not reached an accepted conclusions for how 
numerical internal shock structure should be expressed, as stated above. It is also difficult to establish them 
experimentally, because the anomalies depend on mesh geometry, mesh size, flow Mach number, and specific heat 
ratio [2, 4, 14]. Kitamura et al. [4, 14] conducted systematic experimental investigations by paying particular 
attention to flux functions and mesh. They concluded that one dimensional (1D) and multi-dimensional (Multi-D) 
shock anomalies appeared independently, and any existing flux functions suffered from either of them. 

As a starting point of this work, SLAU [Simple Low-dissipation AUSM (Advection Upstream Splitting 
Method)] flux, recently developed by the authors [25], will be tested first as in Refs. [4, 14]. The SLAU is one of 
low-dissipation schemes of AUSM-family, and free from any tunable parameters. SLAU showed an excellent 
performance at low speeds [25, 26], not to mention in moderate speed regimes; but as in other flux functions, 
anomalous behaviors were observed at shocks under some circumstances in hypersonic flows. Specifically, it was 
left ambiguous how to deal with shock internal structure, e.g., speed of sound inside the shock. 

In the first half of the present paper, after brief explanations for the computational methods, fundamental 
discriptions for “cell-interfacial speed of sound,” denoted as c1/2, will be given. The c1/2 is the speed of sound 
numerically defined at a cell-interface, and usually used to calculate an AUSM-family numerical flux [13, 24, 25] 
(see Figure 3). We will focus on the role of c1/2, and the numerical tests in Refs. [4, 14] will be conducted for SLAU 
and other fluxes. 

                                                           
2 The authors used the term “1D carbuncle” in the earlier work [4], but here we abandoned this expression to avoid 
confusions.  
3 Although the conventional term “shock instabilities” is used in our earlier publications, we will use the new, recently 
updated definitions of “shock anomalies (Table 1)” in the rest of  the paper. 

Anomalies Oscillations Instabilities 

1D Y (in time)2 N (Not observed 
yet) 

Multi-D Y (both in time 
and space) 

Y (Carbuncle) 

Table 1 Shock anomalies [23] 
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The definition of c1/2 is, as mentioned above, one of critical questions of what the numerical shock structure 
should be, since c1/2 is usually left as a scheme’s parameter while the other physical quantities at the cell-interfaces 
such as primitive variables can be somehow interpolated from cell-center values. Naturally, the c1/2 has many 
options, e.g., arithmetic or geometric average, and it will be explored in the present work which expression would be 
suitable for SLAU or other AUSM-family fluxes for improvements in their robustness/stability against the captured 
shocks. Since c1/2 inside the shock is purely a numerical quantity (where no physical or mathematical explanation is 
justifiable), numerical experiments are considered to be the only way to find its proper value. 

Ref. [27] is, to the best of the authors’ knowledge, the only one in which the effects of c1/2 was studied for high 
Mach numbers. Liou and Edwards [27] revealed that slight modifications of c1/2 could influence stability of the 
shock for AUSM+ [24] and even Roe flux [28] or Van Leer’s FVS [15]. However, their discussions were limited to 
one dimension and the most of their work was dedicated to low speed flow extensions. As demonstrated in Ref. [4], 
however, 1D and multi-dimensional shock anomalies should be considered differently, and that will be done in the 
present work. 

Then, based on the findings, the pressure flux of SLAU will be modified to have more proper amount of 
dissipation inside the shock: Modification of dissipation term containing c1/2 turns out to be good enough. As will be 
demonstrated from numerical examples, the improved scheme, named SLAU2, is promising for a broad spectrum of 
flow speed regimes. 

For hypersonic heating computations, however, even this scheme needs further improvement, as will be 
demonstrated later (and also reported by Hiroaki Nishikawa, National Institute of Aerospace, and Jeffery White, 
NASA Langley, in private communication). 

The heating issue “B) accurate prediction of heating” has usually been discussed together with “A) robust 
capturing of shockwaves” [14,29,30], since B) is considered to be strongly related to A) and shock anomalies 
actually contaminate the post-shock solutions including wall heating significantly. The authors previously proposed 
the following three properties for accurate heating computations and investigated various numerical flux functions in 
Ref. [14]: 

A) Robustness against shock anomalies 
B-1) Total enthalpy preserving 
B-2) Boundary-layer resolving (An ability of the Euler solver to sharply resolve contact discontinuities) 
In actuality, and unfortunately, there found no method which satisfied all the three properties in a strong sense; 

specifically, A) is not perfectly guaranteed even by AUSM+-up [13] or Van Leer’s FVS [15], as seen in Fig. 2 [14]. 
Nevertheless, at least under certain conditions, AUSM-family schemes such as AUSM+[24] achieved A) and such 
schemes are designed to satisfy B-1) and B-2), and thus, produced good heating profiles over the wall. Therefore, if 
one is interested in not only the stagnation point heating, but also in its distributions, the following condition should 
be added to A), B-1), and B-2): 

B-3) Smooth representation of heating profiles (if the other conditions are guaranteed) 
AUSM-family schemes are often used for hypersonic flows, primarily due to their robustness and simplicity. 

Generally, an AUSM-family flux is formulated to be composed of a) pressure flux and b) mass flux. Each 
component has its own contribution to the solution calculated from cell-interfacial differences of pressure and mass, 
respectively. Across the shock, the mass flux is constant according to the mass conservation law, but pressure has 
discontinuous jump, thus, a) pressure flux must have a greater contribution. On the other hand, as for the wall 
heating in the (attached) boundary-layer, pressure is usually constant normal to the wall, and hence, b) mass flux 
should have a larger impact. 

Therefore, in the second half of this article, we will consider to design numerical flux functions which satisfy 
both A) and B) by simply combining a) pressure flux of SLAU2 having excellent performance in A), and b) mass 
flux of another AUSM-family scheme such as AUSM+-up [13] or LDFSS (Low Diffusion Flux Splitting Scheme) 
2001 [31] having properties B1), B2), and  B3). 

In addition, we remind that SLAU [25], SLAU2, AUSM+-up and LDFSS2001 are all-speed schemes that satisfy 
C) Low dissipation at low speeds 
Thus, the new schemes are also supposed to have C). This will also be demonstrated in numerical examples. 
We are aware of recent progresses in the related area: BGK (Bhatnagar-Gross-Krook)-equation-based finite-

volume method (FVM) [32] by Xu et al. and shock-fitting approach by Paciorri and Bonfiglioli in [22]. With the 
help of other strategies than a conventional shock-capturing scheme, they achieved some success in suppression of 
shock anomalous solutions. These approaches are interesting, however, it is still unclear whether they will provide 
accurate heating prediction and will be free from the two heating issues stated above on any conditions. Furthermore, 
many CFD practitioners are still using and heavily relying upon shock-capturing FVM codes because of their 
simplicity in algorithm and coding both. Our present methods are the ones that fulfill their desire. 
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The paper is organized as follows: Section 2 gives brief explanations for the computational methods; “cell-
interfacial speed of sound,” c1/2, will be introduced and studied in Section 3, with development of SLAU2 scheme 
along with a new pressssure flux having a proper ammount of dissipation at hypersonic speed. Then, its performance 
against shock anomalies will be also demonstrated. Note that in surveying c1/2 inside the shock, we will take 
numerical approach rather than (impossible) mathematical or physical explanations. In Section 4, the same pressure 
flux will be applied to other well-known AUSM-family shemes, i.e., AUSM+-up and LDFSS2001, leading to further 
developments: “AUSM+-up2” and “LDFSS2001-2.” Section 5 deals with the two heating issues A) and B) in which 
the new flux functions are tested, and Section 6 presents other numerical tests, including a low speed flow, a 3D 
heating test, and a practical application to a rocket configuration. Section 7 will conclude the present work. 

2.  Numerical Method 

2.1 Governing equations 
The governing equations are the compressible Navier-Stokes equations as follows, including the 

preconditioning matrix  of Weiss and Smith [33], which is simply eliminated in the non-preconditioned form: 

 

 
where  is the density, ul velocity components in Cartesian coordinates, E total energy, p pressure, H total 
enthalpy (H = E + (p/) ), and T temperature. The working gas is air approximated by the calorically perfect gas 
model with the specific heat ratio  =1.4. The Prandtl number is Pr=0.72. The molecular viscosity  and thermal 
conductivity  are related as =cp/Pr where cp is specific heat at constant pressure. The viscosity  is calculated by 
the Sutherland’s formula for hypersonic heating problems, whereas it is kept constant for others. In the turbulence 
calculations, molecular viscosity  is replaced by (+t), where t is turbulence viscosity. Likewise,  is replaced by 
(+cpt/Prt), where Prt is the turbulent Prandtl number, 0.89. 

These equations are solved with a finite-volume code, and can be written in the delta form as: 
 

where Vi stands for the volume of the cell i, ti the (local) time step, Qi change of conservative variables in time, 
Fi,j and Fvi,j the inviscid (Euler) and viscous fluxes through the cell-interface Si,j (which separates the cell i and its 
neighbor cell j), respectively (see Fig. 4). 

2.2 Numerical method 
The following methods are used for computations herein, if not mentioned otherwise. 
As for spatial discretization, the primitive variables at cell centers are used also as cell-interfacial values for 

spatially first order cases; In second order simulations, the primitive variables at each cell-interface are interpolated 
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by using MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) reconstruction [34] with Van 
Albada’s limiter [35]. Then, inviscid fluxes at the cell-interface are calculated from the AUSM-family flux functions 
introduced in the next subsection. 

2.3 AUSM-family numerical flux functions 
The following methods are used for computations herein, if not mentioned otherwise. 
Inviscid numerical fluxes at cell-interfaces Fi,j (denoted also as F1/2 hereafter) are calculated by one of the 

following AUSM-family fluxes [13, 25, 31]. AUSM-family schemes originate from Van Leer’s FVS [15] and there 
have been many variants published so far (Fig. 3). 

2.3.1 SLAU 
SLAU scheme developed by Shima and Kitamura [25], one of AUSM-family schemes, is briefly explained first. 

The cell-interface flux F1/2 is calculated as: 

 
where “+” and “-” denote the left (L) and right (R) states at the cell-interface, respectively (Fig. 2). Then, a) pressure 
flux is 
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Note in Eq. (2.3h) that the interface speed of sound c1/2 is defined as arithmetic average of cL and cR. This scheme 
relies upon no prescribed parameters, such as cutoff Mach number. This feature differentiates the scheme from other 
well-known all-speed schemes, and is desirable for flows having no uniform Mach numbers, e.g, internal flows. 

2.3.2 AUSM+-up 
AUSM+-up, the latest version of AUSM by Liou [13], is briefly described. As in SLAU, the numerical flux is 

expressed as in Eq. (2.3a) and (2.3b), but a) pressure flux is given by 
 

where c1/2 is calculated as 

 
The full description of b) mass flux and tunable parameters such as Ku are provided in Appendix. Furthermore, 
AUSM+-up requires another user-specified value, that is, uniform Mach number M∞. 

2.3.3 LDFSS2001 
The key elements of LDFSS2001 scheme [31] proposed by Edwards are explained here. This scheme is written 
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where  = 3/16, and c1/2 is given by Eq. (2.5g) as in LDFSS2001. Thus, differences from AUSM+-up lie in the 
definition of speed of sound, Eq. (2.5g), and elimination of some parameters such as pu. Note that this scheme is not 
an all-speed scheme, so exhibits severe numerical errors at low speeds [13, 26]. 

3.  SLAU2: Its development based on role of interfacial speed of sound 

3.1 Interfacial speed of sound 
As seen in the last section, most of AUSM-family schemes such as AUSM+-up [13], LDFSS2001 [31], and 

SLAU [25] need speed of sound at the cell interface, c1/2, and there is some degree of freedom for choosing it [24]. 
A simple arithmetic averaging in Eq. (2.3h), for example, works well for SLAU for general cases. On the other 

hand, another definition in Eq. (2.5g) was used for AUSM+ (and also for LDFSS2001) to capture normal shock 
properly. Other choices were also possible for AUSM+ [24], such as 

or geometric average, 

or even Roe-average, 

The choice of the interface sound of speed c1/2 has little effect on low or moderate Mach number flows (M<1), 
obviously because cL and cR are exactly or almost equal to each other. However, as will be shown later, it has 
significant influence on numerical stability/robustness of the schemes at a shock at higher Mach numbers. Ref. [27] 
is, to the best of the authors’ knowledge, the only one in which the effects of c1/2 was studied for high Mach number 
flows. Liou and Edwards [27] revealed that slight modifications of c1/2 in Eq. (2.5g) to the form of Eq.(3.1a) 
generally stabilized the shock for AUSM+ and even Roe flux or Van Leer’s FVS. However, their discussions were 
limited to one dimension and the most of their work was dedicated to low speed flows. As demonstrated in Ref. [4], 
1D and multi-dimensional shock anomalies should be considered separately, and this is done in the present work. 

Figure 5 shows an example of how c1/2 differs depending on its definitions for a Mach 6 normal shock. The 
abscissa stands for index of the cell-interface [Note: i-th cell-interface is located between i-th and (i+1)-th cells], and 
the ordinate the cell-interfacial speed of sound, c1/2, standardized by the freestream (= preshock) speed of sound, c∞. 
The normal shock is placed exactly at the cell-interface between i=12 and 13 cells (= 12th interface) in the 50 cells 
of a one-dimensional computational grid (shown later in Fig. 6). Then, the c1/2 is extracted at the very beginning of 
the computation (before the temporal evolution in the first timestep)4 for each definition. 

It is seen from the graph that the interfacial speed of sound, c1/2, can take various values between cL and cR 
“inside” the shock (i.e., at 12th interface), while it is uniform elsewhere. The arithmetic averaged value from Eq. 
(2.3h), 1.90895, SLAU default, is in the middle of the five definitions, and the Eq. (2.5g), AUSM+ default, gave 
1.13889 which is approximately 60% of the arithmetic averaged value. Since these numbers displayed here are 
standardized by uniform (left) velocity, this difference in actual numbers will increase with Mach number (e.g, at a 
stronger shock). Note that the interface speed of sound c1/2 controls the amount of numerical diffusion in some of the 
numerical flux function (the third term of Eq. (2.3c), for instance). Effects of changing these definitions on the shock 
stability/robustness of the schemes will be examined in the next section. 

We remind the readers of that this modification of c1/2 is only applicable to shock internal structure; the speed of 
sound “outside” the shock is not usually affected since cL and cR are the same. 

3.2 Role of interfacial speed of sound: steady normal shock numerical test 

                                                           
4 Thus, these calculated values of c1/2 are irrelevant to any of numerical methods in the code, such as flux functions. We 
confirmed hand-calculations yielded the same outputs. 
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 3.2.1 1.5D (one-and-half dimensional) steady normal shock test setup 
This problem is called “1.5D (or 1-1/2-D) problem,” which was conducted in Ref. [4] to examine how schemes 

show robustness in capturing a steady normal shock in a two-dimensional rectangular domain (Fig. 6). This setup 
mimics a close-up view of a hypersonic flow ahead of a stagnation point of a two-dimensional blunt-body, and 
hence, largely predicts results of such flow computations. In this paper we briefly review the problem and refer to 
Ref. [4] for details. 

As shown in Fig. 6, the computational grid comprises 50×25 cells evenly spaced without perturbations. A steady 
shock that includes an intermediate state is prescribed with initial conditions for left (L: i≤12) and right (R: i≥14) 
following the Rankine-Hugoniot conditions across the normal shock with the freestream Mach number M∞=6.0 (Vref 
= c1/2 and Mref = 1 in Eq.(2.5f) of LDFSS2001). The internal shock conditions (M: i=13) are as follows: 

1) The density is given as 

where the shock-position parameter  = 0.0, 0.1, ... , 0.9. The initial shock is imposed exactly on the cell-interface 
when =0.0, for instance, and at the cell-center when =0.5. 

2) The other variables are calculated based on ρM so that all variables lie on the Hugoniot curve. No perturbations 
are introduced either to the initial condition. 

The computations are conducted for 40,000 steps with CFL=0.5. We point out that longer timesteps or a smaller 
CFL essentially did not affect the solutions. If a scheme is stable for all the shock positions of , the scheme are 
regarded to be as robust as Van Leer’s FVS [14]. Typical solutions are shown in Fig. 7: 

- ‘2’ denotes a stable and symmetric solution with at least three orders of (L2-norm of) density residual 
reduction. 

- ‘1’ denotes an asymmetry and/or oscillation of the shock confined within two cells of the shock normal 
direction. 

- ‘0’ denotes an unstable solution usually associated with total breakdown of the shock (“carbuncle”). The 
residual stagnated at a significant value. 

 3.2.2 Steady normal shock results 

ρM=  ρL+(1-)ρR (3.2) 

Flux functions and 
c1/2 definitions 

Test 
Problem =0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Total 

SLAU (default) 
[c1/2= 0.5(cL+cR)] 

1D 2 2 2 2 2 2 2 2 2 2 20 
33

1.5D 1 2 2 2 1 1 1 1 1 1 13 

SLAU, Eq.(2.5g) 
[c1/2=min(cL

~,cR
~)] 

1D 2 2 2 2 2 2 2 2 2 2 20 
35

1.5D 2 2 2 1 1 1 1 1 2 2 15 

AUSM+, Eq.(2.3h) 
[c1/2= 0.5(cL+cR)] 

1D 2 2 2 2 1 1 2 2 2 2 18 
32

1.5D 2 2 2 2 1 1 1 1 1 1 14 

AUSM+ (default) 
[c1/2=min(cL

~,cR
~)] 

1D 2 2 2 2 1 1 1 2 2 2 17 
33

1.5D 2 2 2 2 1 1 1 1 2 2 16 

AUSM+, Eq.(3.1a) 
[c1/2=max(cL

~,cR
~)] 

1D 2 2 2 2 1 2 2 2 2 2 19 
32

1.5D 2 2 1 1 1 1 1 1 1 2 13 

AUSM+, Eq.(3.1b) 
[c1/2=sqrt(cL,cR)] 

1D 2 2 2 2 1 1 2 2 2 2 18 
32

1.5D 1 2 2 2 1 1 1 1 1 2 14 

AUSM+, Eq.(3.1c) 

[c1/2=RoeAvg(cL,cR)] 
1D 2 2 2 2 1 1 2 2 2 2 18 

33
1.5D 2 2 2 2 1 1 1 1 1 2 15 

Roe, Eq.(3.1c) 
[c1/2= RoeAvg(cL,cR)] 

1D 1 2 2 2 2 2 2 1 1 1 16 
22

1.5D 0 2 2 2 0 0 0 0 0 0 6 

Roe (E-fix), Eq.(3.1c) 
[c1/2= RoeAvg(cL,cR)] 

1D 2 2 2 2 2 2 2 2 2 2 20 
20

1.5D 0 0 0 0 0 0 0 0 0 0 0 

Table 2 1D and 1.5D tests for schemes with various c1/2 definitions (: shock location parameter [4]) 
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In the present study, SLAU and AUSM+ of AUSM-family fluxes with different c1/2 definitions are tested through 
the 1.5D numerical experiments, as well as its 1D counterparts where only one cell is used for the shock parallel 
direction [4]. A selection of computations is summarized in Table 2. The results of Roe flux [28] (with and without 
entropy-fix [36]) are also shown for reference. Total points in terms of shock stability/robustness of each scheme are 
given in the rightmost column (in 20 points maximum for each test). 

The following features are noteworthy from Table 2: 
- SLAU and AUSM+ both are more robust against shock anomalies than Roe flux. 
- SLAU is always stable (2) for 1D test, but showed some anomalous solutions (1) in 1.5D. 
- When c1/2 is changed from arithmetic average to that of AUSM+ in which critical speed of sound is used, 
SLAU shows better performance. 
- AUSM+ showed little influence in total points of two tests from change of c1/2, by balance of better 
performance in 1D and degraded stability in 1.5D, or vice versa. For instance, AUSM+ with c1/2=max(cL

~,cR
~) 

showed more stable 1D results than its default choice as reported in [27], but actually with worse 1.5D results. 
In summary, the choice of c1/2 influences response of flux functions to the captured shock in either 1D or Multi-

D. Particularly, SLAU with c1/2 of AUSM+ default, Eq. (2.5g), showed improvement of the shock 
stability/robustness, whereas for AUSM+ it seems impossible to identify which option is the best. SLAU has 
numerical dissipation term having c1/2 (the third term of Eq. (2.3c)) which is absent in AUSM+. With modification of 
c1/2 of SLAU from arithmetic average to the AUSM+ form, its magnitude is reduced as stated earlier (Fig. 5). From 
Eqs. (2.3c)-(2.3e) one can easily trace that this reduction of c1/2 led to more dissipation in the numerical dissipation 
term. Thus, it is said that dissipation of original SLAU was insufficient to stabilize Multi-D anomalies, and that 
more proper amount of dissipation has been fed into the SLAU flux by the current modification. Based on these 
findings, we will consider further improvement of the SLAU scheme. 

3.3 New pressure flux and derivation of SLAU2 
For clarity, the pressure flux of SLAU [Eqs. (2.3c)-(2.3e)] are rewritten as follows: 

According to this equation, at supersonic (M>1) the first parenthesis of the dissipation term, the third term of Eq. 
(3.3a), reduces to unity. In other words, the numerical dissipation introduced from this term is constant regardless of 
Mach number at a supersonic speed. In the previous sections, we discovered from numerical survey that the 
dissipation was insufficient in the original form, and this shortage will become greater for a larger Mach number (a 
stronger shock). 

Thus, we propose here to modify this term so that the dissipation is proportional to the Mach number as follows: 

Considering possible extension to real fluids [30], the above expression is improved further: 

With this new pressure flux, a new flux function named “SLAU2” has been derived. 

3.4 Steady normal shock test for SLAU2 
The first test here is, again, 1D and 1.5D steady normal shock problems. The results are summarized in Table 3, 

in which SLAU2 demonstrates an excellent performance against the shock anomalies (our experience tells that the 
version of c1/2=min(cL

~,cR
~), Eq. (2.5g), is slightly more robust than that of the arithmetic average, Eq. (2.3h), but for 

simplicity, for the rest of the paper, we use Eq. (2.3h) as a default c1/2). These results are interpreted as follows: By 
adding more numerical dissipation to the flux for M>1, the improved scheme indeed showed robustness against the 
shock. Then, careful readers may speculate that more dissipative schemes simply tend to get high scores in this test, 
however, we stress here that the things are not that simple: Generally, too much dissipation addition to the flux 
yields 1D stability but in expense of Multi-D stability, as reported in [4] for Roe flux with entropy-fix [36] (included 
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in Table 2) or EC (Entropy Consistent)-Roe flux [37]. In addition, although more dissipative schemes such as HLLE 
(Harten–Lax–van_Leer–Einfeldt) [38], Van Leer’s [15] or Hänel’s [39] FVS, also had marked full scores in the 
same test sets (20 points for both 1D and 1.5D) [14], they are known to be incapable of capturing a contact 
discontinuity and a boundary-layer economically. Therefore, it has been extremely hard to establish a scheme which 
is “properly dissipative” for both shock and contact discontinuities. The present scheme “SLAU2” is such a rare 
example, and Fig. 8 demonstrates its boundary-layer resolution capability, in which SLAU2 reproduced Mach 0.2 
Blasius’ analytical velocity profile as well as SLAU and Roe, whereas HLLE, one of notoriously dissipative solvers, 
did not. 

4.  AUSM+-up2 and LDFSS2001-2: Application of new pressure flux 
Now that we have derived a new pressure flux which feeds proper dissipation into a captured shock, we further 

consider to apply this pressure flux to other well-known AUSM-family all-speed fluxes, i.e., AUSM+-up and 
LDFSS2001. 

4.1 AUSM+-up2 
The dissipation in the pressure flux of AUSM+-up is fed differently from SLAU or LDFSS2001: it is given by 

the additional term pu of Eq. (2.4c). Since this term goes to zero for M>1 (except for a strong compression or 
expansion), pu is interpreted as a dissipation term working only for low speeds. Thus, we considered to devise 
another way for AUSM+-up to have dissipation proportional to Mach number at supersonic speeds following 
SLAU2. This will lead to the major modifications on the pressure flux, and there could be many options: in this 
study, we adopted the exactly the same pressure flux as SLAU2, namely, Eq. (3.5), and the modified flux will be 
referred to as “AUSM+-up2.” 

4.2 LDFSS2001-2 
The difference of the pressure flux Eq. (2.5a) in LDFSS2001 from Eq. (3.5) in SLAU2 lies only in the third term. 

This term controls the dissipation, but from the definition of Vref in Eq. (2.5d), the dissipation amount stays constant 
for M>1 as in SLAU. Then, we consider replacing this term by the corresponding term of SLAU2 which is 
proportional to Mach number, again. This modification is equivalent to the whole replacement of Eq. (2.5a) by Eq. 
(3.5). We will call this modified form “LDFSS2001-2.” 

By using Eq. (3.5) as a) pressure flux in SLAU, AUSM+-up, or LDFSS2001, instead of the original formulation, 
SLAU2, AUSM+-up2, or LDFSS2001-2 has been established, respectively (see Fig. 4). These new schemes, 
summarized in Appendix for their full formulations, will be applied to numerical examples and their performances 
be demonstrated in the subsequent sections. 

5.  The two issues in hypersonic heating computations 
In this section, the two issues mentioned in Introduction, “A) robustness against shock anomalies” and “B) 

smooth heating prediction,” are investigated for the presented schemes using the new pressure flux: SLAU2, 
AUSM+-up2, and LDFSS2001-2. As for A), hypersonic inviscid problems are employed, whereas wall heating 
profiles are compared for B) in a viscous blunt-body flow. 

5.1 Robustness against shocks 
5.1.1 1.5D steady shock problem (Euler Eqs., First-order in space) 
We conducted additional cases for the 1.5D normal shock test using the newly developed flux functions as well 

as the original ones. The results are summarized in Table 4. From these results, one can see the new schemes 
SLAU2, AUSM+-up2, and LDFSS2001-2 are more robust than their original counterparts, and as robust as Van 

Flux functions and 
c1/2 definitions 

Test 
Problem =0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Total 

SLAU2 (default) 
[c1/2=0.5(cL+cR)] 

1D 2 2 2 2 2 2 2 2 2 2 20 
40

1.5D 2 2 2 2 2 2 2 2 2 2 20 

Table 3 1D and 1.5D tests for SLAU2 flux (: shock location parameter [4]) 
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Leer’s FVS. In addition, since the choice of =4 appears to have better performance than =1 for both LDFSS2001 
and LDFSS2001-2, we will set =4 as a default value for these schemes. 

5.1.2 2D blunt-body problem (Euler Eqs., First-order in space) 
We computed a two-dimensional blunt-body flow to confirm the robustness of each scheme shown in the 1.5D 

problem. The flow conditions are selected to correspond to Nagoya University Shock Tunnel, as shown in Table 5, 
where the radius of the cylinder (the test model) r =20mm. The computational grid has 160 (circumferential) × 80 
(wall-normal) cells that are equally spaced in each direction. The grid and the coordinates are shown in Figs. 9a and 
9b. 

The computations were carried out with first-order both in space and time, and CFL=0.5 with an explicit time 
evolution. Convergence was achieved between 30,000 and 40,000 steps in each case. These solutions are visualized 
in Figs. 9c-9i. 

The new schemes SLAU2, AUSM+-up2, and LDFSS2001-2, as well as SLAU, captured the shock very smoothly 
(Figs. 9c-9f). On the other hand, AUSM+-up showed slight oscillations in the shock shape affected by the grid line 
positioning relative to the shock [14] (Fig. 9g); LDFSS2001 yielded asymmetry (Fig. 9h). Thus, it is said these 
schemes have been improved by the present pressure flux [Eq. (3.5)] to have smoother resolution of shocks. In 
addition, the Roe (E-fix) flux (Roe flux [28] with Harten’s entropy-fix [36]) caused the carbuncle and reached an 
obviously anomalous solution. 

5.2  Smooth heating prediction 
5.2.1 2-D blunt-body, hypersonic heating problem (Navier-Stokes Eqs., Second-order in space) 
We then considered hypersonic heating on the wall of blunt-body used above. The freestream conditions (Table 

5) and the model radius (r =20mm) are the same as in the previous test, though in this test the wall temperature is 
prescribed as Tw =300 K (isothermal wall condition), and the grid lines are clustered to the wall so that the cell 
Reynolds number (Reynolds number based on the minimum spacing min) Recell =1.3. The grid has 160 × 160 cells 
and shown in Figs. 10a. The coordinates are the same as in Fig. 9b. 

Numerical flux functions of SLAU2, AUSM+-up2, and LDFSS2001-2 are selected. Spatially second-order is 
guaranteed by MUSCL [34] reconstruction with Van Albada limiter [35] for the inviscid term, while central 
difference is used for the viscous term. For time integration, LU-SGS5 (Lower–Upper Symmetric Gauss–Seidel) is 
used with CFL=200, and the computations were conducted for 100,000 steps to achieve approximately three orders 
reduction of the density residual. 

The computed flowfields are displayed in Figs. 10b-10d. All the 
three schemes showed similar results with slight differences near the 
shock, and no clear evidence of carbuncles. 

Figure 11 shows the corresponding wall heating profiles. The 
abscissa is the angle  already defined in Fig. 9b, and  =0 stands for 

                                                           
5 The spectral radius  = |Vn| + c + (viscous term) is usually used, whereas some may speculate on whether it should be 
modified to  = |Vn| + max(c, |Vn|) + (viscous term) for mathematical consistence with the new pressure flux. We 
confirmed that this modification has practically no effects on the solution or convergence, and hence, we adopted the 
conventional spectral radius  = |Vn| + c + (viscous term) here. 

Table 4.  1.5D test results for various numerical flux functions (: shock location parameter [4]). 

Numerical Flux Functions =0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Total 

SLAU2 2 2 2 2 2 2 2 2 2 2 20 
AUSM+-up2 2 2 2 2 2 2 2 2 2 2 20 

LDFSS2001-2 
=1 2 2 2 2 2 2 2 1 2 2 19 

=4 2 2 2 2 2 2 2 2 2 2 20 

SLAU 1 2 2 2 1 1 1 1 1 1 13 
AUSM+-up 2 2 2 2 2 1 1 1 1 2 16 

LDFSS2001 
=1 2 2 2 2 2 2 1 1 1 2 17 

=4 2 2 2 2 2 2 1 1 2 2 18 

Table 5.  2D blunt-body flow conditions. 
M 8.1 
Rer 1.31105 

P [Pa] 370.6 
T [K] 63.73 
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the stagnation point; the ordinate is the heat flux standardized by Fay-Riddell’s stagnation value [40] of qFR=17.5 
W/cm2. From this graph, as mentioned in the Introduction, SLAU2 showed a wavy pattern of heating, in spite of “A) 
robust capturing of the shock,” “B-1) total enthalpy preserving,” and “B-2) boundary-layer resolving” properties. On 
the contrary, AUSM+-up2 and LDFSS2001-2, developed as a combination of “a) pressure flux of SLAU2 having 
property A,” and “b) mass flux of AUSM+-up or LDFSS2001 with B-1, B-2, and B-3) smooth heating profiles,” 
produced good predictions on hypersonic heating not confined in the vicinity of the stagnation but all over the wall. 

 Therefore, it has been demonstrated numerically that the new fluxes AUSM+-up2 and LDFSS2001-2 using the 
new pressure flux in SLAU2 improved response to the shock of their original schemes and that they satisfy all the 
properties A), B-1), B-2), and B-3) for accurate heating predictions. 

6. Numerical examples 
The proposed schemes using the new pressure flux, SLAU2, AUSM+-up2, and LDFSS2001-2, are applied 

further to the following examples: a low speed flow, a three-dimensional hypersonic heating problem, and an 
aerodynamic analysis on a rocket having a complex geometry at a supersonic speed. 

6.1 Low dissipation at low speeds 
6.1.1 Low speed flow over 2-D airfoil (Euler Eqs., Second-order in space) 
The present schemes are supposed to be in the family of “all-speed schemes” that have properly scaled C) low 

dissipation at low speeds, as well as their original fluxes SLAU, AUSM+-up, and LDFSS2001. In order to confirm 
this property, we deal with M=0.01, 
inviscid flow around NACA0012 airfoil 
with no angle of attack. Theoretically, the 
drag in this flow should be zero; thus, the 
computed drag is a good measure of 
numerical error [26]. 

The grid is O-type and consists of 200 
(circumferential) × 30 (wall normal) cells. 
The following numerical fluxes are used: 
SLAU2, AUSM+-up2, LDFSS2001-2, SLAU (for comparison [26]), and Roe (for comparison [26]). As for time 
integration, LU-SGS or preconditioned LU-SGS (abbreviated as “pLU-SGS”) [33] is adopted. The density residual 
dropped about five orders in 2,000 steps with CFL=20. 

The flowfields at 2,000 steps are shown in Fig. 12, and the corresponding drag coefficients Cd in Table 6. Roe 
resulted in unphysical pressure contours (Fig. 12b) and huge numerical error (Cd); the new three schemes (SLAU2, 
AUSM+-up2, and LDFSS2001-2) however, showed correct solutions (Fig. 12a, represented by SLAU2) and errors 
smaller than 5% of that in Roe, as in the SLAU solution. Therefore, the new schemes, while showing some variation 
in Cd due to different amount of dissipation fed by each scheme, attain as low dissipation as their original versions at 
low speeds and are applicable to such a flow regime. 

6.2 3-D applications 
6.2.1 3-D blunt-body, hypersonic heating problem (Navier-Stokes Eqs., Second-order in space) 
This sub-subsection deals with a viscous, hypersonic (M∞=17) benchmark test used for LAURA (Langley 

Aerothermodynamic Upwind Relaxation Algorithm) and FUN3D (Fully Unstructured Navier-Stokes) codes, 
employing a shock-aligned grid [23, 41]. The grid was provided by Dr. Peter Gnoffo, NASA Langley.6 In this test, 
hypersonic heating over the three-dimensional circular-cylinder surface is computed and compared with reference 
data [41]. The computational conditions are as follows: V∞ = 5000 m/s (M∞=17), Re = 376,930 m-1,∞= 0.001 kg/m3, 
T∞ = 200 K, Tw = 500 K. The cylinder radius is r = 1m and the minimum grid spacing min = 2.66e-6 m. With these 
setups, the cell Reynolds number is Recell = 1.00, ratio of Pitot pressure to free stream pressure P10/P2 = 387.6, and 
Fay-Riddell’s [40] stagnation heating 46.5 W/cm2 (slightly smaller than LAURA-predicted value [41] of 52 W/cm2). 

Flux functions of AUSM+-up2, LDFSS2001-2, and Roe (E-fix) (for comparison [23]) are selected for this 
problem. The computations were conducted for 100,000 steps with LU-SGS (CFL = 200): AUSM+-up2 showed four 
orders reduction of the density residual, whereas LDFSS2001-2 and Roe (E-fix) reached machine zero convergence. 

                                                           
6 Private communication with Peter Gnoffo, NASA Langley Research Center, Mar. 2009. 

Table 6.  Computed drag coefficients Cd for NACA0012 airfoil. 
Numerical Flux Time Integration Method Cd 
SLAU2 pLU-SGS 0.0032 
AUSM+-up2 pLU-SGS 0.0037 
LDFSS2001-2 pLU-SGS 0.0048 
SLAU pLU-SGS 0.0037 [26] 
Roe LU-SGS 0.0720 [26] 

 



Revised and Resubmitted to Journal of Computational Physics 

 

 
13

Figures 13 and 14 show the computed results. From Fig. 13, symmetry and smooth shock profiles are observed 
for AUSM+-up2 and LDFSS2001-2, in contrast to the Roe (E-fix) solution exhibiting spatial (three-dimensional) 
oscillation in the spanwise direction. 

The heating profiles on all the wall elements are plotted in Fig. 14. Also shown in Fig. 14 are the corresponding 
two-dimensional computations (using one cell in the spanwise direction) and reference LAURA results [41]. Similar 
to the shock shapes in Fig. 13, heating profiles produced by AUSM+-up2 and LDFSS2001-2 are as symmetry and 
smooth as the LAURA solutions, and accurate over the cylinder wall that are in excellent agreement with the Fay-
Riddell value and the two-dimensional results; whereas Roe (E-fix) gave considerable spanwise variations at most 
60% as reported in [23]. 

 
6.2.2 Aerodynamic analysis on rocket configuration at supersonic speed (Navier-Stokes Eqs., Second-order in 

space) 
We applied our present schemes to a rocket configuration. The rocket has a complex geometry and thus, we 

generated an unstructured grid around it using our tool ‘LS-GRID [42]’ (Fig. 15; 64 million cells). Then, our 
unstructured grid CFD solver ‘LS-FLOW [43]’ was used for flow computations. The computational conditions are 
set as the same as the corresponding wind-tunnel test [44], i.e., M=1.5, Re=1.2×107, the attack angle =5 deg, and 
the roll angle  = 60 deg. Details are found in Ref. [44]. 

The new schemes SLAU2, AUSM+-up2, and LDFSS2001-2 are selected for inviscid flux computation, along 
with Green-Gauss second-order extension with Venkatakrishnan limiter [45]. Wang’s method [46] is used to 
second-order reconstruction for viscous flux, and Spalart-Allmaras turbulence model [47] without tripping term [48] 
for calculation of turbulent viscosity t. The steady flowfield is assumed (except for the base flow) and the local 
time stepping technique (CFL=1) is employed with LU-SGS. The computations are carried out on 64 processors of 
JAXA (Japan Aerospace Exploration Agency) Supercomputer System, JSS, for each case as in [44]. Then, the 
results are compared with the experiment. 

Figure 16 shows a visualized computed flowfield (detailed discussions for the flowfields are not the scope of the 
present paper, thus omitted), represented by SLAU2 result which is indistinguishable from the results by other 
schemes. Any of the results captured shock waves, boundary-separations, and three-dimensional vortices generated 
by protuberant devices. Shown in Fig. 17 is a close-up view of computed flowfield around the rear portion device 
(x/L≈0.9) (again, represented by SLAU2) along with reference surface oil visualization [44]. This region is of the 
very rear portion of the rocket body and hence considered to be easily affected by numerical methods; nevertheless, 
all the three schemes shared the major flow profiles and they are consistent with the oilflow pattern.  

Finally, the roll moment, considered very sensitive to the numerical method used, is compared and found within 
2% variation among the proposed three schemes: This demonstrates these schemes’ applicability to flows involving 
complex geometries. 

7.  Conclusions 
A numerical survey on the choice of an interfacial speed of sound, denoted as c1/2 here, was conducted for 

AUSM-family flux functions, and it was demonstrated that this choice did have impacts on robustness of fluxes 
against captured shock waves especially when c1/2 is contained in dissipation term. Then, a new pressure flux was 
derived, which has modified dissipation term being proportional to upstream Mach number, in contrast to the 
conventional counterpart which feeds constant dissipation regardless of Mach number. The new pressure flux is 
applied to three AUSM-family, all-speed schemes (SLAU, AUSM+-up, and LDFSS2001), and the improved 
schemes (SLAU2, AUSM+-up2, and LDFSS2001-2) satisfy the following properties: 

A) Robustness against shock anomalies (as robust as Van Leer’s flux-vector-splitting) 
B-1) Total enthalpy preserving 
B-2) Boundary-layer resolving (An ability of the Euler solver to sharply resolve contact discontinuities) 
B-3) Smooth representation of heating (AUSM+-up2 and LDFSS2001-2 only) 
AUSM+-up2 and LDFSS2001-2 having all these properties have been demonstrated to yield accurate prediction 

of hypersonic heating with smooth profiles. SLAU2 result suggests that the property A (robustness against the 
shock) should be treated separately from B-3 (smooth heating profile), which we had originally considered as a 
simple outcome of A, and that satisfying A only is not sufficient for representing smooth wall heating profiles. 

Furthermore, the new schemes are still applicable to low speed flows thanks to the property: 
C) Low dissipation at low speeds 
Numerical tests demonstrated that those schemes can be actually used for a broad spectrum of Mach numbers 

and also for a practical problem involving complex geometries. These fluxes have been created through numerical 
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investigations on c1/2 inside numerical shock structure, in which no physical or mathematical explanation is 
justifiable. 

We also point out that AUSM+-up2 and LDFSS2001-2 require at least one user-specified reference parameter for 
low speeds. It is difficult to define such parameters for internal flows, for instance, in which no freestream exists. On 
the other hand, SLAU2 is free from this restriction. Thus, for practical usage, it is advised that the users adopt 
AUSM+-up2 or LDFSS2001-2 for hypersonic flows or low speed flows when reference velocity is available, 
whereas SLAU2 is recommended for low speed flows without reference velocity; either of these three can be used 
for moderate speeds, as they are exactly the same as their original fluxes (that were already validated in numerous 
applications) for subsonic flows, and almost unchanged for moderate supersonic speeds. 

In addition, although SLAU2, AUSM+-up2 and LDFSS2001-2 are as robust as Van Leer’s flux-vector-splitting 
against shock anomalies, it should be warned that all of them still have potentials to trigger the carbuncle under an 
extreme condition. This would possibly be suppressed (at least partly) by multidimensional dissipation as in Refs. 
[41] and [49-52]. Nevertheless, we believe the present work placed a milestone for future developments. 

Therefore, as a future work, we will design a unified scheme which is more robust than AUSM+-up2 and 
LDFSS2001-2, and needs no tunable parameters as SLAU2, possibly equipped with a multidimensional stabilization 
term. Then, the scheme will be extended to multiphase flows [53] and other applications. 
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Appendix: Formulation of SLAU2, AUSM+-up2, and LDFSS2001-2 
The AUSM-family fluxes are generally written as 

Then, the new pressure flux introduced in this paper is 

and the choice of its partner mass flux determines the complete form of the flux function. 
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where definition of the interfacial speed of sound c1/2 is borrowed from AUSM+. 

No user-specified value is involved. 
 

AUSM+-up2 (and AUSM+-up): 

where 

and tunable parameters are Ku=0.75, Kp=0.25, =1.0, and uniform Mach number, M∞. 
 

LDFSS2001-2 (and LDFSS2001): 
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where =4 in this study, 

and V∞ is uniform velocity specified by a user. 
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Figure 17.  Computational and reference experimental results for rocket configurations at Mach 1.5 (close-up 
views for SMSJ), a) SLAU2, b) Experimental surface oil visualization [44]. Cp contours (-0.5<Cp<0.5) with 
body-constraint streamlines. 
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Figure 1. a), b) Carbuncle and c), d) “correct” 
solutions. 

Figure 2. Carbuncles in modified 1.5D test #3 (50 
× 250 cells) of [14] a) Van Leer’s FVS [15], b) 
AUSM+-up [13]. 
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Figure 3. Evolution of Van Leer’s FVS and AUSM-family schemes related to the present work. 

 
Figure 4. Schematic of cell geometric properties. 

 

 Conventional Pressure Flux: 
(Dissipation in pressure flux) = Const. for M>1 

New Pressure Flux: 
(Dissipation in pressure flux) = CM for M 
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Figure 5. Interfacial speed of sound c1/2 [standardized by freestream (= preshock) speed of sound, c∞] with 
different definitions for normal shock. 

Figure 6. Computational grid and conditions for 1.5D steady normal shock test. 

ishock=12+
M∞=6.0 
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(a) 2: Good (Stable) 

 

(b) 1: Fair (Oscillatory) 

 

(c) 1: Fair (Asymmetry) 

 

(d) 0: Poor (Instability: ‘Carbuncle’) 

 

Figure 7. Typical solutions for 1.5 dimensional steady shock test. 
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Figure 8. Velocity profiles over flat plate at Rex=2.2×104 for M∞=0.2, α=0 degree (Second-order spatial 
accuracy, CFL=0.5). 
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a) 

 
 

b) 

 
 

  

c) 

 

d) 

 

e)  

f) 

 

g) 

 

h) 

 

i) 

 

Figure 9.  Hypersonic, inviscid, 2D blunt-body problem a) grid (16080; every other grid lines are shown), 
b) coordinates, and results (Cp contours of converged solutions) of c) SLAU2, d) AUSM+-up2, e) 
LDFSS2001-2, f) SLAU [25], g) AUSM+-up, h) LDFSS2001, i) Roe (E-fix) [25]. 
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a) 

 
 

b) 

 

c) 

 

d) 

 

Figure 10.  Hypersonic, viscous, 2D blunt-body problem a) grid (160160; every other grid lines are 
shown), and results (Mach number contours at 100,000 steps) of b) SLAU2, c) AUSM+-up2, d) LDFSS2001-
2. 
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Figure 11.  Aerodynamic heating profiles over a 
blunt-body at Mach 8.1. 

 

a) 

 

b) 

Figure 12.  Cp contours (0 < Cp < 390) for low speed flow over 
NACA0012 airfoil (M=0.01), a) SLAU2, b) Roe [26]. 
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c) a)  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

  [deg.]

q/
q

F
R

AUSM+-up2, 3D

AUSM+-up2, 2D

Ref. (LAURA), 2D

b) 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

  [deg.]

q/
q

F
R

LDFSS2001-2 (d=4), 3D

LDFSS2001-2 (d=4), 2D

Ref. (LAURA), 2D

c)  

0.0

0.5

1.0

1.5

2.0

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

  [deg.]

q/
q

F
R

Roe (E-Fix), 3D

Roe (E-Fix), 2D

Ref. (LAURA), 2D

d) e) 

 

f)  

Figure 13.  Pressure  contours (top; 0 < P/P < 390): 
a) AUSM+-up2, b) LDFSS2001-2, c) Roe (E-fix) [23] 
and Mach number (bottom; 0 < M < 17) contours : 
d) AUSM+-up2, e) LDFSS2001-2, f) Roe (E-fix) [23] 
for 3D circular-cylinder (second-order in space; 
freestream Mach number M=17). 

Figure 14.  Aerodynamic heating profiles over 
blunt-body at Mach 17, a) AUSM+-up2, b) 
LDFSS2001-2, c) Roe (E-fix) [23]. 
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Figure 15.  Computational grid (Cartesian/body-fitted hybrid, unstructured grid) generated by using LS-
GRID for rocket configuration [44]. 

  
 

Figure 16.  Computational results for rocket configuration at Mach 1.5 by SLAU2. Body: Cp contours (-
0.5<Cp<0.5) with body-constraint streamlines; Flow: absolute density gradient with streamlines. 
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a)  

 
 

 
b) 

 

Figure 17.  Computational and reference experimental results for rocket configurations at Mach 1.5 (close-
up views for rear portion), a) SLAU2, b) Experimental surface oil visualization [44]. Cp contours (-
0.5<Cp<0.5) with body-constraint streamlines. 


