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1. INTRODUCTION AND SUMMARY

The theory of optimal economic growth, which was started by Frank
Ramsey more than forty years ago is now establishing its position as an
important branch of modern welfare economics.* It is the theory that
investigates the problem of capital accumulation—the problem of inter-
temporal resource allocation—from the normative point of view,

This welfare theory is set up as a constrained maximization problem:
The objective function is an intertemporal utility function which
summarizes the society’s time preference structure, and the constraints are
capital accumulation equations which describe the supply conditions of
consumption goods and capital goods. Therefore, the nature of an optimal
program is crucially dependent not only on the technological conditions
but also on the properties of the intertemporal utility function. However,
recent developments of the optimal growth theory have neglected the
importance of the subjective utility function and almost taken for granted
Ramsey’s additive utility function. The purpose of this paper is to release
the conventional optimal growth theory from this very restrictive utility
function.? Instead we shall present an optimal growth theory that is based
upon the more general stationary ordinal wtility function introduced by
Tjalling Koopmans.® This type of ordinal utility function includes the
Ramsey type utility as a special case.

We shall first derive necessary conditions for optimal capital accumu-

' See Ramsey [12], Cass [3] and Koopmans [7].

2 An independent study by Beals—Koopmans [1] deals with a similar model from a
different viewpoint. (The author is indebted to the referee for this reference,) Another
attempt is made by Uzawa in his [16] and [17] to introduce flexible discount rates into
additive utility functions. See also Sarnuelson [15].

3 See Koopmans [5] and Koopmans-Diamond-Williamson [6].
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lation which require that a marginal rate of time preference must be
brought into equality with a marginal rate of return over cost in each
period. They might be regarded as a normative interpretation of Irving
Fisher’s equilibrium condition for intertemporal resource allocation.t
However, since the marginal rate of time preference is generally dependent
on a perpetual stream of future consumption, this Fisherian condition
becomes an infinite-order difference equation.

We shall then solve this formidable problem by applying the principle of
dynamic consistency of an optimal program, a generalization of the well-
known principle of optimality in the dynamic programming. By virtue of
this principle, we can reduce the search for an optimal program to a
succession of single-period choices between an immediate consumption
and an investment in capital stock. This trick is made possible by intro-
ducing two novel concepts—the maximum welfare function and the reduced
wtility function. The former function specifies a one-to-one relationship
between an initial capital stock and the economy’s maximum attainable

value of interfemporal utility, and the latter summarizes the economy’s .

single-period preference between an immediate consumption and an
investment in capital stock. When the stationary ordinary utility function
is strictly quasi-concave and the production function is concave, we are
able to prove strict quasi-concavity of the reduced utility function. This
property and continunity of the reduced utility function will turn out to be
essential in our subsequent discussion. (In the Appendix, we shall discuss
a successive approximation method to determine the functional forms of
both the maximum welfare function and the reduced utility function solely
from the given production function and intertemporal utility function.
‘We shall also show their continuity in the Appendix.)

The resulting optimality condition implies that an optimal program must
equalize a marginal rate of technological transformation between capital
and consumption with a marginal rate of substitution between them
defined in terms of the reduced utility function. Continunity and strict
quasi-concavity of the reduced utility function assure us that the accumu-
lation program that satisfies the above tangential condition in each period
is indeed the unique optimal program that our planning authority is
looking for.

The principle of dynamic consistency will enable us to illustrate the
generation of optimal programs by simple two-dimensional Fisherian
diagrams.® It will be shown that the optimal program for any initial

4 See Fisher [4].
5 See Part III in Fisher [4] and Samuelson [14]. This paper may shed new light on the
controversy between Leontief [2, 10]and Westfield [18), which argues the possibility of an
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capital stock must move along an Engel curve (or income-consumption
line) of the reduced wutility function in our Fisherian diagram. Moreover,
asymptotic behaviors of optimal programs, in particular, their mono-
tonicity and stability will be seen to be deeply related to normality/
neutrality/inferiority of capital and consumption defined in terms of our
reduced utility function,

In our optimal growth model the so-called turnpike property of optimal
programs still holds but in a somewhat undermined way. Although the
position of zero-capital and zero-consumption can be counted as a
generalized turnpike, we can prove neither existence nor uniqueness of a
nonzero generalized turnpike on which a positive level of consumption is
sustainable.

If both capital and consumption are assumed to be normal goods for the
economy, both optimal capital sequences and optimal consumption
sequences are monotone in time. But even in this well-behaved case, there
may not exist a nontrivial turnpike, and even if it exists there can be
multiple nontrivial generalized turnpikes alternately stable and unstable,
If consumption becomes inferior in some period, optimal consumption
sequences cease to be monotone and a generalized turnpike with inferior

. consumption becomes necessarily an unstable one. Furthermore, if capital

stock becomes inferior in some period, optimal programs begin cobweb
type cyclical movements around a generalized turnpike from then on.
When inferiority of capital is relatively weak, this oscillatory optimal
program will be dampened and converge to the generalized turnpike. But
when inferiority is relatively strong, the optimal program will either
diverge spirally from the turnpike or approach a perpetual periodic motion.
In any case, optimal programs will approach one of generalized turnpikes
including the trivial one or converge to a periodic motion in the long-run,
but their asymptotic behaviors will be much more complicated than in the
standard Ramsey model.

Our optimal growth theory may be regarded as a generalization of the
Ramsey theory of optimal saving, as well as a dynamization of Irving
Fisher’s geometrical theory of capital.

extension of the Fisherian graphical exposition of the two-period paths to programs
involving many periods. (After the first version of the present paper was completed,
the author came across a paper by Liviatan [11] which develops a Fisherian diagram-
matic technique similar to ours to analyse the optimal growth path in the case of Ramsey
type utility functions.)
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II. THE Basic MoODEL
Our point of departure is a neoclassical one-sector model of production:

Ki— Ky Co < F(Kiy , Neop) — K4y,
C = 0, K = 0’ (t =12, 3:“'):

1)

where K, is capital stock available at the end of period ¢, N, is labor force
in period £ and C, is an amount of consumption goods produced in period 7,
respectively. It is assumed that the rate of capital depreciaiton 8 is positive
and constant for all £. The production function F(X, N) is linearly homo-
geneous and subject to the usual neoclassical conditions.

Assuming that labor force is exponentially growing at a constant rate
n=0,

Ny =1+ n), @
we can rewrite (1) in per capita form:
ki + ¢ < glkia), @3
where ¢; = CifN; ) k., = Ki/N; and .
glk) = {Fk, 1) + (1 — kY1 + n). (4)

The technological function g(k) defined above is assumed to be concave
and possesses the following neo-ciassical properties (see Fig. 1}

g0 =0, O0<gk)—k<-doo for 0<k<k<-+om,

e (5
where g(k) — k= 0.
> 0k <kt
0 < g'tky ={Fxlle, ) — 8+ 1}J(1 +n){=} 1< k=K (6)
< H<k<k
lim g'(k) = + 0. (7N
g'(k) = Fyx(k,1) <0 forany0 <k <k (8)

k is the maximum feasible capital stock that is the upper boundary of all
the feasible capital stocks, and k' is the Golden rule point or the production
Bliss point & /a Ramsey on which the marginal net productivity of capital
g'(k) — 1is zero. As is shown in Fig. 1, the curve ¢ = g(k) — k is a hill-
shaped curve whose summit is the Golden rule point &k = &F.
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Fig. 1. Technological schedules in the economy.

Let us define an intertemporal utility function with infinite time horizon
in order to evaluate a perpetual per capita consumption sequence ,C.°

Uy = Uley, €3, €3 5.-) = UGC). )
Instead of specifying a functional form of (9) a priori, we assume the

following four postulates concerning the nature of the society’s inter-
temporal preference ordering;

(P-1) Existence and continuity of a utility function over the feasible
set of consumption sequences.’

(P-2) Sensitivity: there exist initial period consumptions ¢; , ¢;” and
a sequence ,C from the next period on, such that

Uley » 2C) > Ulel, 2C). (10)
(P-3) Limited noncomplementarity among periods: Forall ¢, , o’y C
and ,C", :
Uley , :C) = Uley', :C) implies U(ey, :C) = Uley, ,C), (lia)
Ule, , .C) = Uley, .C7 implies Uley, :C) = Uley, 2C). (11b)
¢ We shall denote a per capita consumption sequence (¢, , ¢z, €1 ,...} by 1€ and its

truncated sequence (Cr, €ey1, Cep1s Cirz o) bY (C. We shall also denote by (X a per
capita capital sequence (ks , &, , &2 ,...) and by X its truncated sequence (k. , kv,
Ktia yens)s

7 See Koopmans-Diamond-Williamson [6] for the precise definition of this postulate.
In this paper, however, continuity is defined in terms of the product topology.



126 ) IWAI

(P-4) Stationary: for some ¢; and all +C and ,C’,
Uley, 2C) = Ule,, oC") if and only if UGC) = UC).  (12)

Then, according to Koopmans [5), there exists a scalar fanction Vle, U)
such that the utility function (9) satisfies the foliowing relation:

U

Il

UGC) = V(ey, UGC)Y) = V(ey, V(ea, UGCO))

= V(cl s V(C'z E] V(cs H V(“': U(TC))))): (T = 4: 5: 63) (13)
This relation can be replaced by a recurrent formulation
Uy = Viey, Upya), {t=123..) (14

The scalar function ¥(e, U) will be called a utility aggregator. We might
interpret Uy, in (14) as specifying an aggregate utility of a future con-
sumption stream ., C, were it to be initiated immediately.

Stationary utility function (13) is ordinal in the sense that all its econom-
ically meaningful properties are invariant under any monotonic transfor-
mation of the utility scale. We assume that U(,C) is strictly quasi-concave
on the set of feasible consumption sequences, i.e.,

UOGEY + (1 — 0)GC?) > min[U(CY), UGCH)
forany 0 <8 <1 and  ,C'#,CE 15

It should be noted, however, that condition (15) does not necessarily imply
quasi-concavity of the utility aggregator V{(c, U) with respect to ¢ and U.
It can be easily seen that, while quasi-concavity of the original stationary
utility function is preserved by any nonlinear monotonic transformation,
that of the aggregator is not.

We assume that the first derivatives of Ve, U) with respect to ¢ and U/
are both positive for ¢ > 0 and possible range of U, i.e.,

¥ (c, U)foe = Ve, U) > 0 fore > 0,

16
Vi, U)foc = Vyl(e, U) > 0 for any possibie U. 16

We also assume that F{c, U) is continuouns at ¢ = 0 for any possible U,
and that

Icig(} Ve, U) = 40 for any U. (7

This condition is imposed so as to preclude corner solutions.
Note in passing that our stationary ordinal utility function includes
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additive utility functions as a special case, since they can be written as

Uy = Y, Blule) = u(e) + U, (18)
t=1
where (1/8) — 1 = 0 is a systematic rate of time discount.

Now we have set up both the objective function and the technological
constraints in our optimal growth model. Our planning authority wishes
to maximize the intertemporal utility function (9) which summarizes our
economy’s time preference structure, subject to the stationary technological
conditions (3) and to an initial capital endownment historically given.
The problem confronting the planning authority can be formulated as
follows:

max U; = Ve, , Ve, Ve, V((...,)0),
where ¢; + k; < glk:_y), (t=1,2,3..),
0 <k, <k, <k  wherek, is given historically,

where k, is an initial capital stock, which can be assumed to be smaller
than or equal to % without loss of generality.

TII. FISHERIAN INTERTEMPORAL EQUILIBRIUM CONDITION

First of ali, as the basis for our subsequent investigation, we can establish
the following:

Ex1STENCE AND UNIQUENESS THEOREM (Beals-Koopmans [1]). For any
initial capital stock 0 < ky < E, there exists a unique optimal program
represented by a consumption sequence ,C and a capital sequence (K.

A sketch of the proof due to Beals and Koopmans is given in the footnote
below.® Therefore, the remaining task for our planning authority is simply
to characterize the nature of the optimal program whose existence and
uniqueness have been guaranteed.

Let us define the Lagrangean function as

o

L =UGC)— } ades + ks — gk}, (19)

$=1

& (Proof) Let Z be the set of feasible consumption sequences ,C. From the assumed
properties of the concave function g(k), (5)-(8), it can be shown that Z forms a bounded,
strictly convex closed set and is compact with respect to the product topology. Hence,
the continuous, strictly quasi-concave function U(;C) attains 2 maximum at a unique
consumption sequence in Z, Q.ED,
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where a; is a Lagrangian multiplier associated with a technological
constraint (3) in period ¢. The first-order conditions for this problem are

dUGC)foe, — ay =0, (20)
g k) —a; =0, 21)
e+ ki —glhi) =0, for t=1,2,3,., (22)
and
ky=Ek,. (23)

By (7) and (17) we could preclude corner solutions.
Then, from (20) and (21), we obtain the following equation

aU]_/aC‘g — Vc(ct ) Ut+1) . a;
oU/0csy4 Vules s Una) Vi(Cesa » Uspo) LY

= g'lk). (2%

This equation can be looked at as the well-known Irving Fisher proposition
for intertemporal equilibrium.? It asserts that an optimal program must
equalize a marginal rate of return over cost with a marginal rate of time
preference in each period. In our model, the former is defined as the
marginal rate of transformation between.c; and c;,, keeping the other
periods’ consumptions constant, i.e.,

dopyfOcy — 1 = {Felke , ) — (0 + (A +m) = g'tky — 1. (25)
And the latter might be defined as

3U1]303 VB(C,g N Uf+1)

8U 8Cs Vuler, Uin) VelCost»> Urra)

1. (26)

In the case of additive utility functions, the Fisherian condition can be
simplified as

[ (e (cer)] — 1 = g'(k) — 1, @7

which depends only on ¢;, ¢;,; and &, . This is nothing but the discrete
time version of the Ramsey-Keynes condition for optimal saving.'® In
general, however, the marginal rate of time preference depends also on a
perpetual consumption sequence .,,C and, in-consequence, the Fisherian
condition becomes an infinite-order difference equation. Although a direct

% See Fisher [4].
1° See Ramsey [12].
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attack on this infinite-order difference equation may be possible, we, as
mortal beings, shall choose an indirect and roundabout method for

analyzing this formidable problem.

IV. T MAaxiMUM WELFARE FUNCTION AND
THE REDUCED UTILITY FUNCTION

In this section, two functions—the maximum welfare function and the
reduced utility function—are introduced. These two functions will be the
key to our optimal growth theory. :

Let us first define the maximum welfare function, to be denoted by W(k),
as the maximal value of intertemporal utility U, attainable from an
initial capital stock k, = £, i.c,,

Wk = gy UG) = Vo, Vi, Vsl @9
k=0
where Cy + kg = g(ki—l) (f = 1, 2, 3,...),

and 0 < &y < A4, where k, is given.

Since the existence and uniqueness of an optimal program have been
already established, we can automatically assure the existence and
uniqueness of this function for 0 < ky < k.

Our principle of dynamic consistency is the following proposition: An
optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision ™ It is obvious
that this intuitive principle is not merely true for the usual dynamic
programming models whose objective functions are additive functions, but
also true for the more general case in which the objective function is
recursive and satisfies only Koopmans’ first three postulates (P-1)~(P-3).
We shall call this generalized principle the principle of dynamic
consistency, for it maintains that any optimal growth program must be
dynamically consistent when both the objective function and the side
conditions are recursive.

Now, according to this principle, if a consumption sequence ,C and
an associated capital sequence oK represent the unique optimal program
for a given initial capital k,, then truncated consumption and capital
sequences, ,,C and K, must constitute the unique optimal program whose
initial capital equals k, . Consequently, by applying this principle to the

11 This proposition is quoted from Bellman [2].
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definition of the maximum welfare function (28), we obtain the following
functional equation:

Wikssy) = max U(,C) = max ¥{c,, U(;4,C)) = max V(c, , max U(42C))
= max Vie;, Wik,) where ¢;+ ke = glke),
{628

(t=1,2,3,..). (29)

At this moment it is convenient to define a new function:
D(e, k) = Ve, (k). (30)

We shall call this the reduced utility function. This function can be
regarded as specifying the economy’s single-period preference between
consumption ¢ during a period and capital stock k at the end of that
period. Since W(k;) evaluates the future consumption stream ,,,C optimal
for an initial capital stock k, transferring to the next period, we can also
interpret ®(c;, k;) as summarizing the society’s subjective trade-off
between an immediate consumption and perpetual consumption streams
in the future.

Since the functional Eq. (29) is a succession of single-period constrained-

maximization problems, we can easily obtain necessary conditions for an
optimal accumulation problem by solving them iteratively. But before
doing that, we must examine the properties of the two functions, W(k)
and P(c, k).

First, it is easy to show that W(k) is increasing in k. To see this, let ,C
and (K represent the optimal program for an initial capital 0 < &k, < &
Then for a larger initial capital k' (k, < k,’ < %), a consumption sequence
1C" == (¢, ,C) such that ¢;” > ¢ is feasible for k' by consuming an extra
output g(k,") — g(k,) in the first period and pursuing the same capital
sequence K from the next period as the compared program. Hence we get
the following relation,

UGCY) = Ve, UGC)) > Ve, UGC)) = ULC) = Wiky).
But by the definition of W(k), we have
Wky) = ULCY > Wk,) for B2 k) >k =0, (31)

which proves that W{(k) is increasing in k. Furthermore, if we assume
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differentiability of W{k), we can evaluate the first derivative by applying
the well-known Envelope theorem.

Wiiky) = OL{oky = ayg'(ko)  (by (19))

= g'(ky) - {8V (ey , Up)/dcy}] (at the optimum) for 0 < k, < .
(32)

We cannot, however, determine the sign of W'(k), if it exists,
because of ordinality of the stationary utility function. In other words,
convexity/concavity of the maximum welfare function is not preserved by
all monotonic transformations of the original utility scale.

On the other hand, we can prove the following important proposition
concerning the nature of the reduced utility function. That is, D(c, k) is
strictly quasi-concave with respect to ¢ and &, i.e.,

DBt + (1 — 6) % 0k + (1 — 6) k%) > min[D(c*, kY, B(c?, k%]
for any (¢, k%) = (% k3 and 0<d <l (33)

This propetty is clearly an ordinal one and is invariant under any order
preserving transformation of the utility scale.

To prove (33), let us represent two accumulation programs from ¢ = 1,
respectively optimal for 0 < &, < &, (i = 1, 2), by .C*and K*. It follows
from concavity of g(k) that the set of feasible consumption sequence
producible from a given initial capital stock forms a closed and convex sct.
So a consumption sequence 8(,CH + (1 — )(,C?), a convex combination
of the two consumption sequences optimal for k,* and k;?, is feasible for
an initial capital stock 8k,* + (1 — 8) k,% Then by the definition of W(k),

we obtain
Wk 4 (1 — 8) ky®) = UBGCH + (1 — HRLY)-

Hence, by (12) we get

Dyt + (1 — ) & bkyt +- (1 — ) ky2)
= V(fe)* + (1 — &) % Wk + (1 — D) k%)
= V(e + (1 — 0) ¢, U(BGCY + (1 — 0)GCH)
= U(B(LCYH + (1 — OGLEH).

However, by strict quasi-concavity of the stationary ordinary utility

12 See, for example, Samuelson [13].
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function, the right-hand side of the above inequality is strictly greater than
min[UGCY), UGC?)] = min[F(at, URCY, Ve, URCH)
= min[¥{(a", Wk,Y), ¥{c?, Wiki))):
The last equality follows from the supposition that ,C¢ is optimal for k;*
This immediately leads to the desired inequality:
Dcyt 4 (1 — 6) &%, 0k* + (1 — 0) ky®) > min[D(ey?, Ky?), Ples?, k)]

If we assume twice-differentiability of @(e, k), the strict gasi-concavity
of D(c, k) is equivalent to negative-definiteness of the bordered Hessian
mafrix f defined by

0 @, &, 0 vV, VW'
o= (pc @w GEjz:k = |V, Vee VcUW’ ’ (34)
D, D D VW' Ve W' VygeW?2+ VW’

where @, = édféx, D, = 8°®Jox by, V,, = 82V [dx 8y and W" = d2W/dk2.

In the appendix we shall show that @(e, k) is continuous for ¢ = 0 and
0 < k& < k. Furthermore, we can show the following conditions if
differentiability is assumed:

@, >0 for ¢>0 and @, >0 for 0<k <k (35
lci_r}& &b, = 4w and ]ki_I)I("l D, = +oo. (36)

So far we have discussed the qualitative properties of W(k) and (¢, k)
as if we could take these functions as given. However, ¢ priori we can
regard only the technological function g(k) and the utility aggregator
V(e, U) as given and the functional forms of W(k) and ®(c, k) must be
determined by these two given functions. To fil} this logical gap and make
our optimal growth theory self-contained, we shall supply in the appendix
a computational method which can determine W(k) and @(c, k) from g(k)
and ¥(e, U) only by successive functional approximations. Therefore, in
the following sections in which we shall construct optimal programs, we
can legitimately suppose the functional forms of both the maximum welfare
function and the reduced utility function as given.

V. SINGLE-PERIOD FISHERIAN DIAGRAM
In the following three sections, we shall iltustrate the generation of

optimal programs by simple two-dimensional diagrams. Our geometrical
approach might be considered as an extension of Irving Fisher’s graphical
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exposition of two-period models of capital theory to the more general
capital accumulation models involving infinite periods.’?

We have already remarked that by virtue of the principle of dynamic
consistency, an optimal program must satisfy the following functional
equation for ¢ = 1.

Wikes) = max P(c,, k) (37
E=0
where
¢ + ke = glks). (38)

Our starting point is to regard this functional equation as a succession
of single-period optimization problems—to maximize the reduced utility
function subject to the technological constraints. A side constraint (38)
represents a single-period production possibility frontier producible from
a given initial capital stock k;_, inherited from the last period. Since we
have assumed one-sector production model, this frontier is a straight line
whose slope is minus one.

Figure 2 explains how to consiruct a single-period production possibility
frontier from a given k,, in our modified Fisherian diagram. The
horizontal axis measures capital stock k& and the vertical axis measures
consumption ¢. Curve OBE represents the schedule of maximum amount
of consumption: max ¢; = g(k;_;) which would be feasible if the economy
decided not to invest any capital stock for production purpose at all.
We draw a perpendicular line from the point of initial capital stock on
the horizontal axis, say 4, and then find its intersection, say B, with the
maximum consumption schedule. The length 4B equals g(k,—;). We can
easily find a point C on the vertical axis whose height is equal to AB.
Finally, we draw a straight line CD from C whose slope is —45°. This CD

13 Yeying Fisher himself was rather pessimistic about the possibility of dynamization
of his graphica! exposition of two-period consumption programs. (See p. 287 in Fisher
[4].) This view was endorsed by Westfield [18]. However, contrary to their pessimistic
view, our geometrical analysis in the subsequent sections may give a partial justification
for Leontief’s attempt to visualize consumption paths involving many periods in the
Fisherian two-dimensional diagram. (See [9] and [10).) It should be noted that our
medified Fisherian diagram represents future consumption sequences by capital stock
at the end of a period using the maximum welfare function.

1 We can easily extend our analysis to the mowe general two-sector production model
in which the single-period production possibility frontier is concave towards the origin,
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E
HRXCC =g(l(t-r)

?g(c,k)= congt.

/
= == 3
!

!
L

0 ket ke "Ctv?f<t=3(kt.,)

Fie. 2. Determination of a single-pericd optimal point in a Fisherian diagram,

line is nothing but the single-period production possibility frontier.?® It
should be noted that the intersections of CD with AB traces out the
concave curve ¢ = glk) — k.

On the other hand, the objective function (37) in the above single-period
problem is the reduced utility function which can be looked at as specifying
the economy’s single-period preference between ¢, and k; . We can draw a
family of indifference curves of the utility function in the same way as in the
standard static utility theory. By strict quasi-concavity of the reduced
utility function, all the indifference contours are strictly convex towards
the origin of our Fisherian diagram. Since the form of the reduced utility
.function is stationary over time, these indifference contours are also
invariant over time.

As Fig. 2 indicates, the optimal point (k;, ¢;) in our single-period
optimization problem is determined by a tangential point between the
production possibility frontier and one of the indifference curves of the
reduced utility function. Since the indifference contours are strictly convex
this single-period optimum is unique.

Instead we can determine the single-period optimum by use of calculus;
by differentiating a Lagrangean function @(c, , k¢) + A glkey) — ¢ — K}

1% Here, we implicitly assume that capital stock is completely malleable and can be
instantaneously melted into any kind of consumption goods. If we cannot eat andfor
wear second-hand machines, this frontier becomes horizental at the level of ¢ =
Flke, DL + n),
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with respect to ¢;, k; and the Lagrangean multiplier A, equating the
derivatives to zero and eliminating A, we obtain

— D, k) Pulee, k) = —L. (40)
€ 4 ke = glke)- (41)

By (36), corner solutions could be excluded. That these two conditions
uniquely determine a single-period maximum is assured by continuity and
strict quasi-concavity of the reduced utility function D(c, k).

Equation (40) is easy to interpret. It asserts that as a necessary condition
for an accumulation program to be optimal a marginal rate of substitution
between ¢, and k, in terms of the reduced utility function, —@,/P,. , must
be equal to a marginal rate of technological transformation between ¢, and
%, which is minus one in our one-sector production model.

Furthermore, if we substitute the envelope relation (32) into (40), we
obtain the following equation for 0 < k, < k:

[Veles, Wk Vilce, Wk} Vilesr s W)l — 1 = g'(k) — 1.

' (42)
A moment reflection makes us realize that (42) is again nothing but the
Fisherian intertemporal equilibrium condition discussed in Section III.
However, different from the previcus Fisherian condition (24), aggregate
future utilities in this new condition are evaluated by the maximum welfare
function.

VI. DyNaMIC FISHERIAN DIAGRAM

Now let us make our single-period Fisherian diagram dynamic.

Suppose we have already determined the optimal combination of ¢,
and k,_, that satisfies the tangential condition (40} in period  — 1. We can
construct a new single-period production possibility frontier for period 7
on the base of k,_; . The position of this new frontier is determined by the
capital accumulation Eq. (41). This equation can be rewritten as

ke — kg = {glker) — ksa} — €1 (43)

Therefore, the net saving is positive, zero or negative according as
ce — { glks_y) — ky—y} is negative, zero or positive, respectively. The
schedule ¢ == g(k) — k will be called the steady state schedule, for no net
accumulation and decumulation will occur on this schedule. This schedule
is depicted as an inverted U-shaped curve in Fig. 3,
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When the optimal point in # — 1 happened to be on the steady state
schedule, the production possibility frontier will not shift thereafter and
the economy will remain on that point forever. When the optimal point
in # — 1 lies in the lower region of this schedule, our economy accumulates
capital stock and, in consequence, the new production possibility frontier

“ P {Hux Ct'=gfkt-r)

CerKe=geken) 7 /1

o // | Kt < Kt
Core= gkt PRI |

ar ‘I{ ] ! Ke=Ki t
Ct*kt=g(kt-|)\,ﬁl ! : :
/1 Nk
) I
1 1 t R
A "
kt—Z

Fic. 3, Accumulation and decumulation of capital stock.

will be expanded. Also when the previous optimal point is in the upper
region of the steady state schedule, the economy decumulates capital and
the new frontier will shrink towards the origin (see Fig. 3). We might call
the lower part of the steady state schedule the region of capital accumu-
Iation and the upper part the region of capital decumulation.

In period ¢, an optimal peint is determined on the new production
possibility frontier so as to satisfy the tangential condition (40) for
single-period optimum. The transit from (k;;, ¢;y) to (%;, ¢g) can be
clearly identified with an Engel curve or an income-consumption line of our
reduced utility function, traced out by shifting the economy’s budget
line = the single-period production possibility frontier in a parallel
manner. Every schoolboy knows that the direction of an Engel curve
hinges upon normality/meutrality/inferiority of commodities. In our
reduced utility system, for instance, when both ¢; and %, are normal
goods, the Engel curve must have a positive slope in the Fisherian
diagram,
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Let us define income effects on capital stock and immediate con-
sumption in period ¢, respectively, by

Ak,

Ik) = ; 45

ko) A4Y: laoyand tan “3)

Koy =3¢ 46)
’ Ay oy andan

where y;, = g(k;4) and A is the difference operator defined by
Ax; = x; — x,_, . Capital stock (consumption) is said to be normal,
neutral and inferior in period ¢ if I{(k;) ((c,)) is positive, zero and negative,
respectively. Note that by the budget Eq. (41) these two income effects must
satisfy the following equation:

Ik + Hey = L {47)

If we assume twice-differentiability of ®@(c, k), their first-order approxi-
mations can be calculated by differentiating the single-period optimality
conditions {40) and (41) totally with respect to y; = g(k,;) and solving
the resulting linear equations. Thus we have

I(f) =~ D,P,/D, (48)
I(c) =~ D2,/D, (49

where
D=|H| (50)

is the determinant of the bordered Hessian matrix of @{e, k);

o, P,
D, D

Vc 14

-| EUW VoW, |=w vy v

Dy | Vo Voo

(1)

is the cofactor of the element in the first row and the second column of H;
and

D — _H D, Do _| Ve Veu W’
¢ @k @kk VUW’ VU[}'W’Z + VUW”
& V V u | "
—_ % ¢ ¢ _—
P VW| VoW (52)

is the cofactor of the element in the first row and the third column of H.
Note in passing that the sign of I(k) is dependent only on the sign of
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li ﬁ;, ,’2; || and might be inferred solely from the utility aggregator ¥(c, U)
without actually computing the functional form of @(c, k). However, by
(52) such a short-cut inference of the sign of I(c) seems impossible.

Now, since Ady/fdk, ; o~ g'(k;y) > 0 by (6), we can deduce the
following relations between the income effects and the monotonicity of
capital and consumption sequences from {(45) and (46):

Ik ){Z} 0 = Ak Ak: A{Z} O, _ (53)

Ie)(E) 0 <> Acyjdhky o2} 0, (54)

Therefore, in order to determine the direction of the Engel curve, we
must distinguish at least five cases according to the possible combinations
of the signs of I{k;) and I(c,). [By (47, either I(k,} or f(c;) or both must be
positive. ]

() I(c) > 0and I{c)) >0

When both capital and consumption are normal in period ¢, we have by
(53) and {54) one of the following two cases if ks =% ks :

ki > ki and € > Cyo when kiq > ks,
and t -1 H i—1 t—1 t—2 - (55)
ke <kiy and ¢ < Ciq when ki; < ki

Therefore, in our Fisherian diagram the Engel curve is positively sloped,
and both k; and ¢, are increased (decreased) as the single-period production
possibility frontier is expanded (contracted).

(i) I(ks) > OandI(e) =0

When consumption becomes neutral in period ¢, the level of consumption
in this period must be the same as in the previous period, for by (53) and
{54) we have

k, >k and Cp =2y when Kk, > ks,
ond : -1 t -1 t—1 t—2 56)
kt < kt—l and Cy = Cpy when kt..]_ <Z kg_g .

The Engel curve becomes a horizontal line and any expansion (contraction)
of the single-period production possibility frontier is entirely absorbed by
an increase (decrease) in capital stock, keeping the level of consumption
constant,
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(iii) I(k;) > O and Ke,) < O

When consumption is inferior in period #, (53) and (54) imply the
following relations:

ky > key and Cr << Oy when Kk > ki s,
and (57)
kg << kt_]_ and Ct = C4y when kt—l < kg_.g .

In our Fisherian diagram, the Engel curve bends forwards, and the
economy decreases (increases) its consumption level even if the single-
period production possibility set becomes larger (smaller) than in the
previous period.

In the three cases above in which capital stock is a normal good for the
economy, the first relation in (53) implies that the motion of capital
sequences is monotone in time. Furthermore, the monotonicity of capital
sequences leads to

L) 3 implies c{=}glhiy) — key » (58)

because ¢; = g{k:_,) — k: . Therefore, in these cases, we observe that the
new single-period optimal point {(%;, ¢;} does not exceed the steady-state
schedule but remains in the same capital accumulation or decumulation
region as the previous period’s optimal point (k,_; , ¢;_y).

(v) I(k) = 0 and I(c) > 0

When capital stock happens to be neutral in period ¢, we have

and kt = kt—l and Cy = €4 when kg_]_ > kt—z N (59)
kt = kt—l and Ct < €4y when kt—]_ << kt—z .

The constancy of capital stocks as indicated above, in turn, implies

cp = glhksa) — by = glhey) — ks (60)

Hence, in this neutral capital case, we observe that the Engel curve becomes
vertical and the economy jumps to a point on the steady state schedule in
that period. Geometrically, this interesting result is confirmed by the fact
that the single-period production possibility frontier in period ¢ intersects
the steady state schedule at the point whose abscissa equals k; 4 .
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(v) Ik < OQandI(cy) >0

Finally, when capital stock becomes inferior in period ¢, we find that the
Engel curve becomes backward-bending in our Fisherian diagram, for we
obtain from (53) and (54) one of the following two cases:

kt << kt--l and € = Cpq when kg_l > kg_g N
and (61)
kt > kg_]_ and Cp << Ciyq when kt—l << k;_g .

Moreover, from this we have the following relations:
ky ({Z ke s implies ef{=} glkey) — Ko - (62)

Therefore, if (k;_y , ¢;y) Was below (above) the steady state schedule, i.e.,
if it is in the region of capital accumulation (decumulation), the new
optimal point (k; , ¢;) overshoots this schedule and necessarily enters into
the region of capital decumulation (accumulation). The motion of capital
sequences ceases to be monotone in this inferior capital case.

The above rather tedious discussions are summarized in Fig. 4 only for
the case where capital was accumulated from period ¢t —2to # — 1.

¢ -

! o 4 k
0 Ky Kt-.l / (Ce+ki:=8( Ke-o)
Gt Ke =3(kt-z)

Fic. 4. Directions of BEngel curves of the reduced utility function.

If the piecemeal Engel curves constructed by our Fisherian diagrammatic
technique are successively connected from ¢ = 0 to ¢ = + 0, we can
determine the whole sequence of k; and ¢, that satisfy our functional
Eq. (37) for a given initial capital stock 0 < ko < k. Continuity and strict
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quasi-concavity of the reduced utility function assure the existence and
uniqueness of such sequence. .

Now it is clear that this succession of piecemeal Engel curves always
moves along a curve which is traced out by the combinations of con-
sumption and capital that satisfy the single-period tangential condition (40).
We shall call this curve the dynamic Engel curve.

However, a question still remains: Is the program thus constructed along
the dynamic Engel curve indeed optimal ? To this question, we can give an
affirmative answer. The reasoning goes as follows. First, the existence and
uniqueness theorem assures that there exists exactly one optimal program
for any initial capital 0 < &, < k. Secondly, the principle of dynamic
consistency asserts that this optimal program must satisfy the functional
Eq. (37) for all t. And, thirdly, continuity and strict quasi-concavity of
@(c, k) guarantees one-to-one relationship between (37) and the program
constricted in our Fisherian diagram. As a logical consequence, we can
conclude that the unique program determined by our Fisherian diagram
must be optimal, i the functional form of the reduced utility function

: k

FiG. 5. Generation of an optimal program on the dynamic Engel curve.

could be taken as given. Fortunately, the last qualification can be elimi-
nated, since we can, in fact, determine @(c, k) from the given functions g(k)
and ¥{(c, U) only by applying a method of successive approximations to be
developed in the appendix. Figure 5 illustrates the generation of an optimal
program on the dynamic Engel curve, although it by no means exhausts
possible configurations,
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VII. AsymMpTOTIC BEHAVIORS OF OPTIMAL PROGRAMS

It now remains to give a detailed account of possible asymptotic
behaviors of optimal paths. Since they always move along the dynamic
Engel curve defined by (40), our investigation of their asymptotic behaviors
can be reduced to the simple analysis of this curve’s properties.

An interseetion of the dynamic Engel curve and the steady state schedule
will be called a generalized turnpike. Analytically, it is defined as a root,
(k*, ¢*), of the equations

—(c*, k¥)[Pulc*, k*) = —1,

63
e* + k¥ =gk?), O0<k*<k 0<c* ©2

If (63) is substituted into the Fisherian equilibrium condition (42), we
obtain the following equation for 0 < k* < k:

g'k*) = 1{Vy(c*, Wk*)). (64)

However, by differentiating the identity U(C*) = V(c*, U(C*)), where
C* denotes a steady state consumption sequence (c*, ¢*, c*,...), we can
easily show that

0 < Vyle*, UCH) < 1. (63)
Hence, the left-hand side of (64) must be greater than unity, yielding
gk*} > 1 = g'(k). (66)

Therefore, by (8) we can say that an optimal steady state capital stock k%,
if any, must be smaller than the golden rule capital stock k™.

0<k* <kt <k 67

The existence of a generalized turnpike is trivially assured by the fact
that the origin of the Fisherian diagram, k* = ¢* = 0, satisfies (63).
(Note that this zero-consumption, zero-capital program is obviously
optimal for zero initial capital stock.) Furthermore, in a special case where
the intertemporal utility function is an additive function like (17), the
right-hand side of (64) becomes constant and consequently by (7) we can
guarantee the existence and uniqueness of a nonzero generalized turnpike
other than the trivial one. However, in the general case in which 1/Vy is
not constant, it cannot be assured that there exists a nontrivial generalized
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turnpike. Moreover, even if we could find a nontrivial turnpike, the
possibility of multiple turnpikes cannot be excluded.1¢

Let us put together all the previous results and describe possible
asymptotic behaviors of optimal programs in our two-dimensional
Fisherian diagrams.

() If both capital stock and consumption are normal in all periods,
the dynamic Engel curve is positively sloped everywhere. In this case,
from (55) both the sequences of optimal capitals and optimal consumptions
are monotone in time. But even in this well-behaved case, we can assure
neither existence nor uniqueness of a nontrivial generalized turnpike.
Figure 6 explains what are essentially all possible types of generalized
turnpikes in this case.

l Ke < Kea _%\:_1

< C:g(k)— k
( Ke= kt—l)

+*+
.. 1

N
o
)
ke> Ket [
o
.
I
: : i"k:l. 1,k
O¢- ki Kg— Ka K

l

Fie. 6. Asymptotic behaviors of optimal programs when both consumption and
capital are normal.

Point Ty, (kF;, ¢y, represents an asymptotically stable turnpike. By
asymptotic stability we mean that for every program optimal for k,
sufficiently close to kJ;, lim,,, k: = k¥, and lim,,, c; = ¢f;. At Ty
the dynamic Engel curve crosses the steady state schedule from below.
So it is easy to see that for k,_; sufficiently close to &%,

kia > kfyy  implies k, < k4,

and (68)

kt_]_ << k_?;] implies kt > kt—l .

18 Kurz [8] shows that there may exist multiple turnpikes if we introduce capital
as an argument in the Ramsey type utility function. Note that our reduced utility
P(c, kY contains capital as an argument, and that its formal structure is somewhat
similar to his model.
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Furthermore, since the dynamic Engel curve is positively sloped it follows
that (68) can be strengthened as follows.

kt..l > ]C?}; 1mphes kf{f << kt < kt_]_ i

and g <k implies Kl >k, > ko (69)

Thus we have established not only the asymptotic stability of Ty, but also
the monotonic convergence of optimal programs to it. By the same token
we can easily show that the trivial turnpike in this example is asymptotically
stable from the right.

Point T;, (k*, ¢r*), at which the dynamic Engel curve crosses the
steady state schedule from above, represents an asymptotically unstable
generalized turnpike. It can be easily seen that every program optimal for
ke, sufficiently close but unequal to %* monotonically diverges from T; .
Note that if &, happens to be equal to k;* the optimal porgram keeps
staying on 7T, until some random shock disturbs this knife-edge
equilibrinum.

Point (k% , ¢k} is an example of one-sided stable-unstable generalized
turnpikes. In this example, where the dynamic Engel curve touches the
steady state schedule from below, Ty;is asymptotically stable from the left
and asymptotically unstable from the right.

Let us summarize our Fig. 6; if &k, < k;*, the optimal program leads
only to forever diminishing consumption and capital stock and gradually
converges to the situation of zero consumption; if k;* < k, << k}, the
optimal program monotenically converges 1o Ty by accumulating capital;
if Kk < ky <k, Ty serves as a long-run target of optimal programs;
from kj; < k, < k¥, they approach Ty by accumulating capital and
from k¥%; < k, < % they approach it by decumulating capital; finally if it
so happens that &, equals one of (0, k/*, k7, kJ;;) the optimal program will
remain on that generalized turnpike forever.

(if) & (i) In the case where immediate consumption becomes
inferior or neutral in some period, the dynamic Engel curve has a forward-
bending or horizontal portion. From (56) and (57), the dynamic behavior
of optimal consumption seqguences ceases to be monotone, while that of
optimal capital sequences remains monotone it time. As is shown in Fig. 7
a generalized turnpike around which consumption is inferior is necessarily
an asymptotically unstable one. To see this we only have to recall (64)
which implies that every generalized turnpike is located on the positively
sloped part of the steady state schedule. This fact clearly excludes the
possibility of the negatively sloped dynamic Engel curve intersecting the
steady state schedule from below.
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i

°¢k* -k
g’(k):»l

Fic. 7. Asymptotic behaviors of optimal programs when consumption is inferior.

Altenatively, this can be seen as follows, By (45) and (47), we get the
following equation:

Akyfdley y = (Licf Ay YAy dk,_y) = (1 — Ie) Aglhes_y)f Ak

Since I{¢;) < 0 and g'(k;;) > 1 in the neighborhood of the generalized
turnpike, the left-hand side of the above equation is greater than unity.
Hence, we obtain an inequality for an optimal capital sequence sufficiently
close but unequal to k*:

s~ ke | > kg —ken]| >0,

which implies that a sequence {| &, — k:_, |} is bounded away from zero
for every k, = k*, proving the asymptotic instability of k*.

(iv) When capital stock becomes neutral in period ¢, the optimal
program immediately jumps onto a point of the steady state schedule and
will perpetuate the stationary movement henceforward. The generalized
turnpike in this case is not an asymptotically stable one but a perfectly
stable one in the sense that the optimal program returns to it instanta-
neously when it is displaced.

(v} In the case where capital becomes inferior in some peried, the
dynamic Engel curve bends backwards. It is easily seen by iterating the
relations (61) and (62) that optimal programs in this inferior capital case
must oscillate around the steady state schedule between the region of capital
accumulation and the region of capital decumulation from then on. As is
shown in Fig. 8, if inferiority of capital is relatively weak, the oscillation
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Fig. 8. Cyclical behaviors of optimal programs when capital is inferior.

will fade away and the optimal program will asymptotically converge to a
generalized turnpike. If inferiority is strong, the optimal program will
oscillatorily diverge from the generalized turnpike and will either approach
another generalized turnpike or converge to a periodic motion (one of
cobweb boxes as depicted in Fig. 9) around the generalized turnpike.

ol
ClTe ,(/Ha.x-'ct= jfkt-.)
ya

0 ktfz,'b'ﬂf-"' ,Ktﬂ,tﬁ'.. . k
Fig, 9. A cobweb-cycle box of optimal programs when capital is strongly inferior,
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These temarks on stability of oscillatory turnpikes can be confirmed by
the following identity:

Aicf Ale_p = Iker) Ie)(Aglhe )/ Ak, ) Ag kel dlee ). (72)

This implies that if 0 < —I{k} << 1/g'(k) in the neighborhood of k*, then
we have an inequality

Al Ak < 1. (73)

Hence, for k, close to k* we have monotonically decreasing sequence
{ ki — ke |}foret=1,3,5,...,2n + 1,.... Since the dynamic Engel curve
is negatively sloped, (61) implies one of the following:

ko, ko sy kap yoee <E* < Ky, Ky peees Kangg seens
and
kg, koo bon e = k* >k kg yory Koy 5eee

This, together with (73), shows that the generalized turnpike k% is
asymptotically stable. Similarly, if —I(k) > 1/g’(k) in the neighborhood
of k*, we have from (72),

AlefAkey_y > 1, (73)

which shows that £* cannot be asymptotically stable.

(vi) In general, the dynamic Engel curve may behave in a
complicated way. There may coexist monotonically stable, monotonically
unstable, one-sided stable-unstable, oscillatory stable and oscillatory
unstable generalized turnpikes and perputually cyclical cobweb boxes in
our optimal growth model.'” But since the range of feasible capital stocks
is bounded below by zero and above by &, any optimal program must
either approach one of the generalized turnpikes including the trivial one
or approach a periodic motion of some period. In any case, the dynamic
behavior of optimal programs in our general model is not so simple as in
the Ramsey theory of optimal saving unless we impose some restrictions
on the properties of the stationary ordinal utility function.

1? Beals-Koopmans [I] covers the cases (i)-(iii) where optimal capital sequences
can be shown to be monotone in time. (Optimal consumption sequences may not be
monotene.) Since the proof of the existence and uniqueness theorem does not depend
on the assumption of normal capital stock, oscillatory accumulation programs can be
optimal, although we have not been able to construct an example yet,
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APPENDIX: COMPUTATION OF THE MAXIMUM WELFARE FUNCTION AND
THE REDUCED UTILITY FUNCTION

In the text we developed the diagrammatic technique that can determine
the unique optimal program for any initial capital stock on the condition
that we already know the functional forms of W(k) and @(c, k). However,
a priori only the technological function g(k) and the utility aggregator
Ve, U) were given. The purpose of this appendix is to supply a computa-
tional method which can determine W(k) and D(c, k) solely from these
given functions. Essentially, our computational method is a modification
of successive functional approximations widely used in the theory of
dynarnic programming.?®
 Let us consider the sequence of functions {W.(ky)}, »n = 1,2,3,..,
defined as follows:

Wilk,) = max Vie, U), where ¢ +k = glky), 0<k, <k (A

k=0 .

and UV = U(0,0,0,..) > —co is the aggregate utility of the worst con-
sumption sequence, And forn = 1, 2,3,..,,

W alleg) = max Vie, Wa(k)), where ¢+ k = glky), 0 < ks <A
{20 (A-2)

Clearly, (A-1) can be rewritten as
Wiky) = V(glko), U), (A-2)

which is continuous in k, and is bounded. It can also be shown that
W(k,) 1s continuous and bounded.

The sequence { W,(k)} defined above can be looked at as a successive
approximation of the maximum welfare function W(k). It should be
emphasized that {,(k)} which depends only on g(k) and ¥{c, U) can be
iteratively calculated by using, say, digital computer. Therefore, if we can
prove that this sequence converges to the desired function W(k), we can
assert that our optimal growth model becomes seif-contained in the sense
that any optimal program can be determined only from the given functions
g(k) and ¥{e, U).

18 See, for example, Bellman [2).
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Inductively substituting W,(k), 1 < m < n, into the definition of
W(k), we get '

Walke) = jmax V(e , max Viey yeens ax Vicn, U),.))

R

where ¢; -+ ke =gllsy), =0, k=0, ¢t=12,.,m
= max UGC,), where ¢+ k= gkiy) (=1,2,.,n)

220} (A-3)
Here ,C, represents a terminable consumption sequence (¢, €z
€.,0,0,..). In words, W,(k,) represents the maximum utility level
attainable from a given capital stock &, when the consumption levels after
n periods are constrained to be zero. Therefore, it is easy to show that
W,(k,) is monotonically nondecreasing with respect to n for any
0 < k, < k. Moreover, W,(k,) is uniformly bounded above by the true
maximum welfare function W(k,) that is the maximum of U(C) without
any additional constraints on the future consumption sequences other
than the technological constraints. So the sequence of bounded and con-
tinuous functions {W,(ky)} converges uniformly to a continuous function
Wo(k,) for any 0 < ky < k. That is,

Wike) 2= Walky) = ’lgg Wk} > — 0. (A-4)

Now we want to show that W(k,) is, in fact, equal to W{k,). To see
this, let us consider an arbitrary consumption sequence ;C feasible for a
given initial capital stock 0 < k, < & For any » >0, a terminable
consumption sequence ;C,’, of which the first » components are the same
as ;C and the remaining ones are constrained to be zero, is feasible for &,
simply by disposing of all the capital stock at the end of period »n. Hence,
by (A-3), we have for all n

Walks) = max UGC,) = UGC,). (A-5)

Since the set of feasible consumption sequences is bounded, closed and
convex, ;C,’ converge to ,C as z goes to infinity. Therefore, by continuity
of the stationary ordinal utility function, U(,C,’) also converges to U(;C),
leading to the following inequality.

Walko) 2 UGC) (A-6)

for all feasible ,C, including the optimal consumption sequence. Hence,
we get
Wolky) = Wiko) = max U(;C). (A-T)
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If we combine (A-4) and (A-7), we can assert that the successive approx-
imation: {W,(k,)} uniformly converges to the true maximum welfare
function W (k;).

lim W) = Walke) = Wik)  for 0<ky <k  (Af)
Note that, since W,(k) is continuous, (A-8) also proves continuity of W)
with respect to k. Thus, by successively computing W,(k,), we can in
principle determine the functional form of W(k,) to any desired degree of
accuracy. But how rapidly this successive approximation converges to
Wik,) is still an open question.

Finally, once we got the function W(k), we can immediately determine
the functional form of the reduced utility function from its definition:
D(c, k) = V(e, W(k)). Since both ¥(c, U) and W(k) are continuous
functions, D(c, &) is also continuous with respect to ¢ and % as was claimed
in the text.
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