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Abstract
We propose a systematic derivation method of the Korteweg–de Vries–Burgers (KdVB)
equation and nonlinear Schrödinger (NLS) equation for nonlinear waves in bubbly liq-
uids on the basis of appropriate choices of scaling relations of physical parameters.
The basic equations are composed of a set of conservation equations for mass and
momentum and the equation of bubble dynamics in a two-fluid model. The scaling
of parameters is related to the wavelength, frequency, propagation speed, and ampli-
tude of waves concerned. With the help of the method of multiple scales, appropriate
choices of the parameter scaling allow us to derive various nonlinear wave equations
systematically from a set of basic equations. The result shows that the one-dimensional
nonlinear propagation of a long wave with a low frequency is described by the KdVB
equation, and that of an envelope of a carrier wave with a high frequency by the NLS
equation. Thus, we establish a unified theory of derivation of nonlinear wave equations
in bubbly liquids.

Key words : Weakly Nonlinear Waves, Dispersive Waves, Bubbly Liquids, Bubble
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1. Introduction

Pressure wave propagation in bubbly liquids has long been one of the most fundamental
topics in the field of multiphase flows. Its characteristics are considerably different from those
in single phase fluids. For instance, the dispersion in the sense that waves of different wave-
lengths propagate with different phase velocities is usually caused by bubble oscillations(1).
The decrease in sound speed of a long wave is also well known(2).

For more than 40 years, a number of theoretical papers on weakly nonlinear waves in
bubbly liquids have been published intensively(3) – (14). Especially, a pioneering work by van
Wijngaarden is well known, which derived the Korteweg–de Vries (KdV) equation(3) and
the KdV–Burgers (KdVB) equation(4) from a set of basic equations for bubbly flows, on the
basis of a perturbation method, with conditions of long wavelength, low frequency, weak
dispersion, incompressible liquid, and so on. Subsequently, the KdV, KdVB, and nonlinear
Schrödinger (NLS) equations have also been rederived or derived for the waves in bubbly
liquids on the basis of various mathematical techniques, assumptions, and basic equations
(5), (6), (8), (9), (11), (12), (14). However, some of these studies are closely connected and others are
not. Individual derivation procedures rely on specific methodologies or brilliant mathematical
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Fig. 1 The dispersion relation in bubbly liquids(3), (4), (8), (9). Weakly nonlinear
propagation of pressure waves in two frequency bands, i.e., the low frequency
band and high frequency band are described by the KdVB and NLS equations,
respectively. Here, ω∗B denotes the natural frequency of a single bubble.

techniques, and hence the explicit relations among them have remained vague. This situation
has prevented us from developing theoretical study on the nonlinear waves in bubbly liquids
and enhancement of their applications.

The aim of this paper is to propose a unified theory for the derivation of nonlinear wave
equations in bubbly liquids. By the unified theory, we can derive different types of nonlinear
wave equations from a set of generic equations of bubbly flows. The essence of this theory
lies in the fact that there exists a scaling of some physical parameters appropriate to a specific
wave phenomenon. The parameter scaling means measurement of the nondimensional magni-
tudes of some physical quantities in terms of a typical nondimensional amplitude of the wave
concerned. To be precise, the nondimensional magnitudes of physical quantities are the ratio
of a typical propagation speed of the wave to the sound speed in the liquid, that of a typical
bubble radius to a typical wavelength, and that of a typical frequency of the wave to an natu-
ral frequency of the bubble. Since these ratios have physically clear implications, the unified
theory can offer a perspective for understanding various complex nonlinear wave phenomena
in bubbly liquids.

Now, let us show the parameter scaling considered in this paper. The scaling relations
appropriate to the low frequency and long wavelength band (weak dispersion band) and the
high frequency and short wavelength band (strong dispersion band) shown in Fig. 1(3), (4), (8), (9),
are, respectively, defined by(

U∗

c∗L0

,
R∗0
L∗
,
ω∗

ω∗B

)
≡
⎧⎪⎪⎨⎪⎪⎩
(
O(
√
ε),O(

√
ε),O(

√
ε)
)
, (for KdVB),(

O(ε2),O(1),O(1)
)
, (for NLS),

(1)

where ε (� 1) is a nondimensional amplitude of the waves, U∗ and L∗ are a typical propa-
gation speed of the waves and a typical wavelength, respectively, R∗0 is a bubble radius in an
initially unperturbed state, c∗L0 is a sound speed in the unperturbed liquid, ω∗ is an angular
frequency of the waves, and ω∗B is a natural angular frequency of the bubble. The super-
script ∗ denotes a dimensional quantity throughout this paper. More detailed explanations of
parameter scaling (1) are presented in §3 and §4.

By the use of parameter scaling (1) and method of multiple scales(15), (16), we derive the
KdVB and NLS equations from a set of two-fluid averaged equations for bubbly flows(17), (18),
in which we take account of liquid compressibility responsible for wave attenuation due to
acoustic radiation from oscillating bubbles(19). These two nonlinear wave equations have been
intensively examined in the field of the nonlinear wave theory(16), (20), apart from the theory
of multiphase flows. The KdVB equation describes the nonlinear propagation of a long wave
with a low frequency and the NLS equation does that of an envelope of a carrier wave with
a high frequency. This can readily be recognized from Fig. 1 and parameter scaling (1). It
should be emphasized that, in the past, the derivations of KdV, KdVB, and NLS equations for
waves in bubbly liquids were limited to those from basic equations of a bubble–liquid mixture
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model, and the present result is the first demonstration of derivation from a two-fluid model.
The coefficients in the KdVB and NLS equations derived here reflect the effect of extension
of basic equations from the mixture model to the two-fluid model, and this effect can easily be
examined since the unified theory presented here is applicable to the both models. Incidentally,
the liquid compressibility is not essential for the wave motions characterized by the dispersion
relation shown in Fig. 1 (see Egashira et al.(17)), except for the effect of wave attenuation.

The contents of this paper are as follows: in §2, we introduce the basic equations for
bubbly flows and the method of multiple scales. The main parts of this paper are §3 and §4; the
derivations of the KdVB and NLS equations based on the parameter scaling are systematically
demonstrated there. Section 5 is devoted to conclusions.

2. Formulation of the problem

We shall examine one-dimensional nonlinear dispersive waves in a mixture of a com-
pressible liquid and a number of small spherical gas bubbles. At an initial state, the mixture is
assumed to be uniform and at rest. A pressure wave is generated from a sound source placed
in the bubbly liquid. The amplitude of pressure wave is sufficiently small compared with the
pressure in the ambient bubbly liquid. The present analysis aims to derive the nonlinear wave
equations governing the asymptotic behaviors of wave motions with respect to the finite but
small amplitude (weakly nonlinear problem).

Let us here summarize the main assumptions: (i) the bubbles are spherically symmetric.
(ii) The bubbles do not coalesce, break up, extinct, and appear. (iii) The effect of bubble–
bubble interaction is ignored. (iv) The volume fraction of gas phase (void fraction) in the
bubbly liquid is uniform at the initial state. (v) The compressibility of the liquid is taken into
account. (vi) The viscosity of the liquid is considered at surface of bubbles, although that of
the gas is omitted. (vii) The bulk viscosities of the gas and liquid are neglected. (viii) The
gas inside bubbles is composed of only a non-condensable gas, and hence the phase change
across the bubble–liquid interface does not occur. (ix) The thermal conductivities of the gas
and liquid, Reynolds stress, and gravitation, are dismissed.

The wave attenuation is caused by the three effects(4), i.e., the liquid viscosity, liquid
compressibility, and thermal conductivity. It is well known(8), (10) that the thermal process
inside bubbles with the heat exchange at the bubble–liquid interface induces a significant
attenuation of waves in bubbly liquids. In this paper, however, we neglect the thermal effect
for simplicity, and we take into account the wave attenuation due to only the liquid viscosity
and liquid compressibility.

2.1. Basic equations for bubbly flows
We shall use basic equations for bubbly flows recently proposed by our group(17), (18),

which are composed of conservation equations of mass and momentum for the gas and liquid
phases, the equation of motion for the bubble wall, the equations of state for the gas and liquid
phases, the mass conservation equation inside the bubble, and the balance of normal stresses
at the bubble–liquid interface. For one-dimensional flows, firstly, the conservation equations
of mass and momentum based on a two-fluid model are given by

∂

∂t∗
(αρ∗G) +

∂

∂x∗
(αρ∗Gu∗G) = 0, (2)

∂

∂t∗
[
(1 − α)ρ∗L

]
+
∂

∂x∗
[
(1 − α)ρ∗Lu∗L

]
= 0, (3)

∂

∂t∗
(αρ∗Gu∗G) +

∂

∂x∗
(
αρ∗Gu∗G

2
)
+ α
∂p∗G
∂x∗
= F∗, (4)

∂

∂t∗
[
(1 − α)ρ∗Lu∗L

]
+
∂

∂x∗
[
(1 − α)ρ∗Lu∗L

2
]
+ (1 − α)

∂p∗L
∂x∗
+ P∗

∂α

∂x∗
= −F∗, (5)

where t∗ is the time, x∗ is the space coordinate normal to the wave front, α is the void fraction
(0 < α < 1), ρ∗ is the density, u∗ is the fluid velocity, p∗ is the pressure, and the subscripts G
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and L denote volume-averaged variables in the gas and liquid phases, respectively. In addition
to the volume-averaged pressures p∗G and p∗L, the liquid pressure averaged on the bubble–liquid
interface(21), P∗, is introduced.

For the interfacial momentum transport F∗, we adopt the following model of virtual mass
force(18)

F∗ = −β1αρ
∗
L

(
DGu∗G
Dt∗

− DLu∗L
Dt∗

)
−β2ρ

∗
L(u∗G − u∗L)

DGα

Dt∗
− β3α(u∗G − u∗L)

DGρ
∗
L

Dt∗
, (6)

where the values of coefficients β1, β2, and β3 may be set as 1/2 for the spherical bubble,
although we proceed without explicitly showing these values to clarify the contribution of
each term in the right-hand side of Eq. (6) to the final result. Equation (6) is suggested by the
analysis of virtual mass force in a compressible liquid(22), (23).

The Keller equation(19) for spherical oscillations of a bubble in a compressible liquid is
given by(

1 − 1
c∗L0

DGR∗

Dt∗

)
R∗

D2
GR∗

Dt∗2
+

3
2

(
1 − 1

3c∗L0

DGR∗

Dt∗

) (
DGR∗

Dt∗

)2
=

(
1 +

1
c∗L0

DGR∗

Dt∗

)
P∗

ρ∗L0

+
R∗

ρ∗L0c∗L0

DG

Dt∗
(p∗L + P∗), (7)

where R∗ is the averaged bubble radius, ρ∗L0 is the liquid density in the initial unperturbed
state, and the definitions of operators DG/Dt∗ and DL/Dt∗ are

DG

Dt∗
≡ ∂
∂t∗
+ u∗G

∂

∂x∗
,

DL

Dt∗
≡ ∂
∂t∗
+ u∗L

∂

∂x∗
. (8)

The second term in the right-hand side of Eq. (7) embodies a damping effect, which is mainly
responsible for the wave attenuation due to the acoustic radiation from oscillating bubbles; the
first term in the right-hand side also results in the wave attenuation due to the liquid viscosity
μ∗ through Eq. (12) below.

Equations (2)–(7) are closed by the following equations: (i) Tait equation of state for
liquid,

p∗L = p∗L0 +
ρ∗L0c∗L0

2

n

[(
ρ∗L
ρ∗L0

)n
− 1

]
, (9)

where n is the material constant; e.g., n = 7.15 for water, (ii) the polytropic equation of state
for gas,

p∗G
p∗G0

=

(
ρ∗G
ρ∗G0

)γ
, (10)

where γ is the polytropic exponent, (iii) the conservation equation of mass inside the bubble,

ρ∗G
ρ∗G0

=

(
R∗0
R∗

)3
, (11)

(iv) the balance of normal stresses across the bubble–liquid interface,

p∗G − (p∗L + P∗) =
2σ∗

R∗
+

4μ∗

R∗
DGR∗

Dt∗
, (12)

where σ∗ is the surface tension. The effect of liquid viscosity μ∗ is neglected except at the
bubble–liquid interface. The physical quantities in the initial unperturbed state are signified
by the subscript 0, and they are all constants.
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2.2. Method of multiple scales
In the case of weakly nonlinear problems, the nonlinear effect manifests itself in a far

field, which is defined as a region at a large distance from the sound source compared with a
typical wavelength. On the other hand, a near field denotes a region whose distance from the
sound source is comparable with a wavelength. Therefore, the problem involves different
length scales, and the method of multiple scales(15), (16) is generally effective for such a prob-
lem. In the method of multiple scales, various phenomena characterized by different time and
length scales can be described by independent variables,

tm = ε
mt, xm = ε

mx, (m = 0, 1, 2, ...), (13)

and

t =
t∗

T ∗
, x =

x∗

L∗
, (14)

where T ∗ and L∗ are, respectively, typical periods in time and space of the wave concerned,
and ε is a nondimensional wave amplitude which is sufficiently small compared with unity.
In Eq. (13), t0 and x0 describe a near field and are sometimes called fast scales, whereas
tm and xm for m � 1 describe far fields and are called slow scales. As a result, dependent
variables should now be regarded as functions of these extended independent-variables. Thus,
differential operators can be expanded as follows:

∂

∂t
=
∂

∂t0
+ ε
∂

∂t1
+ ε2

∂

∂t2
+ · · · , ∂

∂x
=
∂

∂x0
+ ε
∂

∂x1
+ ε2

∂

∂x2
+ · · · . (15)

Dependent variables are nondimensionalized and expanded in power series of ε:

α/α0 = 1 + εα1 + ε
2α2 + · · · , (16)

u∗G/U
∗ = εuG1 + ε

2uG2 + · · · , (17)

u∗L/U
∗ = εuL1 + ε

2uL2 + · · · , (18)

R∗/R∗0 = 1 + εR1 + ε
2R2 + · · · , (19)

where α0 is the initial constant void fraction and U∗ is a typical propagation speed of the
wave. The propagation speed of the wave U∗, wavelength L∗, and period T ∗ are related by
L∗ ≡ U∗T ∗; they are determined in the following sections. Although the initial void fraction
α0 in Eq. (16) should be small compared with unity by the assumptions listed in the second
paragraph in §2, it is treated as a quantity of the order of unity because the asymptotic behavior
with respect to the small amplitude ε is considered.

Furthermore, the expansion of the liquid density ρ∗L in ε is given by

ρ∗L/ρ
∗
L0 = 1 + εκρL1 + ε

κ+1ρL2 + · · ·

≡
⎧⎪⎪⎨⎪⎪⎩ 1 + ε2ρL1 + ε

3ρL2 + · · · , (for KdVB),

1 + ε5ρL1 + ε
6ρL2 + · · · , (for NLS),

(20)

where κ (� 2) is an integer number. It is determined as κ = 2 for the KdVB equation in §3 and
κ = 5 for the NLS equation in §4. Substitution of Eq. (20) into Eq. (9) provides the expansion
of the liquid pressure p∗L,

pL ≡
p∗L

ρ∗L0U∗2
=

p∗L0

ρ∗L0U∗2
+ εκ−2ζ ρL1

V2
+ εκ−2ζ+1 ρL2

V2
+ · · · . (21)

Here, we have introduced Vεζ as a measure of the ratio of U∗ and c∗L0, as

U∗

c∗L0

≡ O
(
εζ
)
≡ Vεζ =

{
Vε1/2, (for KdVB),
Vε2, (for NLS),

(22)

where a nondimensional parameter V (= O(1)) and a real number ζ are to be determined. It
should be emphasized that V implies the magnitude of liquid compressibility in the sense that
V → 0 corresponds to c∗L0 → ∞. Now, we impose

κ − 2ζ = 1, (23)
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because the perturbation of the liquid pressure should begin with the term of O(ε) in Eq. (21)
for the pressure waves concerned. Equation (21) can then be rewritten as

pL = pL0 + εpL1 + ε
2 pL2 + · · · , (24)

where the expansion coefficients are defined by

pLi =
ρLi

V2
(i = 1, 2), pL3 =

ρL3

V2
+

(n − 1)ρ2
L1

2V2
, (for KdVB), (25)

pLi =
ρLi

V2
(i = 1, 2, 3, 4, 5), pL6 =

ρL6

V2
+

(n − 1)ρ2
L1

2V2
, (for NLS). (26)

The remaining variables, p∗G, ρ∗G, and P∗, can also be nondimensionalized and expanded
in ε, and their expansion coefficients can be written in terms of Ri and pLi (i = 1, 2, ...) from
Eqs. (10)–(12). Since the asymptotic expansions (16)–(20) and (24) should be uniformly
valid, all expansion coefficients should be determinable as bounded functions of tm and xm

(m = 0, 1, 2, ...) once initial and boundary conditions are specified. Such a requirement, which
leads to the nonlinear wave equation in a far field, is called the non-secular condition.

The nondimensional pressures for the gas and liquid phases in the unperturbed state pG0

and pL0 are introduced as

pG0 ≡
p∗G0

ρ∗L0U∗2
≡ O(1), pL0 ≡

p∗L0

ρ∗L0U∗2
≡ O(1), (27)

respectively.
The ratio of initial densities of the gas and liquid phases is assumed to be small as

ρ∗G0

ρ∗L0

≡ O
(
ε3
)
, (28)

and hence the density ratio does not affect the final result of the present analysis.
We also define the scaling relation of the liquid viscosity as

μ∗

ρ∗L0U∗L∗
≡
{

O(ε) ≡ με, (for KdVB),
O(ε2) ≡ με2, (for NLS),

(29)

where μ is the nondimensional liquid viscosity.
The natural angular frequency of linear spherical symmetric oscillations of a single bub-

ble is also an important parameter, which is given by

ω∗B ≡
√

3γ(p∗L0 + 2σ∗/R∗0) − 2σ∗/R∗0
ρ∗L0R∗0

2
. (30)

Note that the effects of the liquid viscosity and liquid compressibility are not included in
Eq. (30).

3. Korteweg–de Vries–Burgers equation

We shall derive the KdVB equation for long range propagation of nonlinear waves in the
low frequency and long wavelength band shown in Fig. 1. This band can be characterized as
weakly dispersive compared with the high frequency and short wavelength band investigated
in §4.

Scaling relations appropriate to this case are

U∗

c∗L0

≡ O
(√
ε
)
≡ V
√
ε, (31)

R∗0
L∗
≡ O

(√
ε
)
≡ Δ√ε, (32)

ω∗

ω∗B
≡ 1

T ∗ω∗B
≡ O

(√
ε
)
≡ Ω√ε, (33)
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where V , Δ, and Ω are constants of O(1), ω∗ ≡ 1/T ∗ is an angular frequency of the sound
source, and Ω is a normalized angular frequency. The appropriateness of Eqs. (31)–(33) is
demonstrated in the following derivation process of the KdVB equation.

Equations (31)–(33) mean that we concentrate on a specific wave motion, where the
propagation speed is small compared with the sound speed, the wavelength is large compared
with the bubble radius, and the frequency is low compared with the natural frequency of the
bubble.

3.1. Linear propagation in a near field
Substituting Eqs. (15)–(20), (24), and (31)–(33) into Eqs. (2)–(12), and then equating

the coefficients of like powers of ε in the resultant equations, we have the following set of
linearized equations as the first-order equations:
(i) mass conservation law in gas phase,

∂α1

∂t0
− 3
∂R1

∂t0
+
∂uG1

∂x0
= 0, (34)

(ii) mass conservation law in liquid phase,

α0
∂α1

∂t0
− (1 − α0)

∂uL1

∂x0
= 0, (35)

(iii) momentum conservation law in gas phase,

β1
∂uG1

∂t0
− β1
∂uL1

∂t0
− 3γpG0

∂R1

∂x0
= 0, (36)

(iv) momentum conservation law in liquid phase,

(1 − α0 + β1α0)
∂uL1

∂t0
− β1α0

∂uG1

∂t0
+ (1 − α0)

∂pL1

∂x0
= 0, (37)

(v) Keller equation,

R1 +
Ω2

Δ2
pL1 = 0. (38)

For use in a later stage, we rewrite Eqs. (34)–(38) into the matrix form:

La [R1 α1 uG1 uL1 pL1]T = 0, La ≡ Aa
∂

∂t0
+ Ba

∂

∂x0
+ Ca,

Aa ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 1 0 0 0
0 α0 0 0 0
0 0 β1 −β1 0
0 0 −β1α0 (1 − α0 + β1α0) 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ba ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0
0 0 0 −(1 − α0) 0

−3γpG0 0 0 0 0
0 0 0 0 (1 − α0)
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ca ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 Ω2/Δ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(39)

where the superscript T denotes the transpose.
Eliminating α1, uG1, uL1, and pL1 from Eqs. (34)–(38) (or Eq. (39)), we can derive the

linear wave equation for the first-order perturbation of the bubble radius, R1,

∂2R1

∂t2
0

− v2p
∂2R1

∂x2
0

= 0, (40)
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where the phase velocity vp is given by

vp =

√
3α0(1 − α0 + β1)γpG0 + β1(1 − α0)Δ2/Ω2

3β1α0(1 − α0)
. (41)

That is, the wave motion described in terms of t0 and x0 is linear and non-dispersive, and the
propagation speed (phase velocity) vp is in proportion to 1/

√
α0(1 − α0), as is the classical

sound speed in bubbly liquids(3), (4). Now, we can choose U∗ in Eq. (31) as

U∗ =

√
3α0(1 − α0 + β1)γp∗G0/ρ

∗
L0 + β1(1 − α0)R∗0

2ω∗B
2

3β1α0(1 − α0)
, (42)

and then we immediately have vp ≡ 1, which is a choice making the final result simple.
From now on, we restrict ourselves to the right-running wave in the leading-order of

approximation, and a phase function ϕ0 can therefore be introduced as

ϕ0 ≡ x0 − t0, (43)

where vp = 1 has been used. Putting R1 ≡ f (ϕ0; t1, x1), we can reduce Eq. (40) to

∂ f
∂t0
+
∂ f
∂x0
= 0. (44)

In the near field characterized by t0 and x0, all the first-order perturbations α1, uG1, uL1, pL1,
and R1 are governed by Eq. (44). Rewriting Eqs. (34)–(38) by ϕ0 and integrating them with
respect to ϕ0, we can express α1, uG1, uL1, and pL1 in terms of the function f (ϕ0):

α1 = s1 f , uG1 = s2 f , uL1 = s3 f , pL1 = s4 f ,

s4 = −Δ
2

Ω2
, s1 =

(1 − α0)[3β1α0 − (1 − α0)s4]
α0(1 − α0 + β1)

, s2 = s1 − 3, s3 = − α0s1

1 − α0
.

(45)

Here, constants of integration are dropped because of the boundary conditions at x0 → ∞,
where the bubbly liquid is uniform and at rest.

3.2. Nonlinear propagation in a far field
The system of the second-order equations is given as

La [R2 α2 uG2 uL2 pL2]T = (K1 K2 K3 K4 K5)T, (46)

where the inhomogeneous terms Ki (1 � i � 5) are composed of the partial derivatives of
the first-order perturbations with respect to ϕ0, x1, and t1; they are explicitly presented in
Appendix 1. By the use of the same procedure as that used in the derivation of Eq. (40) from
Eq. (39), we have the following inhomogeneous equation for R2,

∂2R2

∂t2
0

− ∂
2R2

∂x2
0

= K( f ;ϕ0, t1, x1) =
1
3
∂K1

∂ϕ0
− 1

3α0

∂K2

∂ϕ0

+
1 − α0 + β1

3β1(1 − α0)
∂K3

∂ϕ0
+

1
3α0(1 − α0)

∂K4

∂ϕ0
− Δ2

3α0Ω2

∂2K5

∂ϕ2
0

. (47)

From the solvability condition of the inhomogeneous equation (47), which is equivalent
to the non-secular condition for expansions (16)–(20) and (24), we have

K = 2
∂

∂ϕ0

⎛⎜⎜⎜⎜⎝ ∂ f
∂t1
+
∂ f
∂x1
+ Π0

∂ f
∂ϕ0
+ Π1 f

∂ f
∂ϕ0
+ Π2

∂2 f

∂ϕ2
0

+ Π3
∂3 f

∂ϕ3
0

⎞⎟⎟⎟⎟⎠ = 0. (48)

With the use of Eqs. (15) and (44), the independent variables tm and xm (m = 0, 1) in Eq. (48)
can be restored into t and x, and this yields

∂ f
∂t
+
∂ f
∂x
+ ε

(
Π0
∂ f
∂x
+ Π1 f

∂ f
∂x
+ Π2

∂2 f
∂x2
+ Π3

∂3 f
∂x3

)
= 0. (49)
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Fig. 2 The nonlinear coefficient Π1, dissipation coefficient Π2, and dispersion
coefficient Π3 as functions of the initial void fraction α0 in the case of Ω = 1,√
ε = 0.15, R∗0 = 10 μm, p∗L0 = 101325 Pa, ρ∗L0 = 103 kg/m3, σ∗ = 0.0728 N/m,

c∗L0 = 1.5 × 103 m/s, μ∗ = 10−3 Pa · s, γ = 1, and β1 = β2 = 1/2. The
curves represent the coefficients Π1, Π2, and Π3 in the two-fluid model, and the
corresponding coefficients in a bubble–liquid mixture model are shown by the
straight lines. The initial number density of bubbles varies with the variation of
α0 since R∗0 is fixed.

Finally, the KdVB equation is obtained,

∂ f
∂τ
+ Π1 f

∂ f
∂ξ
+ Π2

∂2 f
∂ξ2
+ Π3

∂3 f
∂ξ3
= 0, (50)

through the variable transformation

τ ≡ εt, ξ ≡ x − (1 + εΠ0)t, (51)

where the coefficients Π0, Π2, and Π3 are, respectively, given by

Π0 = − (1 − α0)Δ2V2

6α0Ω2
� 0, (52)

Π2 = − 1
6α0

(
4μ +

Δ3V
Ω2

)
� 0, (53)

Π3 =
Δ2

6α0
� 0. (54)

The explicit form of the nonlinear coefficient Π1 is shown in Appendix 2. Figure 2 shows Π1,
Π2, and Π3 as functions of the initial void fraction α0. In Eqs. (52)–(54) and Fig. 2, Π0, Π1,
and Π2, are negative, whereas Π3 is positive; these signs affect the waveform of a solution
of the KdVB equation as mentioned below. The absolute value of the dissipation coefficient
Π2 is smaller than that of the nonlinear coefficient Π1 and that of the dispersion coefficient
Π3 in all ranges of α0 in Fig. 2. For comparison, the coefficients deduced by applying the
present unified theory to a set of basic equations in a bubble–liquid mixture model are shown
by straight lines in Fig. 2. The main equations in the mixture model are the conservation
equations(8), (9) and Keller’s equation. The straight lines are drawn on the same parameters
as the curves based on the two-fluid model, as shown in the caption in Fig. 2, although βi

(i = 1, 2, 3) are not included in the mixture model. Clearly, the coefficients based on the
mixture model are independent of α0; note that if the unknown function f = R1 in Eq. (50)
is replaced by other unknown functions, the coefficient of the nonlinear term in the resulting
KdVB equation is a function of α0. More detailed discussion on the relation between the
coefficients and the basic equations will be provided in a forthcoming paper.

Equations (44) and (50) govern the behavior of the first-order perturbation R1 in the tem-
poral and spatial scales of O(1) and O(1/ε), respectively. The KdVB equation (50) describes
the wave motion in the far field characterized by τ and ξ, where the weak dissipation and
weak dispersion effects caused by the bubble oscillations grow and compete with the weak
nonlinear effect. The second, third, and fourth terms in Eq. (50) represent the nonlinear, dis-
sipation, and dispersion effects, respectively. In Eq. (51), εΠ0 in ξ (i.e., the advection term
in Eq. (49)) is a small correction to the propagation speed in the far field by the weak liquid
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Fig. 3 Solitary wave profiles of the liquid pressure pL1 for |ξ| � 2 given by Eq. (56).
The initial void fraction α0 is chosen as 0.1, 0.05, and 0.01, and the values of
other physical quantities are the same as those used in Fig. 2. The height of
soliton decreases with the decrease in α0.

compressibility. This correction and the wave attenuation due to acoustic radiation vanish in
the limit of incompressible liquid V → 0.

As a simple example, we consider the nondissipative case Π2 = 0 (i.e., μ = V = 0).
Then, Eq. (50) reduces to the KdV equation. As a particular solution of the KdV equation, a
steady traveling wave solution, soliton, is well known(16), (20)

pL1(τ, ξ) = − 12Π3

Π1Ω2/Δ2
C2sech2

[
C
(
ξ − 4C2Π3τ − ξ0

)]
, (55)

where C is an arbitrary positive constant, ξ0 is an arbitrary constant, and Eq. (45) is used for
the transformation from f to pL1. It should be noted that Eq. (55) is valid for satisfying both
Π1 � 0 and Π3 � 0. Figure 3 presents typical wave profiles of the liquid pressure pL1 at τ = 0,
for |ξ| � 2, ξ0 = 0, and C = 1, i.e.,

pL1 = − 12Π3

Π1Ω2/Δ2
sech2ξ. (56)

As being clear from Fig. 3, the height of soliton decreases with the decrease in α0. The
variation of α0 corresponds to that of the initial number density of bubbles since R∗0 is fixed.

4. Nonlinear Schrödinger equation

We next focus on the high frequency and short wavelength band in Fig. 1, which is a
strongly dispersive band compared with the weakly dispersive band analyzed in §3. We shall
derive the NLS equation for the nonlinear modulation of a quasi-monochromatic wave train
in the long range propagation by the nonlinear and strong dispersion effects. Scaling relations
in this case are given by

U∗

c∗L0

≡ O
(
ε2
)
≡ Vε2, (57)

R∗0
L∗
≡ O (1) ≡ Δ, (58)

ω∗

ω∗B
≡ T ∗ω∗ ≡ O (1) ≡ Ω, (59)

where T ∗ ≡ 1/ω∗B and L∗ ≡ U∗T ∗. Equations (57)–(59) show that a typical propagation speed
of the wave is considerably small compared with the sound speed, a typical wavelength is
comparable with the bubble radius, and a typical frequency of the wave is comparable with the
natural frequency of the bubble (see Fig. 1). While the method of averaged equations is usually
prohibited to be applied to such short waves, the plane wave problem may be excluded from

360



Journal of Fluid
Science and Technology

Vol.5, No.3, 2010

the restriction because the average volume can be sufficiently large along the plane parallel
to the wave front. Nevertheless, the assumption of spherical symmetry of bubble oscillations
should be validated. We will address this problem in a future work.

4.1. Quasi-monochromatic wave train
In the same way as §3, the substitution of Eqs. (15)–(20), (24), and (57)–(59) into

Eqs. (2)–(12) leads to the linear equations as the first-order equations,

∂α1

∂t0
− 3
∂R1

∂t0
+
∂uG1

∂x0
= 0, (60)

α0
∂α1

∂t0
− (1 − α0)

∂uL1

∂x0
= 0, (61)

β1
∂uG1

∂t0
− β1
∂uL1

∂t0
− 3γpG0

∂R1

∂x0
= 0, (62)

(1 − α0 + β1α0)
∂uL1

∂t0
− β1α0

∂uG1

∂t0
+ (1 − α0)

∂pL1

∂x0
= 0, (63)

∂2R1

∂t2
0

+ R1 +
pL1

Δ2
= 0. (64)

For a later use, we rewrite Eqs. (60)–(64) into the matrix form,

Lb [R1 α1 uG1 uL1 pL1]T = 0, Lb ≡ Aa
∂

∂t0
+ Ba

∂

∂x0
+ Cb + Db

∂2

∂t2
0

,

Cb ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 1/Δ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Db ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (65)

The second derivative with coefficient Db in the differential operator Lb is the essential dif-
ference from La in Eq. (39) in §3.1. This comes from the inertia term in the linearized Keller
equation (64), and results in the dispersion effect in the first-order equation, which is the con-
sequence from the fact that the wave motion concerned is in a strongly dispersive case as
shown in Fig. 1.

The reduction of Eq. (65) to a single linear equation can also be carried out in the same
way as in §3.1. The resulting equation is a linear wave equation with a dispersion term,

L1[R1] = 0, L1 ≡ ∂
2

∂t2
0

−
[
Δ2

3α0
+

(1 − α0 + β1)γpG0

β1(1 − α0)

]
∂2

∂x2
0

− Δ
2

3α0

∂4

∂x2
0∂t

2
0

. (66)

Owing to the dispersion effect, the wave profile is broken down into each component with its
own propagation speed, if an initial wave is a superposition of different harmonic components.
We therefore consider a solution of Eq. (66) in the form of a quasi-monochromatic wave train
that evolves into a slowly modulated wave packet(16), (20):

R1 = A(t1, t2, x1, x2)eiθ + c.c., (67)

with

θ = kx0 −Ω(k)t0, (68)

where A is the slowly varying complex amplitude depending on only slow scales and is ob-
viously a constant in the near field characterized by t0 and x0, k ≡ k∗L∗ = k∗U∗/ω∗B is the
normalized wavenumber (k∗ is the wavenumber), i is the imaginary unit (i ≡ √−1), and c.c.
represents the complex conjugate. Here, eiθ corresponds to the high frequency carrier wave
and A to the envelope(16), (20). Equation (68) implies that we focus on only the right-running
carrier wave.
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Substituting Eq. (67) into Eqs. (60)–(64) and integrating them with respect to t0 and x0

under the boundary condition at x0 → ∞, where the bubbly liquid is uniform and at rest, we
have

α1 = b1R1, uG1 = b2R1, uL1 = b3R1, pL1 = b4R1,

b4 = Δ
2
(
Ω2 − 1

)
, b1 =

(1 − α0)
[
3β1α0 − (1 − α0)b4k2/Ω2

]
α0(1 − α0 + β1)

,

b2 = (b1 − 3)
Ω

k
, b3 = − α0b1Ω

(1 − α0)k
, (69)

where Ω depends on k through a linear dispersion relation

D(k,Ω) ≡ Δ
2k2(1 −Ω2)

3α0
+

(1 − α0 + β1)γpG0

β1(1 − α0)
k2 −Ω2 = 0, (70)

or

Ω(k) = ±k

√
Δ2

3α0 + Δ2k2
+

3α0(1 − α0 + β1)γpG0

β1(1 − α0)
(
3α0 + Δ2k2

) . (71)

The right-running carrier wave corresponds to the positive Ω in Eq. (71). The nondimensional
phase velocity vp, group velocity vg, and derivative of the group velocity with respect to the
wavenumber, dvg/dk, are readily calculated as

vp =
Ω

k
� 0, (72)

vg =
dΩ
dk
=

3α0Ω

k(3α0 + Δ2k2)
� 0, (73)

q ≡ dvg
dk
=

d2Ω

dk2
= − 9α0Δ

2Ω

(3α0 + Δ2k2)2
� 0. (74)

Thus, we can determine the typical propagation speed U∗ in Eq. (57). In this case, we choose
U∗ so that vp may be equal to unity when Ω = 1. This is satisfied by the choice as

U∗ ≡
√

(1 − α0 + β1)γp∗G0

β1(1 − α0)ρ∗L0

, (75)

and then L∗ ≡ U∗T ∗ is simultaneously determined.

4.2. Slow variation of wave train
The system of second-order equations is given as

Lb [R2 α2 uG2 uL2 pL2]T = (M1 M2 M3 M4 M5)T, (76)

where the explicit forms of Mi (1 � i � 5) are shown in Appendix 1. A slightly lengthy
calculation leads to the following equation for R2,

L1[R2] = M(R1; t0, t1, x0, x1) = −1
3
∂M1

∂t0
+

1
3α0

∂M2

∂t0

+
1 − α0 + β1

3β1(1 − α0)
∂M3

∂x0
+

1
3α0(1 − α0)

∂M4

∂x0
− Δ

2

3α0

∂2M5

∂x2
0

. (77)

Only the coefficient of the fifth term in the right-hand side of Eq. (77) differs from the coun-
terpart of Eq. (47). This comes from the difference in the choices T ∗ ≡ 1/ω∗ in §3 and
T ∗ ≡ 1/ω∗B in §4. Substituting Eqs. (67) and (69) into Eq. (77), we have

M = ΓA2e2iθ + i

(
−∂D
∂Ω

) (
∂A
∂t1
+ vg
∂A
∂x1

)
eiθ + c.c., (78)

where the nonlinear coefficient Γ is a real constant whose explicit form is shown in Appendix
2.
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From the solvability condition of the inhomogeneous equation (77), the coefficient of eiθ

in the right-hand side of Eq. (78) should vanish(16), and we have

∂A
∂t1
+ vg
∂A
∂x1
= 0. (79)

The complex conjugate of Eq. (79) also holds. As mentioned in §4.1, the complex amplitude A
is only constant throughout the near field. In the far field characterized by t1 and x1, however,
it is a constant along the characteristic curve dx1/dt1 = vg. This implies a slow variation of
the wave train. The nonlinear and dissipation effects appear in the next-order analysis.

Applying Eq. (79) to Eqs. (77) and (78) yields

L1[R2] = ΓA2e2iθ + c.c., (80)

and a solution of Eq. (80) uniformly valid up to the far field concerned is given by

R2 = c0A2e2iθ + c.c., c0 ≡ Γ

D22
, D22 ≡ D(2k, 2Ω) = −4Δ2Ω2k2

α0
. (81)

Some comments should be made on the second-order solution (81): the complex component
of complementary function (a solution of homogeneous equation) is dropped because it can
be included in A(24), (25). Furthermore, the real component of complementary function is elim-
inated by the boundary conditions at x1 → ∞; if it could not be eliminated, however, it should
be determined by higher-order solvability conditions(16), (26), (27).

Substituting Eq. (81) into Eq. (76) and taking account of the boundary condition at infin-
ity, we obtain⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α2

uG2

uL2

pL2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 d1 0
c2 d2 0
c3 d3 0
c4 d4 cs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A2e2iθ + c.c.
i ∂A/∂t1 eiθ + c.c.

|A|2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (82)

where ci, di (1 � i � 4), and cs are real constants given by

c4 = Δ
2
[
c0

(
4Ω2 − 1

)
+ m5

]
, c3 =

(
c4 − 3γpG0α0c0

1 − α0

)
k
Ω
− α0m3 + m4

2(1 − α0)Ω
,

c1 = − (1 − α0)c3k
α0Ω

− m2

2α0Ω
, c2 = (c1 − 3c0)

Ω

k
+

m1

2k
,

d4 = 2Δ2Ω, d1 =
d4

3α0v
2
p

[b1 − 3(1 − α0)], d2 =
d4

vp

(
1 +

b2

6α0vp

)
,

d3 =
d4

vp

(
1 +

b3

6α0vp

)
, cs = Δ

2
(
2 −Ω2 − 2b2Ωk

)
+ 3γ(3γ − 1)pG0. (83)

Here, the expressions of mi (1 � i � 5) are presented in Eq. (A.4) in Appendix 2.

4.3. NLS equation and nonlinear propagation of envelope wave
Let us proceed to the next-order calculation in order to determine the behavior of the

slowly modulated wave packet as a result of long range propagation with the weak nonlinear,
weak dissipation, and strong dispersion effects.

In the third-order, we have

Lb [R3 α3 uG3 uL3 pL3]T = (N1 N2 N3 N4 N5)T, (84)

where Ni (1 � i � 5) are also explicitly presented in Appendix 1. Equation (84) can be
reduced to the equation for R3,

L1[R3] = N(t0, t1, t2, x0, x1, x2) = Λ1e3iθ + Λ2e2iθ + Λ3eiθ + c.c., (85)

where Λi (1 � i � 3) are the complex variables consisting of A. Here, Λ1 and Λ2 are

Λ1 = λ1A3, Λ2 = iλ2A
∂A
∂x1
, (86)
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Fig. 4 The nonlinear coefficient ν1, dissipation coefficient ν2, and dispersion coefficient
q/2 versus the wavenumber k in the case that the physical quantities except ε and
Ω are the same as those used in Fig. 2, where ε = 0.07 and Ω varies with the
variation of k as shown in Eq. (71). Long waves around k = 0 are outside the
applicability of the present analysis based on parameter scaling (57)–(59).

where the explicit forms of real constants λ1 and λ2 are not shown since they are not essential
for the following discussion.

Imposing the non-secular condition to Eq. (85), we have

Λ3 =

(
−∂D
∂Ω

) ⎡⎢⎢⎢⎢⎣i (∂A
∂t2
+ vg
∂A
∂x2

)
+

q
2
∂2A

∂x2
1

+ ν1|A|2A + iν2A

⎤⎥⎥⎥⎥⎦ = 0, (87)

where the nonlinear coefficient ν1 is a real constant and its explicit form is presented in Ap-
pendix 2, q/2 denotes the dispersion coefficient, and ν2 is given as

ν2 =

(
4μ + Δ3V

)
k2

2
(
3α0 + Δ2k2

) � 0. (88)

Combining Eqs. (79) and (87) with the help of Eq. (15), we obtain

i

(
∂A
∂t
+ vg
∂A
∂x

)
+

q
2
∂2A
∂x2
+ ε2(ν1|A|2A + iν2A) = 0, (89)

in the same manner as in the derivation of Eq. (49). Since ν2 is positive, iν2A in Eq. (89) acts
as a dissipation term, which is resulted from the liquid viscosity μ and liquid compressibility
V as in the case of Π2 in Eq. (53). Thus, Eq. (89) may be called the NLS equation with a
dissipation term. Finally, the NLS equation can be rewritten as

i
∂A
∂τ
+

q
2
∂2A
∂ξ2
+ ν1|A|2A + iν2A = 0, (90)

through the variable transformation

τ ≡ ε2t, ξ ≡ ε(x − vgt). (91)

Figure 4 shows the nonlinear, dissipation, and dispersion coefficients, ν1, ν2, and q/2, as
functions of the wavenumber k. We can see that ν1 is negative for the range shown in Fig. 4.

As a simple explanation of the solution of the NLS equation, we shall consider the
nondissipative case ν2 = 0 (i.e., μ = V = 0) in Eq. (90). An exact solution of Eq. (90)
with ν2 = 0, the envelope soliton solution, is well known(16), (20)

A(τ, ξ) = A0

√
q(k)
ν1(k)

sech [A0(ξ − ξ0)] exp

⎡⎢⎢⎢⎢⎣ iA2
0q(k)τ

2

⎤⎥⎥⎥⎥⎦ , (92)

where A0 and ξ0 are real arbitrary constants. We should emphasize that Eq. (92) is valid for
ν1 � 0 and q � 0. Then, the real amplitude |A| is given by

|A| =
√

q(k)
ν1(k)

sech ξ, (93)
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Fig. 5 The real amplitude |A| for |ξ| � 3 expressed by Eq. (93). The initial void fraction
is chosen as α0 = 0.1, 0.05, and 0.01, the wavenumber is fixed as k = 4, and
other quantities are the same as those used in Fig. 4. The height of the envelope
soliton decreases with the decrease in α0.

where the arbitrary constants are chosen as A0 = 1 and ξ0 = 0. The typical profiles of the real
amplitude |A| for three cases of the initial void fraction α0 are illustrated in Fig. 5. The height
of the envelope soliton decreases with the decrease in α0, as in the case of the soliton solution
of the KdV equation shown in Fig. 3.

The stability of a uniform wave train solution of the NLS equation in the nondissipative
case has been investigated(11), (20): a uniform wave train solution is unstable for qν1 > 0 and is
stable for qν1 < 0. As we can see from Eq. (74) and Fig. 4, the uniform wave train solution
is unstable since both q and ν1 are negative. This implies that disturbances on the uniform
solution grow and the whole wave profile develops into the soliton solution (92).

5. Conclusions

We have presented the unified theory for derivation of nonlinear wave equations in bubbly
liquids, the main ingredients of which are the scaling relations of a set of U∗/c∗L0, R∗0/L

∗,
and ω∗/ω∗B with respect to the nondimensional wave amplitude ε and the method of multiple
scales. The applicability of the theory has been demonstrated in the derivation of the KdVB
equation for a long wave with a low frequency case and the NLS equation for an envelope
of a carrier wave with a high frequency case. Since the physical meaning of the parameter
scaling is clear, the theory can make a definite contribution in not only theoretical but also
experimental studies for the waves in bubbly liquids.

A wide applicability and high expandability are distinguishing features of the present
theory. In fact, as mentioned in §1, the theory is applicable to the system of basic equations
of mixture model as well as that of two-fluid model. Furthermore, it is clearly possible to
apply the theory to a more general set of basic equations including the thermal effects and
various forces exerted on the bubble (e.g., the drag, lift, and so on). The extensions of the
theory to a wave phenomenon including a non-uniformity of initial void fraction and to a
two-dimensional wave motion are underway.

Acknowledgements

This work was carried out by the aid of Research on Advanced Medical Technology,
Ministry of Health, Labor and Welfare (H19-nano-010). The first author was financially sup-
ported from the Japan Society for the Promotion of Science, Research Fellowship for Young
Scientists. The authors would like to express their deepest gratitude toward these grants.

365



Journal of Fluid
Science and Technology

Vol.5, No.3, 2010

Appendix 1. Inhomogeneous terms

The inhomogeneous terms Ki (1 � i � 5) in Eq. (46) are given by

K1 = −∂uG1

∂x1
+
∂

∂t1
(3R1 − α1) + 3

∂R1(α1 − 2R1)
∂t0

+
∂

∂x0
[uG1(3R1 − α1)],

K2 = (1 − α0)
∂uL1

∂x1
− α0
∂α1

∂t1
− α0
∂α1uL1

∂x0
+ (1 − α0)

∂ρL1

∂t0
,

K3 = 3γpG0
∂R1

∂x1
− β1

∂

∂t1
(uG1 − uL1) − β1

(
uG1
∂uG1

∂x0
− uL1

∂uL1

∂x0

)
−β1α1

∂

∂t0
(uG1 − uL1) − β2(uG1 − uL1)

∂α1

∂t0
+ 3γpG0

[
α1
∂R1

∂x0
− (3γ + 1)R1

∂R1

∂x0

]
,

K4 = −(1 − α0)

(
∂pL1

∂x1
+
∂uL1

∂t1

)
+ β1α0

∂

∂t1
(uG1 − uL1) + α0

∂α1uL1

∂t0

+β1α0

(
uG1
∂uG1

∂x0
− uL1

∂uL1

∂x0

)
+ β1α0α1

∂

∂t0
(uG1 − uL1) + β2α0(uG1 − uL1)

∂α1

∂t0

+α0α1
∂pL1

∂x0
− (1 − α0)

∂u2
L1

∂x0
+ α0

⎡⎢⎢⎢⎢⎢⎣pL1 +

(
ω∗BR∗0

U∗

)2
R1

⎤⎥⎥⎥⎥⎥⎦ ∂α1

∂x0
,

K5 =

[
1 +

3γ(3γ − 1)Ω2 pG0

2Δ2

]
R2

1 −Ω2 ∂
2R1

∂t2
0

−
(

4Ω2μ

Δ2
+ ΔV

)
∂R1

∂t0
.

The explicit representations of Mi (1 � i � 5) in Eq. (76) are

M1 = K1, M2 = K2 − (1 − α0)
∂ρL1

∂t0
, M3 = K3, M4 = K4,

M5 = −2
∂2R1

∂t0∂t1
− R1
∂2R1

∂t2
0

− 2uG1
∂2R1

∂t0∂x0
− ∂uG1

∂t0

∂R1

∂x0
− 3

2

(
∂R1

∂t0

)2
+

[
1 +

3γ(3γ − 1)pG0

2Δ2

]
R2

1.

The explicit representations of Ni (1 � i � 5) in Eq. (84) are

N1 = −∂uG1

∂x2
+
∂

∂t2
(3R1 − α1) +

∂

∂t1
[3R1(α1 − 2R1) + 3R2 − α2]

+
∂

∂x1
[uG1(3R1 − α1) − uG2] +

∂

∂x0
[3(uG2R1 + uG1R2) − (α1uG2 + α2uG1)]

+
∂

∂t0

[
3(α1R2 + α2R1) − 3R1R2 − 6α1R2

1 + 10R3
1

]
+ 3
∂uG1R1(α1 − 2R1)

∂x0
,

N2 = (1 − α0)

(
∂uL1

∂x2
+
∂uL2

∂x1

)
− α0

(
∂α1

∂t2
+
∂α2

∂t1

)
− α0
∂α1uL1

∂x1
− α0

∂

∂x0
(α2uL1 + α1uL2),

N3 = 3γpG0
∂R1

∂x2
− β1

∂

∂t2
(uG1 − uL1) − β1

(
uG1
∂uG1

∂x1
− uL1

∂uL1

∂x1

)
+ 3γpG0

∂R2

∂x1

−β1α1
∂

∂t1
(uG1 − uL1) − β2(uG1 − uL1)

∂α1

∂t1
− β1

∂

∂t1
(uG2 − uL2)

+3γpG0

[
α1
∂R1

∂x1
− (3γ + 1)R1

∂R1

∂x1

]
− β2(uG1 − uL1)

(
uG1
∂α1

∂x0
+
∂α2

∂t0

)
−β1

[
α1
∂

∂t0
(uG2 − uL2) + α2

∂

∂t0
(uG1 − uL1)

]
− β2(uG2 − uL2)

∂α1

∂t0

−β1

[
∂

∂x0
(uG1uG2 − uL1uL2) + α1

(
uG1
∂uG1

∂x0
− uL1

∂uL1

∂x0

)]
+3γpG0

⎡⎢⎢⎢⎢⎣α1
∂R2

∂x0
+ α2
∂R1

∂x0
− (3γ + 1)

⎛⎜⎜⎜⎜⎝∂R1R2

∂x0
+ α1R1

∂R1

∂x0
− 3γ + 2

6

∂R3
1

∂x0

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦ ,
N4 = −(1 − α0)

(
∂pL1

∂x2
+
∂uL1

∂t2

)
+ β1α0

∂

∂t2
(uG1 − uL1) + β1α0α1

∂

∂t1
(uG1 − uL1)
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+β1α0

(
uG1
∂uG1

∂x1
− uL1

∂uL1

∂x1

)
+ β2α0(uG1 − uL1)

∂α1

∂t1
+ α0α1

∂pL1

∂x1
+ α0
∂α1uL1

∂t1

−(1 − α0)

⎛⎜⎜⎜⎜⎝∂u2
L1

∂x1
+
∂pL2

∂x1
+
∂uL2

∂t1

⎞⎟⎟⎟⎟⎠ + β1α0

[
α1
∂

∂t0
(uG2 − uL2) + α2

∂

∂t0
(uG1 − uL1)

]
+α0Δ

2Ω2R1
∂α1

∂x1
+ β1α0

[
∂

∂x0
(uG1uG2 − uL1uL2) + α1

(
uG1
∂uG1

∂x0
− uL1

∂uL1

∂x0

)]
+β1α0

∂

∂t1
(uG2 − uL2) + β2α0

[
(uG1 − uL1)

(
uG1
∂α1

∂x0
+
∂α2

∂t0

)
+ (uG2 − uL2)

∂α1

∂t0

]
+α0
∂α1u2

L1

∂x0
+ α0

∂

∂t0
(α1uL2 + α2uL1) − 2(1 − α0)

∂uL1uL2

∂x0
+ α0

(
α1
∂pL2

∂x0
+ α2
∂pL1

∂x0

)
+α0Δ

2Ω2R1
∂α2

∂x0
+ α0

(
Δ2R2 + pL2

) ∂α1

∂x0
− α0

[
Δ2 + 3γ(3γ − 1)pG0/2

]
R2

1
∂α1

∂x0
,

N5 = −2
∂2R1

∂t0∂t2
− ∂

2R1

∂t2
1

− 2
∂2R2

∂t0∂t1
− 2R1

∂2R1

∂t0∂t1
− 2uG1

(
∂2R1

∂t1∂x0
+
∂2R1

∂t0∂x1

)
− 3
∂R1

∂t0

∂R1

∂t1

−∂uG1

∂t0

∂R1

∂x1
− ∂uG1

∂t1

∂R1

∂x0
− R1
∂2R2

∂t2
0

− R2
∂2R1

∂t2
0

− 2uG1

(
R1
∂2R1

∂t0∂x0
+
∂2R2

∂t0∂x0

)
− ∂uG1

∂t0

∂R2

∂x0

−2uG2
∂2R1

∂t0∂x0
− u2

G1
∂2R1

∂x2
0

− ∂R1

∂x0

(
uG1
∂uG1

∂x0
+
∂uG2

∂t0
+ R1
∂uG1

∂t0
+ 3uG1

∂R1

∂t0

)
+
[
2 + 3γ(3γ − 1)pG0/Δ

2
]

R1R2 −
[
1 +
γ(3γ − 1)(3γ + 4)pG0

2Δ2

]
R3

1 −
(

4μ
Δ2
+ ΔV

)
∂R1

∂t0
.

Appendix 2. Nonlinear coefficients

We shall present the explicit forms of the nonlinear coefficients, Π1, Γ, and ν1. Firstly,
we show the nonlinear coefficient of the KdVB equation Π1 (see Eq. (50) and Fig. 2):

Π1 =
1
6

[
k1 − k2

α0
+

(1 − α0 + β1)k3

β1(1 − α0)
+

k4

α0(1 − α0)
− 2Δ2k5

α0Ω2

]
, (A.1)

where

k1 = 6(2 − s1) + 2s2(3 − s1), k2 = −2α0s1s3, k5 = 1 +
3γ(3γ − 1)pG0Ω

2

2Δ2
,

k̂ = (β1 + β2)(s2 − s3)s1 − β1

(
s2

2 − s2
3

)
, k3 = k̂ + 3γpG0(s1 − 3γ − 1),

k4 = −α0̂k + α0s1s4 − 2(1 − α0)s2
3 − 2α0s1s3. (A.2)

The coefficient Γ in Eqs. (78), (80), and (81) is given by

Γ = −2
3

[
Ωm1 − Ωm2

α0
+

1 − α0 + β1

β1(1 − α0)
km3 +

km4

α0(1 − α0)
− 2Δ2k2m5

α0

]
, (A.3)

where

m1 = 6(2 − b1)Ω + 2b2(3 − b1)k, m2 = −2α0b1b3k,

m̂ = (β1 + β2)(b2 − b3)b1Ω − β1

(
b2

2 − b2
3

)
k, m3 = m̂ + 3γpG0(b1 − 3γ − 1)k,

m4 = −α0m̂ + α0b1b4k − 2(1 − α0)b2
3k − 2α0b1b3Ω + α0b1Δ

2Ω2k,

m5 = 1 − 3b2Ωk +
3γ(3γ − 1)pG0

2Δ2
+

5Ω2

2
. (A.4)

Finally, the nonlinear coefficient of the NLS equation ν1 is given as follows (see Eq. (90)
and Fig. 4):

ν1 =
1
3

1
∂D/∂Ω

[
Ωn1 − Ωn2

α0
+

1 − α0 + β1

β1(1 − α0)
kn3 +

kn4

α0(1 − α0)
− Δ

2k2n5

α0

]
, (A.5)
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where

n1 = 3Ω[c0(1 − b1) − c1 + 6b1 − 10] + k[c2(3 − b1) + b2(3c0 − c1 + 9b1 − 18)],

n2 = −α0(b1c3 + b3c1)k,

n̂ = (2β1 − β2)b1(c2 − c3)Ω − (β1 − 2β2)(b2 − b3)c1Ω

−kb1(b2 − b3)[β1(b2 + b3) + β2b2] − β1k(b2c2 − b3c3),

n3 = n̂ + 3γpG0k[2b1c0 − c1 + (3γ + 1)(1 − b1 − c0 + 3γ/2)],

n4 = −α0n̂ + Ωn2/k − 2(1 − α0)b3c3k

+α0k
{
b1c4 − b4c1 + 2Δ2Ω2c1 − b1

[
Δ2(c0 + 1) − 3b2

3 + 3γ(3γ − 1)pG0/2
]}
,

n5 = −3 + c0

(
5Ω2 + 2

)
+ 2b2k[b2k − (1 + 3c0)Ω] + 3γ(3γ − 1)(c0 − 2 − 3γ/2)pG0/Δ

2.

(A.6)

As can be seen, the second coefficient of virtual mass force β2 appears in k̂, m̂, and n̂
in the nonlinear coefficients Π1, Γ, and ν1. The second coefficient β2 is included also in the
inhomogeneous terms Ki, Mi, and Ni (i = 3, 4) presented in Appendix 1. The third coefficient
β3 does not appear in the approximation examined in this paper.
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