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ABSTRACT

Weakly nonlinear propagation of pressure waves in initially quiescent compressible liquids uniformly containing many spherical
microbubbles is theoretically studied based on the derivation of the Korteweg–de Vries–Burgers (KdVB) equation. In particular, the
energy equation at the bubble–liquid interface [Prosperetti, J. Fluid Mech. 222, 587 (1991)] and the effective polytropic exponent are
introduced into our model [Kanagawa et al., J. Fluid Sci. Technol. 6, 838 (2011)] to clarify the influence of thermal effect inside the
bubbles on wave dissipation. Thermal conduction is investigated in detail using some temperature-gradient models. The main results are
summarized as follows: (i) Two types of dissipation terms appeared; one was a well-known second-order derivative comprising the
effect of viscosity and liquid compressibility (acoustic radiation) and the other was a newly discovered term without differentiation
comprising the effect of thermal conduction. (ii) The coefficients of the KdVB equation depended more on the initial bubble radius
rather than on the initial void fraction. (iii) The thermal effect contributed to not only the dissipation effect but also to the nonlinear
effect, and nonlinearity increased compared with that observed by Kanagawa et al. (2011). (iv) There were no significant differences
among the four temperature-gradient models for milliscale bubbles. However, thermal dissipation increased in the four models for
microscale bubbles. (v) The thermal dissipation effect observed in this study was comparable with that in a KdVB equation derived by
Prosperetti (1991), although the forms of dissipation terms describing the effect of thermal conduction differed. (vi) The thermal dissi-
pation effect was significantly larger than the dissipation effect due to viscosity and compressibility.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0028655

I. INTRODUCTION

The pressure wave in a liquid containing many spherical
microbubbles develops into a shock wave owing to the competition
between a wave nonlinearity and a dissipation of the medium or
into a solitary wave through competition between the wave nonline-
arity and a dispersion due to bubble oscillations.1,2 As there are sig-
nificant differences between shock and solitary waves, it is
important to determine whether the pressure wave develops into
the shock wave or the solitary wave. Therefore, quantitative under-
standing of the nonlinearity, dissipation, and dispersion of the pres-
sure wave is desired. However, it is difficult to understand the

contributions of the nonlinearity, dissipation, and dispersion of the
pressure wave to wave propagation directly through experiments or
numerical simulations.3–9 For weakly nonlinear pressure waves,10

we can theoretically derive the weakly nonlinear wave equation as
an approximate equation describing the spatio-temporal develop-
ment of the waveform obtained owing to the balance among the
nonlinearity, dissipation, and dispersion of the wave.10 Then, we
can understand the relative sizes of the dissipation and dispersion
contributing to the nonlinearity. There are many types of weakly
nonlinear wave equations describing nonlinear wave propagation in
bubbly liquids.11–27 In particular, the Korteweg–de Vries–Burgers
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(KdVB) equation for a long wave with a low frequency is one of
the most famous equations because it is derived in many theoretical
studies;11–13,17,18,24–27 moreover, its solution agrees with the wave-
forms observed in several experiments.28–30

van Wijngaarden2 conducted pioneering work in deriving the
Korteweg–de Vries (KdV) equation for pressure waves in a bubbly
liquid but did not consider the dissipation effect. Subsequently, van
Wijngaarden11 derived the KdVB equation incorporating the dissi-
pation effect. Following the derivation of the KdVB equation by van
Wijngaarden,11 several researchers derived the KdVB equations con-
sidering different scenarios involving bubbly liquids. In particular,
Kuznetsov et al.28 proved that the experimental results and theoreti-
cal predictions obtained using the KdVB equation incorporating vis-
cosity, compressibility, and thermal conductivity of a bubbly liquid
agreed well. Prosperetti13 examined the effect of thermal conduction
on single bubble oscillations, incorporated its result into basic equa-
tions for bubbly liquids, and then derived KdVB equations consider-
ing dissipation effects due to thermal conduction. The incorporation
of compressibility and thermal conduction in deriving the KdVB
equation by Kuznetsov et al.28 may be empirical. Later, a detailed
explanation on dissipation due to thermal conduction was provided
by Prosperetti.13 In this work,13 in addition to the thermal conduc-
tion, the liquid viscosity at the bubble–liquid interface was consid-
ered, but liquid compressibility was not considered. Furthermore,
although an effective polytropic exponent was introduced,13 the
effect of thermal conduction was discussed only in terms of isother-
mal or adiabatic processes. The influence of the effective polytropic
exponent, which reflects the thermodynamic process inside the bub-
ble, has not been investigated adequately. Recently, in our theoretical
studies on waves in bubbly liquids,17,18 the viscosity at the bubble–
liquid interface and liquid compressibility as the dissipation effect
were considered; moreover, the viscosity of the bubbly liquid and
thermal conduction through the bubbly liquid were also
considered.31,32

Table I summarizes the four dissipation factors used in the
present and previous studies.13,18 There is no exhaustive study incorpo-
rating these four dissipation factors on nonlinear wave propagation,
except for the present study. Therefore, the purpose of this study is
to derive the KdVB equation incorporating the four dissipation fac-
tors, i.e., the viscosity of the bubbly liquid and that at the bubble–
liquid interface, thermal conduction at the bubble–liquid interface,
and acoustic radiation due to liquid compressibility. Based on the
derived KdVB equation, we focus on analyzing the thermal conduc-
tion at the interface and thermodynamics inside the bubble to theo-
retically clarify their effects on nonlinear wave propagation. We also
utilize some popular models for evaluating the temperature-gradient

at the bubble–liquid interface using (11) and determine the differ-
ences among these models.

This paper is organized as follows: Section II introduces the basic
equations and perturbation expansions based on the multiple-scales
method.10 In particular, the energy equation for the bubble–liquid
interface and the effective polytropic exponent13 are incorporated into
our model to investigate the thermal effect. Section III presents the
derivation of the KdVB equation and explains the appearance of two
dissipation terms; one is the well-known second-order derivative with
respect to the space and the other is a newly discovered term without
differentiation. Section IV describes the coefficients of the KdVB equa-
tion and clarifies the difference among the present and previous coeffi-
cients. We observe that the thermal effect contributes not only to wave
dissipation but also to wave nonlinearity, and thermal conduction
strongly contributes to dissipation. Section V presents the conclusions
of the study.

II. PROBLEM FORMULATION
A. Problem

We consider one-dimensional (i.e., plane) weakly nonlinear pres-
sure waves with a low frequency and long wavelength in a liquid uni-
formly containing many spherical gas bubbles. We focus on
examining the effect of the thermal conduction at the bubble–liquid
interface on wave propagation.

We use the following assumptions for formulating the problem:
(i) The bubbly liquid is initially quiescent. (ii) The bubbles do not coa-
lesce, break up, appear, and disappear. (iii) The gas viscosity and bulk
viscosity are ignored. (iv) The phase change and mass transport across
the bubble–liquid interface are ignored. (v) The temperature of the liq-
uid phase is constant. (vi) The effect of mass transfer33 is neglected; we
will extend the recent result of linear theory33 to weakly nonlinear the-
ory in our forthcoming study. (vii) The theory of dynamics of an
encapsulated bubble (i.e., the effect of a shell of the bubble) has
recently been established34,35 for a medical application such as a con-
trast agent.36 Although the effect of the shell is ignored in this study
for simplicity, our another study investigated the effect of the elasticity
and viscosity of the shell on each coefficient in the KdVB equation.37

B. Basic equations

We use the following conservation equations of mass and
momentum for bubbly liquids:38–40

@q�

@t�
þ @q�u�

@x�
¼ 0; (1)

TABLE I. Summary of the four dissipation factors in this study and previous studies.13,18

Viscosity of the Viscosity at the bubble–liquid Liquid compressibility Thermal conduction at the
bubbly liquid interface bubble–liquid interface

Prosperetti13 Not considered Considered Not considered Considered
Kanagawa et al.18 Not considered Considered Considered Not considered
This study Considered Considered Considered Considered
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@q�u�

@t�
þ @q�u�2

@x�
þ @p�L

@x�
� 4
3
l�

@2u�

@x�2
¼ 0; (2)

where t� is the time, x� is the space coordinate, q� is the density, u� is
the fluid velocity, p� is the pressure, and l� is the viscosity; the sub-
script L denotes the liquid phase and � denotes a dimensional variable.
Note that the pressure of the bubbly liquid is equivalent to the aver-
aged pressure of the liquid.18 Note that (1) and (2) are the volume
averaged equations and require the following condition:2,41,42

R�
0 � N��1=3

0 � L�; (3)

where R�
0 is the initial bubble radius, N

�
0 is the initial number density

of the bubbles, and L� is the typical wavelength.
The bubbly liquid is assumed to be a Newtonian fluid, and the

bulk viscosity is ignored based on the Stokes assumption.43 As pro-
posed in some works,44,45 the viscosity of the bubbly liquid, l�, is
expressed as follows:

l� ¼ ð1þ a0Þl�L; (4)

where a0 is the initial void fraction. Here, l� is higher than l�L
because the mechanical work acting on the water is reduced and
the velocity of the flow field is reduced due to the containing
bubbles.46 Note that (4) is applicable when a0 < 0.05.47 The
volume averaged density of the bubbly liquid, q�, is defined as

q� ¼ ð1� aÞq�L; (5)

where a is the void fraction, and the density of the gas is neglected.
The void fraction a is associated with the number density of the
bubbles, N�, through the following equation:

a ¼ 4
3
pR�3N�; (6)

@N�

@t�
þ @N�u�

@x�
¼ 0; (7)

where R� is a representative bubble radius. Equation (6) defines the
void fraction, a, and (7) represents the conservation of the number
density of the bubbles, N�.

Substituting (6) and (16) below into (7), and (5) into (1) and (2)
gives

@

@t�
aq�G
� �þ @

@x�
aq�Gu

�� � ¼ 0; (8)

@

@t�
1� að Þq�L

� �þ @

@x�
1� að Þq�Lu�

� � ¼ 0; (9)

@

@t�
1� að Þq�Lu�

� �þ @

@x�
1� að Þq�Lu�2

� �
þ @p�L

@x�
� 4
3
l�

@2u�

@x�2
¼ 0;

(10)

where the subscript G denotes the gas phase.
To examine the thermal effect inside the bubble, we use the fol-

lowing relationship at the bubble–liquid interface, proposed by
Prosperetti:13

Dp�G
Dt�

¼ 3
R� ðj� 1Þk�G

@T�
G

@r�

����
r�¼R�

� jp�G
DR�

Dt�

" #
; (11)

where T�
G is the gas temperature, k�G is the thermal conductivity of the

gas inside the bubble and j is the ratio of specific heats. Note that R� is
not R�(t�), but R�(t�, x�); the bubble radius is regarded as a field vari-
able defined in all t� and x�.48 Note that p�G, T

�
G, and R

� do not depend
only on the time t� but also on the space x�, e.g., p�Gðt; xÞ. We regard
the temperature-gradient @T�

G=@r
�jr�¼R� as field variables. Further,

(11) was recently extended to describe a nonuniform temperature dis-
tribution inside the bubble by Zhou & Prosperetti.49

The Keller equation for spherical oscillations of a bubble in a
compressible liquid is given as follows:50

1� 1
c�L0

DR�

Dt�

� �
R� D

2R�

Dt�2
þ 3
2

1� 1
3c�L0

DR�

Dt�

� �
DR�

Dt�

� �2

¼ 1þ 1
c�L0

DR�

Dt�

� �
P�

q�L0
þ R�

q�L0c
�
L0

D
Dt�

p�L þ P�� �
; (12)

where P� is the liquid pressure averaged on the bubble–liquid inter-
face, c�L0 is the sound speed in the initial unperturbed pure water, the
subscript 0 denotes the initial unperturbed state, and the material dif-
ferential operator, D/Dt� stands for the following differential operator:

D
Dt�

¼ @

@t�
þ u�

@

@x�
: (13)

To close the set represented in (8)–(12), we introduce the follow-
ing equations:

(i) Tait’s equation of state for liquid,

p�L ¼ p�L0 þ
q�L0c

�2
L0

n
q�L
q�L0

� �n

� 1

" #
: (14)

(ii) Equation of state for ideal gas,

p�G
p�G0

¼ q�G
q�G0

T�
G

T�
0
: (15)

(iii) Conservation equation of mass inside the bubble,

q�G
q�G0

¼ R�
0

R�

� �3

: (16)

(iv) Balance of normal stresses across the bubble–liquid interface,

p�G � p�L þ P�� � ¼ 2r�

R� þ 4l�L
R�

DR�

Dt�
; (17)

where r� is the surface tension.

C. Temperature-gradient model

In this study, we not only incorporate the thermal conductivity at
the bubble–liquid interface by introducing (11) but also examine the
effect of the thermal conductivity resulting from the differences among
the temperature-gradient models @T�

G=@r
�jr�¼R� in the first term on

the right-hand side of (11). We use the following four models:51–54
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(i) Shimada et al. (SMK) model,51

@T�
G

@r�

����
r�¼R�

¼ 5
4
T�
0 � T�

G

R� : (18)

(ii) Lertnuwat et al. (LSM) model,52

@T�
G

@r�

����
r�¼R�

¼ T�
0 � T�

Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pD�=x�

B

p : (19)

(iii) Preston et al. (PCB) model,53

@T�
G

@r�

����
r�¼R�

¼ T�
0 � T�

G

jeL�
Pj

: (20)

(iv) Sugiyama et al. (STM) model,54

@T�
G

@r�

����
r�¼R�

¼ ReðeL�
PÞðT�

0 � T�
GÞ

jeL�
Pj2

þ ImðeL�
PÞ

x�
BjeL�

Pj2
DT�

G

Dt�
; (21)

where T�
0 is the initial temperature, D� is the thermal diffusivity of the

gas inside the bubble, and Re and Im denote the real and imaginary
parts, respectively. Here x�

B is the natural frequency of a single bubble
and is given as follows:54

x�
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3cep

�
G0 � 2r�=R�

0

q�L0R
�2
0

� 2l�e0
q�L0R

�2
0

� �2
s

; (22)

ce ¼ Re
CN

3

� �
; (23)

l�e0 ¼ l�L þ Im
p�G0CN

4x�
B

� �
; (24)

where ce is the effective polytropic exponent; we do not assume explic-
itly ce, except for Sec. IV. Furthermore, we consider l�e0 as the initial
effective viscosity. The explicit form of (22) is different from that used
in our previous studies.17,18,21,25–27,31,32,37

Moreover, the complex number CN is given as54

CN ¼ 3a2Nj
a2N þ 3ðj� 1ÞðaN coth aN � 1Þ ; (25)

aN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx�

Bp
�
G0R

�2
0

2ðj� 1ÞT�
0k

�
G

s
ð1þ iÞ; (26)

where aN is also a complex number and i denotes the imaginary unit.
Therefore, eL�

P in (20) and (21) is the complex number having the
dimension of length and is given by

eL�
P ¼ R�

0ða2N � 3aN coth aN þ 3Þ
a2NðaN coth aN � 1Þ : (27)

Although the validity of LSM model (19) is confirmed in the range
R�
0 ¼ Oð10�5mÞ, we use the LSM model (19) in the range

10�5m � R�
0 � 10�3m. Let us summarize the main features of (18)–

(21) in Table II.

D. Multiple scale analysis

The time t�, and space coordinate x� are nondimensionalized
using t ¼ x�t� and x ¼ x�/L�, respectively, where x� is the typical
angular frequency of a wave and L� is the typical wavelength.

Next, we introduce new independent variables based on the typi-
cal dimensionless amplitude of a wave e (�1) for the near field [i.e.,
the temporal and spatial scales of O(1)] and far field [i.e., the temporal
and spatial scales of O(1/e)],10

t0 ¼ t; x0 ¼ x;

t1 ¼ et; x1 ¼ ex:

(
(28)

The dependent variables are nondimensionalized and expanded
in powers of e,

R�

R�
0
� 1 ¼ eR1 þ e2R2 þ Oðe3Þ; (29)

a
a0

� 1 ¼ ea1 þ e2a2 þ Oðe3Þ; (30)

T�
G

T�
0
� 1 ¼ eTG1 þ e2TG2 þ Oðe3Þ; (31)

u�

U� ¼ eu1 þ e2u2 þ Oðe3Þ; (32)

where U� is the typical propagation speed of a wave. In the following,
nondimensional expressions T¼T�

G/T
�
0 and R¼R�/R�

0 are also used.
The expansion of the liquid density in e is given as follows:18

TABLE II. Summary of the main features of temperature-gradient models.

Main features

Shimada et al.51 Estimated a steady-state solution of the temperature-gradient at the bubble–liquid interface
when there is a uniform heat source inside the bubble.

Lertnuwat et al.52 Estimated the thermal penetration length inside the bubble.
Preston et al.53 Modeled strictly based on linear theory.
Sugiyama et al.54 Modeled based on the PCB model (20) and incorporated the nonlinearity of bubble oscillation

and a phase difference between the average temperature inside the bubble and the
temperature-gradient at the bubble–liquid interface.
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q�L
q�L0

¼ 1þ e2qL1 þ e3qL2 þ Oðe4Þ; (33)

which is determined from (14) and (38). Furthermore, the pressures
are nondimensionalized as

pL ¼ p�L
q�L0U�2 ; pL0 ¼ p�L0

q�L0U�2 ; pG0 ¼ p�G0
q�L0U�2 ; (34)

where pL, pL0, and pG0 areO(1); pL is expanded as

pL ¼ pL0 þ epL1 þ e2pL2 þ Oðe3Þ: (35)

Furthermore, the nondimensional liquid viscosity and initial
effective viscosity are defined using e,

l�L
q�L0U�L�

¼ lLe; (36)

l�e0
q�L0U�L�

¼ le0e; (37)

where lL and le0 are constants of O(1). In addition, there exists a rela-
tionship U� ¼ L�x� among U�, L�, and x�, and we determine the val-
ues of the three nondimensionalized ratios as follows:17,18,42

U�

c�L0
;
R�
0

L�
;
x�

x�
B

� �
¼ ðV ffiffi

e
p

;D
ffiffi
e

p
;X

ffiffi
e

p Þ; (38)

where V, D, and X are constants of O(1).

E. Nondimensionalization of energy equation (11)

Equation (11) is nondimensionalized as

D
Dt

TGR
3ðj�1Þ� �

¼ R3j�1 3ðj� 1Þk�G
p�G0x

�
BR

�
0

@T�

@r�

����
r�¼R�

: (39)

The nondimensionalized expression on the right-hand side of (39)
depends on which temperature-gradient models we choose. First, in
the case of (18),

ðRHSÞ ¼ 3ðj� 1Þk�G
p�G0x�R�

0

5
4
T�
0

R�
0
R3j�2ð1� TGÞ; (40)

and then, we determine the sizes of the nondimensional ratio in (40)
using e as follows:

3ðj� 1Þk�G
p�G0x�R�

0

5
4
T�
0

R�
0
� fSMKe: (41)

In the same manner, we also determine the sizes of the nondimen-
sional ratios in the other cases: In (19),

ðRHSÞ ¼ 3ðj� 1Þk�G
p�G0x�R�

0

T�
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pD�=x�
B

p R3j�1ð1� TGÞ; (42)

3ðj� 1Þk�G
p�G0x�R�

0

T�
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pD�=x�
B

p � fLSMe: (43)

In (20),

ðRHSÞ ¼ 3ðj� 1Þk�G
p�G0x�R�

0

T�
0

jeL�
Pj
R3j�1ð1� TGÞ; (44)

3ðj� 1Þk�G
p�G0x�R�

0

T�
0

jeL�
Pj
� fPCBe: (45)

In (21),

ðRHSÞ ¼ 3ðj� 1Þk�G
p�G0x�R�

0
R3j�1 ReðeL�

PÞT�
0

jeL�
Pj2

ð1� TGÞ
"

þ x�ImðeL�
PÞT�

0

x�
BjeL�

Pj2
DTG

Dt

#
; (46)

3ðj� 1Þk�G
p�G0x�R�

0

ReðeL�
PÞT�

0

jeL�
Pj2

� fSTM1e; (47)

3ðj� 1Þk�G
p�G0x�R�

0

x�ImðeL�
PÞT�

0

x�
BjeL�

Pj2
� fSTM2e; (48)

where fSMK, fLSM, fPCB, fSTM1, and fSTM2 are constants of O(1). Note
that (43), (45), (47), and (48) determine the sizes of nondimensional
ratios.

III. DERIVATION OF KdVB EQUATION

This section focuses on the derivation of the KdVB equation, and
the discussions will be presented in Sec. IV.

A. Leading order of approximation

Equating the coefficients of the like powers of e in the governing
equations (8)–(12), a set of linearized first-order equations is derived,

@a1
@t0

� 3
@R1

@t0
þ @u1

@x0
¼ 0; (49)

a0
@a1
@t0

� 1� a0ð Þ @u1
@x0

¼ 0; (50)

1� a0ð Þ @u1
@t0

þ @pL1
@x0

¼ 0; (51)

@TG1

@t0
þ 3ðj� 1Þ @R1

@t0
¼ 0; (52)

�D2

X2 R1 � pL1 þ pG0T1 þ 3ðce � 1ÞpG0R1 þ 4l2e0
D2 ¼ 0: (53)

The differences between our previous and present studies are the
appearances of the energy equation (52) and the third, fourth, and fifth
terms in (53).

We summarize (49)–(53) into the following single partial differ-
ential equation for the first-order perturbation of the bubble radius,
R1,

@2R1

@t20
� v2p

@2R1

@x20
¼ 0; (54)
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where the phase velocity vp is given by

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 3ðj� ceÞpG0

3a0ð1� a0Þ

s
: (55)

Next, setting vp : 1, for simplicity, yields

U� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�2
0 x�2

B þ 3ðj� ceÞp�G0=q�L0
3a0ð1� a0Þ

s
: (56)

We emphasize that the phase velocity U� is affected by the effective
polytropic exponent ce describing thermodynamics inside the bubble,
although the phase velocity did not contain ce in our previous study
[see Eq. (24) in Ref. 18].

In the following, we describe the right-running wave in the leading
order of approximation, and a phase functionu0 is introduced as follows:

u0 ¼ x0 � t0: (57)

With R1: f(u0; t1, x1), (54) reduces to

@f
@t0

þ @f
@x0

¼ 0: (58)

In the near field, all the first-order perturbations a1, u1, TG1, pL1, and
R1 are governed by (58). Rewriting (49)–(53) using u0 and integrating
them with respect tou0, we obtain the following relationships:

a1 ¼ s1f ; u1 ¼ s2f ; TG1 ¼ s3f ; pL1 ¼ s4f ; (59)

s1 ¼ 3ð1� a0Þ; s2 ¼ �3a0; s3 ¼ �3ðj� 1Þ;
s4 ¼ �3a0ð1� a0Þ: (60)

Here, the constants of integration are dropped because of boundary
conditions at x0!1, where the bubbly liquid is uniform and at rest.

B. Second order of approximation and resultant KdVB
equation

The set of second-order equations is expressed as

@a2
@t0

� 3
@R2

@t0
þ @u2

@x0
¼ K1; (61)

a0
@a2
@t0

� 1� a0ð Þ @u2
@x0

¼ K2; (62)

1� a0ð Þ @u2
@t0

þ @pL2
@x0

¼ K3; (63)

@TG2

@t0
þ 3ðj� 1Þ @R2

@t0
¼ K4; (64)

�D2

X2 R2 � pL2 þ pG0T2 þ 3ðce � 1ÞpG0R2 ¼ K5; (65)

where the inhomogeneous terms Kj (j¼ 1, 2, 3, 5) are obtained as

K1 ¼ 3
@

@t0
a1R1 � 2R2

1

� �þ @

@x0
ð3u1R1 � a1u1Þ

� @a1
@t1

� 3
@R1

@t1
þ @u1

@x1

� �
; (66)

K2 ¼ 1� a0ð Þ @qL1
@t0

� a0
@a1u1
@x0

� a0
@a1
@t1

� 1� a0ð Þ @u1
@x1


 �
; (67)

K3 ¼ a0
@a1u1
@t0

� ð1� a0Þ @u
2
1

@x0
� 1� a0ð Þ @u1

@t1
þ @pL1

@x1


 �
þ 4

3
ð1þ a0Þl @

2u1
@x20

; (68)

K5 ¼D2 @
2R1

@t20
þ 3pG0R1T1 þ 4l2e0

D2 R1

� VD 3ðce � 1ÞpG0 � D2

X2


 �
@R1

@t0
þ pG0

@T1

@t0

( )

� R2
1 3ð2� ceÞpG0 þ

D2

X2


 �
þ 4l

@R1

@t0
: (69)

Here, the explicit form of K4 depends on which the temperature-
gradient models, i.e., (18)–(21), are used:

(i) For the cases of (18)–(20),

K4 ¼ � @TG1

@t1
þ 3ðj� 1Þ @R1

@t1


 �
� u1

@TG1

@x0
� 3ðj� 1Þu1 @R1

@x0

� 3ðj� 1Þ½3ðj� 1Þ � 1�
2!

@R2
1

@t0
� 3ðj� 1Þ @TG1R1

@t0
þ fTG1: (70)

(ii) For the case of (21),

K4 ¼ � @TG1

@t1
þ 3ðj� 1Þ @R1

@t1


 �
� u1

@TG1

@x0
� 3ðj� 1Þu1 @R1

@x0

� 3ðj� 1Þ½3ðj� 1Þ � 1�
2!

@R2
1

@t0
� 3ðj� 1Þ @TG1R1

@t0

þ fSTM1TG1 þ fSTM2
@TG1

@t0
; (71)

where f in (70) represents fSKM, fLSM, and fPCB. Then, we obtain the
inhomogeneous wave equation from the approximation of O(e2),

@2R2

@t20
� @2R2

@x20
¼ Kðf ;u0; t1; x1Þ

¼ @

@u0

1
3
K1 � 1

3a0
K2 þ 1

3a0ð1� a0ÞK3



þ pG0

3a0ð1� a0ÞK4 þ 1
3a0ð1� a0ÞK5

�
: (72)

Using the solvability condition10,17,18 to (72), we finally derive

@f
@s

þP1f
@f
@n

þP21
@2f

@n2
þP22f þP3

@3f

@n3
¼ 0; (73)

s ¼ et; n ¼ x � ð1þ eP0Þt; (74)

where s and n are the transformed time and space coordinate, respec-
tively, P0 is the advection coefficient, P1 is the nonlinear coefficient,
P21 is the dissipation coefficient due to viscosity and acoustic radia-
tion, P22 is the newly obtained dissipation coefficient due to thermal
conductivity, andP3 is the dispersion coefficient.
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Moreover, the explicit forms of the coefficients in (73), i.e., P1,
P21,P22, andP3, are given as follows:

P1 ¼ 1
6

k1 � k2
a0

þ k3
a0ð1� a0Þ þ

pG0k4
a0ð1� a0Þ þ

k5
a0ð1� a0Þ


 �
< 0;

(75)

k1 ¼ 6ð2� s1Þ þ 2s2ð3� s1Þ; k2 ¼ �2a0s1s2; k3 ¼ 0;

k4 ¼ 6 3ðj� 1Þs3 � ð3j� 3Þð3j� 4Þ
2!


 �
;

k5 ¼ �6
D2

X2 þ 3ð2� ce � s3ÞpG0

 �

;

(76)

P21 ¼ � 1
6a0ð1� a0Þ � 4

3
s2ð1þ a0ÞlL þ 4lL

�
þ VD

D2

X2 � ½3ðce � 1Þ þ s3�pG0
� 
�

< 0; (77)

P22 ¼ � pG0
6a0ð1� a0Þ fs3 > 0; (78)

P3 ¼ D2

6a0ð1� a0Þ > 0; (79)

where f represents fSKM, fLSM, fPCB, and fSTM1. Remarking that P1,
P22, andP3 do not depend on a0 but depend on R�

0. The explicit form
of the advection coefficient, P0, depends on the temperature-gradient
models:

(i) For the cases of (18)–(20),

P0 ¼ 2l2e0
3a0ð1� a0ÞD2 �

ð1� a0Þ2V2

2
: (80)

(ii) For the case of (21),

P0 ¼ 2l2e0
3a0ð1� a0ÞD2 �

pG0
6a0ð1� a0Þ fSTM2s3 �

ð1� a0Þ2V2

2
: (81)

As shown in (80) and (81), the initial effective viscosity is included in
the natural frequency (22), newly introduced in this study.
Furthermore, when we use model (21), the coefficientP0 included the
phase difference between the temperature gradient, @T�

G=@r
�jr�¼R� ,

and the average temperature inside the bubble, T�
G.

54

IV. DISCUSSION

In this section, we discuss the differences among the present
study and two previous studies (i.e., Refs. 13 and 18). Before the dis-
cussion, we introduce the KdVB equations derived in the previous
studies.13,18

The one derived in our previous study18 is given by

@f
@s

þ fP1 f
@f
@n

þ fP2
@2f

@n2
þ fP3

@3f

@n3
¼ 0; (82)

s ¼ et; n ¼ x � 1þ efP0

� �
t; (83)

with

fP0 ¼ �ð1� a0Þ2V2

2
; (84)

fP1 ¼ 1
6

ek1 � ek2
a0

þ
ek3

a0ð1� a0Þ þ
ek4 þ 6 ek5

" #
< 0; (85)

fP2 ¼ � 1
6a0ð1� a0Þ 4lL þ

VD3

X2

� �
< 0; (86)

fP3 ¼ D2

6a0ð1� a0Þ > 0; (87)

where ekjðj ¼ 1; 2;…; 5Þ are given by

ek1 ¼ k1; ek2 ¼ k2; ek3 ¼ k3 ¼ 0; ek4 ¼ 0;

ek5 ¼ 1þ cð3c� 1ÞpG0
2a0ð1� a0Þ :

(88)

In our previous study,18 we did not use ce but used c and did not con-
sider thermal conductivity. In the following, we express the quantity
obtained in our previous study18 using the symbol �.

Furthermore, we use Prosperetti’s equation13 as the other KdVB
equation,

@f
@s

þ cP1 f
@f
@n

þ cP2
@2f

@n2
þ cP3

@3f

@n3
¼ 0; (89)

s ¼ et; n ¼ x � t; (90)

with

cP1 ¼ � 1þ 6� w

2w2

� �
< 0; (91)

cP2 ¼ � 1

ew2 M þ 1
2
j� 1
5jd

� �
< 0; (92)

cP3
¼ Y2

2ew2 > 0; (93)

where w, w2, M, d, and Y2 are the nondimensional numbers
defined in Eqs. (2.20), (7.8), (2.22), (2.14), and (7.21) of
Prosperetti’s paper,13 respectively (see the detailed definitions and
explanations in Ref. 13); the other symbols (i.e., f, s, n, x, t, e, and
j) are the same as those in the present study. In the following, we
express the original coefficients obtained in Prosperetti’s study13 as
the symbolb. Note that coefficients (90) and (91) assuming an iso-
thermal case are used because the analytically explicit expression
of coefficients is impossible for an adiabatic case (see the detailed
explanation in Ref. 13).

A. Effective polytropic exponent

In this study, Fig. 1 shows the dependence of the effective poly-
tropic exponent, ce, on the initial bubble radius, R�

0. For small R�
0, the

thermodynamic processes occurring inside the bubble become isother-
mal (i.e., ce ! 1), and for large R�

0, the processes become adiabatic (i.
e., ce! j).
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B. Dispersion coefficient

Figure 2 shows the dependence of the dispersion coefficients,

namely, the present coefficient P3 and our previous coefficient18 fP3

on R�
0. As fP3 ¼ cP3 , Prosperetti’s coefficient

13 cP3 is omitted in Fig. 2.

While fP3 is constant,P3 depends on R�
0.

C. Nonlinear coefficient

First, we compare our present coefficient P1 with our previous

coefficient18 cP1 . Figure 3 shows the dependence of the nonlinear coef-

ficients, P1 and fP1 on R�
0; jP1j is larger than jfP1 j. We decompose

P1 and fP1 into

P1 ¼ p1 þ p2 þ p3 þ p4 þ p5; (94)

fP1 ¼ ep1 þ ep2 þ ep3 þ ep4 þ ep5 ; (95)

with

p1 ¼ k1
6
; p2 ¼ � k2

6a0
; p3 ¼ k3

6a0ð1� a0Þ ;

p4 ¼ pG0k4
6a0ð1� a0Þ ; p5 ¼ k5

6a0ð1� a0Þ ;
(96)

ep1 ¼
ek1
6
; ep2 ¼

ek2
6a0

; ep3 ¼
ek3

6a0ð1� a0Þ ;

ep4 ¼
ek4
6
; ep5 ¼ ek5 : (97)

Here, pj and epjð j ¼ 1; 2;…; 5Þ represent the nonlinear effect of the
basic equations (8)–(12) [i.e., the conservation of number density (8),
mass (9), momentum (10), and energy (11), and bubble dynamics
(12)] on P1 and fP1 . Note that (i) pj ¼ epj ðj ¼ 1; 2; 3Þ; (ii) the
momentum conservation equation does not affect the nonlinearity
because p3 ¼ ep3 ¼ 0 (k3 ¼ 0); (iii) as thermal conduction was not
incorporated in our previous study,18 ep4 ¼ 0.

Figure 4 shows each contribution of pj and epjð j ¼ 1; 2;…; 5Þ to
the nonlinear coefficients, P1 and fP1 . The present nonlinearity (i.e.,
absolute value of nonlinear coefficient) increases owing to the intro-
duction of p4 and the increase in p5, resulting from the introduction of
(11) and the incorporation of the temperature variation inside the
bubbles to (15). Second, we compare our present coefficient P1, our

previous coefficient18 fP1 , and Prosperetti’s coefficient13 cP1 . Figure 5
shows the dependence of the nonlinear coefficients, the present coeffi-

cient P1, and Prosperetti’s coefficient13 cP1 on R�
0; jP1j is larger than

jcP1 j.

D. Effect of viscosity and compressibility on
dissipation coefficient

Here, we present the most important discussion, i.e., dissipation
coefficient. As summarized in Table I, dissipation factors considered
are the viscosity, liquid compressibility (i.e., acoustic radiation), and
thermal conduction. Our present KdVB equation (73) comprises two
types of dissipation coefficients: One is the coefficient of the well-
known second-order derivative with respect to the space, P21, which
includes the effects of the viscosity of the bubbly liquid, liquid viscosity
at the bubble–liquid interface, and liquid compressibility. The other is

FIG. 1. Dependence of the effective polytropic exponent ce on the initial bubble
radius R�

0 for X ¼ 1,
ffiffi
e

p ¼ 0:15, a0 ¼ 0.05, p�L0 ¼ 101325 Pa, q�L0¼ 1000 kg=m3, r� ¼ 0.0728 N/m, c�L0 ¼ 1500m=s, l�L ¼ 1	 10�3 Pa 
 s, and
k�G ¼ 0:0241W=ðm 
 KÞ. The same condition is used in Figs. 2–10.

FIG. 2. Dependence of the dispersion coefficients P3 and fP3 on R�
0 .

FIG. 3. Dependence of nonlinear coefficients P1 and fP1 on R�
0 .
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the newly discovered coefficient of the term without differentiation,
P22, which includes the effect of thermal conduction. Both previous
studies (Refs. 13 and 18) derived only the coefficients of the second-

order derivatives with respect to the space, fP2 and cP2 . Our previous

coefficient fP2 included the effects of the liquid viscosity at the bubble-
liquid interface and acoustic radiation, whereas Prosperetti’s coeffi-

cient cP2 included the effects of the liquid viscosity at the
bubble–liquid interface and thermal conductivity.

Next, we discuss each dissipation factor. The three dissipation
coefficients are decomposed into

P21 ¼ pvis þ pac; (98)

pvis ¼ � 1
6a0ð1� a0Þ � 4

3
s2ð1þ a0ÞlL þ 4lL


 �
;

pac ¼ � VD
6a0ð1� a0Þ

D2

X2 � ½3ðce � 1Þ þ s3�pG0
� 


;

(99)

fP2 ¼ fpvis þ fpac ; (100)

fpvis ¼ � 4lL
6a0ð1� a0Þ ;

fpac ¼ � 1
6a0ð1� a0Þ

VD3

X2 ;

(101)

cP2 ¼ cpvis þ cpth ; (102)

cpvis ¼ � M

ew2 ; cpth ¼ � 1

2ew2

j� 1
5jd

; (103)

where the subscripts “vis,” “ac,” and “th” represent the viscosity, acous-
tic radiation, and thermal conduction, respectively.

Figure 6 shows the dependence of the dissipation effects due
to viscosity, i.e., pvis, fpvis , and cpvis on R�

0; pvis, fpvis , and cpvis decrease
as R�

0 increases. Further, jpvisj < jfpvis j is always satisfied. The effect
of viscosity of bubbly liquids is significantly smaller than that of the
viscosity at the bubble–liquid interface. Figure 7 shows the depen-
dence of the dissipation effects due to acoustic radiation, i.e., pac
and fpac , on R�

0; jpacj > jfpac j is always satisfied. In addition, O(pac)
¼ O(pvis).

E. Effect of thermal conduction on dissipation
coefficient: Difference among four temperature-
gradient models

We now discuss the newly discovered coefficient P22 in (73)
focusing on the differences among the temperature-gradient mod-
els [i.e., SMK (18),51 LSM (19),52 PCB (20),53 and STM (21)54].
Figure 8 shows the dependence of the dissipation effect due to
thermal conduction P22 on R�

0 considering the four models used;
P22 decreases as R�

0 increases for every model. The difference
among the four models is small for the milliscale bubbles.
However, for microscale bubbles, the values in the PCB and STM

FIG. 4. Contribution of each basic equa-
tion to nonlinear coefficients (a) P1 and
(b) fP1 ; pj and epj (j ¼ 1, 2,… , 5) corre-
spond to the conservation of number den-
sity (8), mass (9), momentum (10), and
energy (11), and bubble dynamics (12) in
basic equations, respectively.

FIG. 5. Dependence of nonlinear coefficientsP1 and cP1 on R�
0 .

FIG. 6. Dependence of dissipation effects due to viscosity pvis, fpvis , and cpvis
on R�

0 .

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 053302 (2021); doi: 10.1063/5.0028655 33, 053302-9

VC Author(s) 2021

https://scitation.org/journal/phf


models are high compared with those in the LSM and SMK mod-
els; the PCB model is similar to the STM model, and the LSM
model is to the SMK model. The absolute value of P22 is signifi-
cantly higher than that ofP21.

F. Effect of thermal conduction on dissipation
coefficient: Comparison of two types of dissipation
terms by numerical analysis

Now, we compare the present thermal dissipation coefficient,
P22, with cpth , the component of thermal dissipation in coefficient,cP2 proposed by Prosperetti;13 our previous study18 neglected ther-

mal conduction. However, while cP2 is the coefficient of the term
without differentiation, cpth is the coefficient of the second-order
derivative, as shown in (73) and (89), respectively. Therefore, com-

paring the difference between coefficients cP2 and cpth is meaning-
less from the viewpoint of the size of thermal dissipation (not
dissipation coefficient). Then, we numerically analyze P22pL1 andcpth@2pL1=@n

2 using the spatio-temporal evolution of the unknown

variable, pL1, numerically obtained as the solution of the KdVB
equation. The numerical scheme is presented in the Appendix.

Figure 9 shows the result of temporal evolution of the present
thermal dissipation P22pL1 and that determined by Prosperetti13cpth@2pL1=@n

2. The order ofP22pL1¼ O(10−1) is comparable with that
of cpth@2pL1=@n

2, although the mathematical forms of the dissipation
terms differ in each study. It is implied that our newly discovered ther-
mal dissipation term, i.e., P22pL1, physically agrees with the thermal
dissipation term determined by Prosperetti,13 i.e., cpth@2pL1=@n

2, from
the viewpoint of the order.

Figure 10 also shows the temporal evolution of the present ther-
mal dissipation P22pL1 and the present dissipation by the viscosity
and acoustic radiation P21@

2pL1/@n
2. As the former is significantly

higher than the latter, we can conclude that the dissipation effect due
to thermal conduction is considerably large compared with that due to
viscosity and liquid compressibility in the present study.

G. Numerical example of waveform

Figures 11 and 12 show the numerical results. The initial shock
waveform is

DP�ðx�; 0Þ ¼ p�L � p�L0 ¼
0:2 ðx� � 1:0Þ
0 ðx� > 1:0Þ;

(
(104)

where DP�(x�, 0) [bar] is the dimensional pressure perturbation in all
the cases.

In the micrometer-bubble cases (Figs. 11 and 12), the waveforms
quickly disappear (about 0.005 ms), and the dispersion effect causing
wave oscillations do not appear due to the large dissipation effect,
regardless of the dilute or non-dilute bubbly liquid. The damping
speed of the waveforms in the dilute case (Fig. 12) is the same as that
in the non-dilute case (Fig. 11). On the contrary, in the millimeter-
bubble cases (Figs. 13 and 14), the waveforms attenuate relatively
slowly, and the wave oscillations caused by the dispersion effect appear
due to the relatively small dissipation effect. These wave oscillations
are called “relaxation oscillations (ROs)”55,56. The frequency of the
ROs is higher for the non-dilute bubbly liquid case (Fig. 13) than for
the dilute bubbly liquid case (Fig. 14). The waveform amplitudes tend
toward zero at about 5 ms and 5.7 ms for the dilute and non-dilute

FIG. 7. Dependence of dissipation effects due to acoustic radiation pac and fpac on
R�
0 .

FIG. 8. Dependence of the dissipation coefficient due to thermal conduction P22

on R�
0 . The four temperature-gradient models, i.e., SMK (18),51 LSM (19),52 PCB

(20),53 and STM (21),54 are used.
FIG. 9. Numerically obtained temporal evolution of two dissipation terms due to
thermal conduction.
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bubbly liquid cases, respectively. Thus, the dissipation effect is
certainly larger in the dilute bubbly liquid case than that in the
non-dilute bubbly liquid case; however, the difference between the
two cases is exceedingly small when compared with the depen-
dency of R�

0.
The above results show that R�

0 mainly controlled a degree of the
dissipation effect. In this study, we consider the following dissipation
factors: (i) viscosity of liquid, (ii) viscosity at the bubble–liquid inter-
face, (iii) liquid compressibility, and (iv) thermal conduction at the
bubble–liquid interface. In particular, (ii) and (iv) strongly depend on
R�
0 because the bubble–liquid interface area increases with decreasing

R�
0 under a constant a0. In other words, a large dissipation effect for

small R�
0 is caused by the effects of the viscosity and thermal conduc-

tion at the bubble–liquid interface.

The small RO frequency in the dilute cases appear to indicate
that the medium show a nearly single-phase flow. The number density
of bubbles in a bubbly liquid is high when a0 become small under a
constant R�

0. Therefore, the dispersion effect is small in the dilute bub-
bly liquid case due to the small number of bubbles causing the disper-
sion effect.

V. CONCLUSIONS

The weakly nonlinear propagation of pressure waves in initially
quiescent compressible liquids uniformly containing many spherical
microbubbles was theoretically studied by deriving the KdVB equation
(73). In particular, the energy equation at the bubble–liquid interface
(11) and the effective polytropic exponent (23)13 were introduced. The
main results are summarized as follows:

(i) The effective polytropic exponent ce describing thermody-
namics inside the bubble moved closer to unity (i.e., iso-
thermal process) for a small initial bubble radius and to j
(i.e., adiabatic process) for a large initial bubble radius. By
introducing the effective polytropic exponent, the form of
phase velocity in this study in (56) was altered from that in
our previous study.18

(ii) In the present KdVB equation (73), all the coefficients
depended on the initial bubble radius, R�

0. Although the dis-
sipation coefficient due to the viscosity and liquid com-
pressibility in (77) depended on the initial void fraction a0,
the other coefficients [i.e., the nonlinear coefficient (75),
dissipation coefficient due to thermal conduction (78), and
dispersion coefficient (79)] did not depend on a0.

(iii) In the present KdVB equation (73), two types of dissipation
terms appeared; one was the well-known second-order
derivative term with respect to the space, with the

FIG. 10. Numerically obtained temporal evolution of two dissipation terms in the
present study.

FIG. 11. Evolution of initial shock waveform (104) by KdVB equation (73) for non-dilute bubbly liquid and micrometer-bubble case: a0 ¼ 0.01 and R�
0 ¼ 10lm.

FIG. 12. Evolution of initial shock waveform (104) by KdVB equation (73) for dilute bubbly liquid and micrometer-bubble case: a0 ¼ 0.001 and R�
0 ¼ 10 lm.
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coefficient P21 in (77), and the other was the newly discov-
ered term without differentiation, with the coefficient P22

in (78). Viscosity and liquid compressibility (i.e., acoustic
radiation) were contained in P21, and thermal conductivity
was in P22.

(iv) The thermal effect in the present study contributed not only
to the dissipation coefficients P21 and P22 but also to the
nonlinear coefficient P1 in (75).

(v) According to (iv), the nonlinearity (i.e., absolute value of
the nonlinear coefficient) in this study increased compared
with that in our previous study18 and Prosperetti.13 In par-
ticular, the present nonlinear coefficient P1 was affected
due to the introduction of energy equation (11).
Furthermore, the consideration of the thermal effect
increased the nonlinearity in bubble oscillations [i.e., Keller
equation (12)]; moreover, the nonlinear coefficient in this
study increased compared with that in our previous study.18

(vi) In this study, four temperature-gradient models, (18)–
(21)48–51 were utilized to evaluate the thermal dissipation
effect. A significant difference among the four models was
observed for the microscale bubbles but not for the milli-
scale bubbles.

(vii) The thermal dissipation term in this study was a term with-
out differentiation, P22f, while that in the work of
Prosperetti13 was the second-order derivative with respect
to the space, cpth@2f =@n2. Numerical analysis revealed that
the order of P22f was comparable with that of cpth@2f =@n2

although the mathematical forms differed.
(viii) Further, numerical analysis also revealed that the order of

the dissipation term due to thermal conduction, P22f, was
higher than that due to viscosity and acoustic radiation,
P21@

2f/@n2.

The above results provide an exhaustive understanding regarding
the influence of the thermal effect inside bubbles on the pressure wave
in bubbly liquids using the framework of weakly nonlinear theory (i.e.,
KdVB equation). In our forthcoming study, we will introduce the tem-
perature in the liquid phase as an unknown variable, incorporate the
effect of mass transfer across the bubble–liquid interface and the shell
surrounding gas bubbles.
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APPENDIX: NUMERICAL SCHEME FOR (72)

The split-step method57 is used to calculate the KdVB equation
containing an advection term with the variable coefficient (73).
Equation (73) is divided into two equations, i.e., the linear equation
(A1) and the nonlinear equation (A2),

@f
@s

¼ �P21
@2f

@n2
�P22f �P3

@3f

@n3
; (A1)

@f
@s

¼ �P1

2
@f 2

@n
: (A2)

First, (A1) is calculated using the spectral method, and the depen-
dent variables f linear(n, s + Ds) are then obtained. Next, (A2) is
calculated using the spectral method and the fourth-order

FIG. 13. Evolution of initial shock waveform (104) by KdVB equation (73) for non-dilute bubbly liquid and millimeter-bubble case: a0 ¼ 0.01 and R�
0 ¼ 1 mm.

FIG. 14. Evolution of initial shock waveform (104) by KdVB equation (73) for dilute bubbly liquid and millimeter-bubble case: a0 ¼ 0.001 and R�
0 ¼ 1 mm.
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Runge–Kutta method for temporal marching with f linear as the ini-
tial condition, and the dependent variables f(n, s + Ds) are thereby
obtained. The periodic boundary condition is used.
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