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ABSTRACT

To clarify the effect of the drag force acting on bubbles and translation of bubbles on pressure waves, the weakly nonlinear (i.e., finite but
small-amplitude) propagation of plane pressure waves with a thermal conduction in compressible water flows containing many spherical
bubbles is theoretically investigated for moderately high-frequency and short-wavelength case. This work is an extension of our previous
report [Yatabe et al., Phys. Fluids, 33, 033315 (2021)], wherein we elucidated the same for low-frequency and long-wavelength case. Based
on our assumptions, the main results of this study are as follows: (i) using the method of multiple scales, the nonlinear Schr€odinger type
equation was derived; (ii) as in the previous long wave case, the translation of bubbles increased the nonlinear effect of waves, and the drag
force acting on the bubbles resulted in the dissipation effect of waves; (iii) the increase in the nonlinear effect of the waves owing to the
translation in the present short wavelength case is larger than that in the previous long wavelength case; (iv) the dissipation effect caused by
the drag force was smaller than that caused by the liquid viscosity, acoustic radiation (i.e., liquid compressibility), and thermal conduction;
(v) we then succeeded the comparison of the four dissipation factors (i.e., liquid viscous damping, thermal conduction, acoustic radiation,
and drag force) on pressure waves.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0042625

I. INTRODUCTON

The drag force acting on translational bubbles in water flows is
one of the most important forces that may alter the dynamics of bubbly
flows. Many theoretical, numerical, and experimental reports for drag
forces acting on a bubble have been published.1–7 In particular, in the
case of a high-velocity water flow accompanied by cavitation in hydrau-
lic machinery, the physics of translation and drag force are significant.
Furthermore, the volumetric oscillation of bubbles induces a pressure
variation that evolves into a pressure wave (and not a void wave8). As is
well known, in the nonlinear acoustics or nonlinear wave theory,9,10 for
a pure (and not bubbly) water flow, the pressure wave evolves into a
shock wave owing to the competition between a nonlinear effect and a
dissipation effect of the waves. By contrast, for a bubbly flow, oscillations
of bubbles induce a dispersion effect of the waves, and the pressure
wave then evolves into a stable wave, or the so-called (acoustic) soliton,

because of the competition between the nonlinear and dispersion
effects. Hence, it is important to understand the relative ratios of the dis-
sipation and dispersion effects to the nonlinear effect, because the pres-
sure wave in bubbly flows may evolve into both the shock wave and the
soliton, which have completely different properties.

In the field of weakly nonlinear (i.e., finite but small-amplitude10)
dispersive waves (not restricted to waves in bubbly flows), the
Korteweg–de Vries–Burgers (KdVB) (or KdV) equation for a weakly
dispersive case and the nonlinear Schr€odinger (NLS) (or Ginzburg–
Landau) equation for a strongly dispersive case are popular nonlinear
wave equations (or nonlinear evolution equations).9,10 Because the non-
linear wave equation is composed of a linear combination of the nonlin-
ear, dissipation, and dispersion terms, the relative magnitudes of these
effects determine whether a pressure wave will evolve into the shock
wave or the soliton. Although estimating the magnitude of these three
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effects is essential for predicting the evolution of a pressure wave, this
magnitude cannot be obtained directly from an experimental observa-
tion nor from a direct numerical simulation of the basic equations.
Therefore, a theoretical derivation of nonlinear wave equations, such as
the KdVB and NLS equations, could be an effective method for estimat-
ing the relative strength of these effects. In many previous studies on
nonlinear pressure waves in bubbly liquids, the waveform obtained by
solving the KdVB (or KdV) equation11–13 has matched the waveform
observed in experiments.14–16 However, there are no reports of experi-
mental observations of the propagation of a moderately high-frequency
(near the eigenfrequency of single bubble oscillations in Fig. 1) short
wave that corresponds to the solution of NLS equation, and some NLS
equations have been derived that focus on a quite high-frequency (not
moderately high-frequency) band that is well above the curve in Fig. 1,
induced by considering a liquid compressibility.17–20 Therefore, theoret-
ical predictions of NLS equations for the moderately high-
frequency case have long been strongly desired.

A critical concern is that both the translation of bubbles and the
drag forces acting on bubbles were not considered in all previous stud-
ies on weakly nonlinear waves.11–13,17–34 This may be due to the pre-
conception that the effect of the non-oscillating components (i.e.,
translation and drag force) on the oscillating components (i.e., bubble
oscillation and pressure wave) is negligible. To incorporate a drag
force, although a momentum transport across the bubble–liquid inter-
face should be formulated, such complex basic equations (e.g., two-
fluid model equations) are not required in the weakly nonlinear (or
linear) wave problem. In fact, all previous studies,11–13,17–20,22,23,28,31

except for Biesheuvel and van Wijngaarden,21 utilized the gas–liquid
mixture model22,23 as the basic equations. The first study in the litera-
ture to have derived nonlinear wave equations based on the two-fluid
model equations is our original report,26 wherein we proposed a uni-
fied theoretical framework in which the low-frequency long wave is
described by the KdVB equation and the moderately (not quite) high-
frequency short wave is by the NLS equation. As shown in the linear
dispersion relation in quiescent bubbly liquids (Fig. 1),11,12,26 our
KdVB and NLS equations focused on the low andmoderately high fre-
quencies, respectively. Hence, our original paper26 can be considered
to report the only study that has derived the NLS equation by focusing
on the moderately high frequency band. Thereafter, we extended our
work to diffractive beams with a nonuniform number density,29

bubbly flows with nonuniform initial flow velocities,30 and polydis-
perse bubbly liquids.33 However, owing to the aforementioned pre-
conception, our group24–34 has previously ignored the drag force and
translation. Although there have been studies where the linear wave
propagation based on a two-fluid model incorporated translation21

and the numerical analyses incorporated translation and drag
force,35–37 derivation of nonlinear wave equations based on a two-
fluid model has not incorporated the drag force and translation.
The importance of bubble translation was highlighted by a numeri-
cal result that revealed that bubble translation (bubble slip) slightly
affected the waveforms.35

The study conducted by Yatabe et al.,38 which was our previous
work, was the first attempt at a consistent consideration of the transla-
tion, drag force, and initial flow velocity; in this work, we derived the
KdVB equation for low-frequency waves and successfully indicated
that the translation increased the nonlinearity of pressure waves, and
that the drag force increased the dissipation of waves. The purpose of
this study is to extend the work performed previously to the moder-
ately high frequency case, that is, the derivation of the NLS equation.
The remainder of this paper is organized as follows. In Sec. II, the basic
equations based on a two-fluid model including the drag force, and
bubble dynamics equation including the translation, are introduced. In
Sec. III, we derive the NLS equation and indicate that the translation
increases the nonlinearity, and the drag force increases the dissipation.
We further discuss the four factors of dissipation, that is, the liquid vis-
cosity, acoustic radiation (i.e., liquid compressibility), thermal conduc-
tion,13,39 and drag force.38 Section IV is devoted to the conclusions of
the study.

II. FORMULATION OF THE PROBLEM
A. Problem statement

This study theoretically investigates the weakly nonlinear (i.e.,
finite but small-amplitude) propagation of one-dimensional (plane)
pressure progressive waves in flowing compressible water that uni-
formly contain many small spherical gas bubbles. Initially, the gas and
liquid phases flow with independent constant velocities. We newly
introduce a drag force as the force acting on the bubbles and a transla-
tion as the bubble dynamics. The bubbles do not coalesce, breakup,
disappear, or appear.24–34,38 For simplicity, the gas viscosity, the
Reynolds stress, and the phase change and mass transport across the
bubble–liquid interface,40 are ignored.

Although these assumptions are the same as those in our previ-
ous work,38 in this study, we focus on the short wave in a moderately
high-frequency band (Fig. 1). Furthermore, the thermal conduction at
bubble–liquid interface is considered31 based on Prosperetti’s model,13

along with the temperature gradient model, where the temperature of
the liquid phase is assumed to be constant.

B. Governing equations

As in our previous work,38 to introduce the drag force in the
interfacial momentum transport, we first utilize the conservation laws
of mass and momentum for the gas and liquid phases based on a two-
fluid model,24,34

@

@t�
ðaq�GÞ þ

@

@x�
ðaq�Gu�GÞ ¼ 0; (1)

FIG. 1. Conceptual diagram of the linear dispersion relation for pressure waves in
bubbly liquids.11,12 The KdVB equation was derived for low-frequency long waves,
and the NLS equation was derived for (moderately) high-frequency short
waves.26,28–30 Our previous paper36 focused on the KdVB equation.
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@

@t�
ð1� aÞq�L
� �þ @

@x�
ð1� aÞq�Lu�L
� � ¼ 0; (2)

@

@t�
ðaq�Gu�GÞ þ

@

@x�
aq�Gu

�2
G

� �þ a
@p�G
@x�

¼ F� þ D�; (3)

@

@t�
ð1� aÞq�Lu�L
� �þ @

@x�
ð1� aÞq�Lu�2L
� �

þ ð1� aÞ @p
�
L

@x�
þ P� @a

@x�
¼ �F� � D�; (4)

where t� is the time, x� is the space coordinate, a is the void fraction
(0 < a < 1), q� is the density, u� is the velocity, p� is the pressure,
and P� is the liquid pressure averaged on the bubble–liquid interface;24

the subscripts G and L denote volume-averaged variables in the gas
and liquid phases, respectively; the superscript � denotes a dimen-
sional quantity. The following model of virtual mass force25,34 is intro-
duced as the interfacial momentum transport F�:

F� ¼ � b1aq
�
L

DGu�G
Dt�

� DLu�L
Dt�

� �
� b2q

�
Lðu�G � u�LÞ

DGa
Dt�

� b3aðu�G � u�LÞ
DGq�L
Dt�

; (5)

where b1, b2, and b3 are constants, and may be set as 1/2 for the spher-
ical bubble. Lagrange derivatives DG=Dt� and DL=Dt� are defined as

DG

Dt�
� @

@t�
þ u�G

@

@x�
;

DL

Dt�
� @

@t�
þ u�L

@

@x�
: (6)

Furthermore, we introduce a model that incorporates the drag force
term for spherical bubbles,D�,38

D� ¼ � 3
8R� aCDq

�
Lðu�G � u�LÞju�G � u�Lj; (7)

where R� is the radius of a representative bubble and CD is the drag
coefficient for a single spherical bubble.

The spherically symmetric oscillations of bubbles in compressible
water can be expressed as

1� 1
c�L0

DGR�

Dt�

� �
R� D

2
GR

�

Dt�2
þ 3
2

1� 1
3c�L0

DGR�

Dt�

� �
DGR�

Dt�

� �2

¼ 1þ 1
c�L0

DGR�

Dt�

� �
P�

q�L0
þ R�

q�L0c
�
L0

DG

Dt�
p�L þ P�� �þ ðu�G � u�LÞ2

4
:

(8)

We introduced the translation of bubbles21,36,37 in the third term on
the right-hand side of (8) into the Keller equation.41 Hence, the trans-
lation and volumetric oscillations can be described using (8) as a linear
combination. Equation (8) allows us to treat the translation and spher-
ically symmetric oscillations as the bubble dynamics.

In this study, Prosperetti’s equation13 for thermal conduction at
the bubble–liquid interface is also introduced to express the thermal
effect inside bubbles,31

Dp�G
Dt�

¼ 3
R� ðj� 1Þk�G

@T�
G

@r�

����
r�¼R�

� jp�G
DR�

Dt�

" #
; (9)

where T�
G is the temperature of the gas phase, j is the ratio of specific

heats, r� is the radial distance from the center of the bubble, and k�G is
the thermal conductivity of the gas inside the bubble. Some

models31,42–45 have proposed the use of the temperature-gradient as
the first term on the right-hand side of (9); herein, we utilize the fol-
lowing model by Sugiyama et al.:45

@T�
G

@r�

����
r�¼R�

¼ Reð eL�PÞðT�
0 � T�

GÞ
j eL�P j2 þ Imð eL�PÞ

x�
Bj eL�P j2 DGT�

G

Dt�
; (10)

where T�
0 is the initial temperature; Re and Im denote the real and

imaginary parts, respectively; noting that the physical quantities in the
initial state are denoted by the subscript 0, and these are constants.
Furthermore, some symbols are defined as follows:31

x�
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ceðp�L0 þ 2r�=R�

0Þ � 2r�=R�
0

q�L0R
�2
0

� 2l�e0
q�L0R

�2
0

� �2
s

; (11)

ce ¼ Re
CN

3

� �
; (12)

l�e0 ¼ l�L þ Im
p�G0CN

4x�
B

� �
; (13)

where x�
B is the eigenfrequency of a single bubble, ce is the effective

polytropic exponent, r� is the surface tension, l�e0 is the initial effective
viscosity, and l�L is the liquid viscosity [see also (41) and (42) in Sec.
IID]; the explicit form of (11) is different from that used in our previ-
ous studies.26–30,34,38 Complex numbers CN and aN are as follows:45

CN ¼ 3a2Nj
a2N þ 3ðj� 1ÞðaN coth aN � 1Þ ; (14)

aN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx�

Bp
�
G0R

�2
0

2ðj� 1ÞT�
0k

�
G

s
ð1þ iÞ; (15)

where i denotes the imaginary unit. The complex number eL�P in (10),
which represents the dimensions of length, is given by

eL�
P ¼ R�

0ða2N � 3aN coth aN þ 3Þ
a2NðaN coth aN � 1Þ : (16)

To close the set of (1)–(4), (8), and (9), we introduce the fol-
lowing equations: the equation of state for ideal gas (the polytropic
equation of state was used for the previous long wave38), the Tait
equation of state for liquid, the conservation law of mass inside the
bubble, and the balance of normal stresses across the bubble–liquid
interface:

p�G
p�G0

¼ q�G
q�G0

T�
G

T�
0
; (17)

p�L ¼ p�L0 þ
q�L0c

�2
L0

n
q�L
q�L0

� �n

� 1

" #
; (18)

q�G
q�G0

¼ R�
0

R�

� �3

; (19)

p�G � ðp�L þ P�Þ ¼ 2r�

R� þ 4l�L
R�

DGR�

Dt�
; (20)

where n is a material constant (e.g., n¼ 7.15 for water). It should be
noted that the effect of liquid viscosity is considered only at the
bubble–liquid interface, as shown in (20).
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C. Multiple-scale analysis

First, the independent variables are nondimensionalized as

t � t�

T� ; x � x�

L�
; (21)

where T� is a typical period of waves and L� is a typical wavelength.
Based on the method of multiple scales,10 six multiple scales26,28–30,33,34

as extended independent variables are then introduced using the finite
but small nondimensional wave amplitude e ð� 1Þ,

t0 ¼ t; x0 ¼ x ðnear fieldÞ; (22)

t1 ¼ et; x1 ¼ ex ðfar field IÞ; (23)

t2 ¼ e2t; x2 ¼ e2x ðfar field IIÞ: (24)

Here, the subscripts 0, 1, and 2 correspond to the near field, far field I,
and far field II, respectively.10 The differential operators are immedi-
ately expanded as10

@

@t
¼ @

@t0
þ e

@

@t1
þ e2

@

@t2
; (25)

@

@x
¼ @

@x0
þ e

@

@x1
þ e2

@

@x2
: (26)

Note that far field II was not used in the previous study for the low-
frequency long wave.38

The dependent variables are now regarded as functions of the
extended independent variables in (22)–(24). They are converted to be
dimensionless and expanded in the power series of e,

R�=R�
0 ¼ 1þ eR1 þ e2R2 þ Oðe3Þ; (27)

u�G=U
� ¼ uG0 þ euG1 þ e2uG2 þ Oðe3Þ; (28)

u�L=U
� ¼ uL0 þ euL1 þ e2uL2 þ Oðe3Þ; (29)

a=a0 ¼ 1þ ea1 þ e2a2 þ Oðe3Þ; (30)

q�L=q
�
L0 ¼ 1þ e5qL2 þ e6qL3 þ Oðe7Þ; (31)

p�L=ðq�L0U�2Þ ¼ pL0 þ epL1 þ e2pL2 þ Oðe3Þ; (32)

T�
G=T

�
0 ¼ 1þ eTG1 þ e2TG2 þ Oðe3Þ; (33)

where U� ð� L�=T�Þ is a typical propagation speed, and the initial
nondimensional pressures pL0 and pG0 are defined as

pL0 � p�L0
q�L0U�2 � Oð1Þ; pG0 � p�G0

q�L0U�2 � Oð1Þ: (34)

It should be noted that the expansion of the liquid density starts with
Oðe5Þ26,28–30,33,34 and started with Oðe2Þ in the previous study on long
wave.38 The ratio of the initial densities of the gas and liquid phases is

q�G0
q�L0

� Oðe3Þ; (35)

and hence, the density ratio can be excluded.26–34,38

In contrast to our previous study, wherein we treat the low-
frequency long wave,38 herein, we focus on the moderately high-
frequency short wave. The set of sizes of the three nondimensional
ratios is then determined using e,26,28–30

U�

c�L0
;
R�
0

L�
;
x�

x�
B

� �
¼ ðOðe2Þ;Oð1Þ;Oð1ÞÞ ¼ Ve2;D;X

� �
; (36)

where V, D, and X are the constants of O(1); the right-hand side was
chosen as V

ffiffi
e

p
;D

ffiffi
e

p
;X

ffiffi
e

p� �
in the previous study on long wave.38

That is, the speed of sound in bubbly flows is considerably smaller
than that in pure water, the initial radius of a bubble is comparable to
the typical wavelength, and the incident frequency of waves is also
comparable to the eigenfrequency of a single bubble. Although the
method of averaged equations should not be ideally applied to such
short waves, the plane wave problem can be excluded from the restric-
tion because the average volume can be sufficiently large along the
plane parallel to the wave front.26 Nevertheless, the assumption of
spherical symmetry of bubble oscillations should be validated.26 We
will address this problem in a future work.

Equation (9) is nondimensionalized as31

D
Dt

TGR
3ðj�1Þ� �

¼ R3j�1 3ðj� 1Þk�G
p�G0x

�
BR

�
0

@T�

@r�

����
r�¼R�

; (37)

where T ¼ T�
G=T

�
0 and R ¼ R�=R�

0. The nondimensionalized expres-
sion on the right-hand side of (37) is

ðRHSÞ¼3ðj�1Þk�G
p�G0x�R�

0
R3j�1 Reð eL�PÞT�

0

j eL�P j2 ð1�TGÞþx�Imð eL�PÞT�
0

x�
Bj eL�P j2 DTG

Dt

" #
:

(38)

Then, we determine the sizes of the nondimensional number using e,

3ðj� 1Þk�G
p�G0x�R�

0

Reð eL�PÞT�
0

j eL�P j2 � f1e
2; (39)

3ðj� 1Þk�G
p�G0x�R�

0

x�Imð eL�PÞT�
0

x�
Bj eL�P j2 � f2e

3; (40)

where f1 and f2 are constants of O(1); f2 does not affect the present
result.

D. Drag force

Liquid viscosity l�L and effective viscosity l�e0 are nondimension-
alized as

l�L
q�L0U�L�

� Oðe2Þ � lLe
2; (41)

l�e0
q�L0U�L�

� Oðe2Þ � le0e
2; (42)

where lL and le0 are constants of O(1).
Drag coefficient CD is then defined as

CD � 8l�L
ju�G � u�Ljq�LR� ; (43)

where CD depends on Reynolds number Re (CD ¼ 16=Re).2 The gas
viscosity and Reynolds stress induced by volume averaging are
ignored. However, for simplicity, we use a Stokes-type drag force. We
intend to validate these assumptions in our forthcoming work.

III. RESULTS
A. Linear propagation of carrier wave at near field

Substituting (25)–(43) into (1)–(4), (8), and (9), the set of linear
equations is derived with the aid of (17)–(20) from the leading order
of approximation,
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Da1
Dt0

� 3
DR1

Dt0
þ @uG1

@x0
¼ 0; (44)

a0
Da1
Dt0

� ð1� a0Þ @uL1
@x0

¼ 0; (45)

b1
DuG1
Dt0

� DuL1
Dt0

� �
þ pG0

@TG1

@x0
� 3

@R1

@x0

� �
¼ 0; (46)

ð1� a0ÞDuL1Dt0
� a0b1

DuG1
Dt0

� DuL1
Dt0

� �
� a0u0

Da1
Dt0

þ u0ð1� a0Þ @uL1
@x0

þ ð1� a0Þ @pL1
@x0

¼ 0; (47)

D2R1

Dt20
� 3ðce � 1ÞpG0

D2 � 1


 �
R1 � pG0

D2 TG1 þ pL1
D2 ¼ 0; (48)

3ðj� 1ÞDR1

Dt0
þ DTG1

Dt0
¼ 0: (49)

Here, all the partial derivatives with respect to t0 (i.e., operator @=@t0)
in our original paper26 varied with Lagrange derivative D=Dt0 owing
to consideration of the initial constant flow velocity, u0,

D
Dt0

� @

@t0
þ u0

@

@x0
: (50)

It should be noted that the initial velocities of both phases are
assumed to be the same (uG0 ¼ uL0 � u0) for simplicity; however,
the perturbations of each velocity are not the same (uG1 6¼ uL1 and
uG2 6¼ uL2).

Combining (44)–(48) into a single equation for the first-order
variation of bubble radius, R1, we obtain the fourth-order linear partial
differential equation,

L1 R1½ � � D2R1

Dt20

� 3pG0f jð1� a0Þ þ b1½ �a0 þ b1ðj� ceÞgþ b1D
2ð1� a0Þ

3b1a0ð1� a0Þ

� @2R1

@x20
� D2

3a0

@2

@x20

D2R1

Dt20

 !
¼ 0; ð51Þ

whereL1 denotes the linear differential operator. Equation (51) is the
linear wave equation with the dispersion term (i.e., third term) owing
to bubble oscillations. In the previous study on long wave,38 (i) the
fourth order derivative in (51) [i.e., the second order derivative in
(48)] did not appear as the dispersion effect was weak and (ii) the ther-
mal conduction was discarded for simplicity.

Owing to a strong dispersion effect, the wave profile is broken
down into each component with its own propagation speed if an
initial wave is a superposition of different harmonic components.
Hence, we consider a solution of (51) in the form of a quasi-
monochromatic wave train evolving into a slowly modulated wave
packet,10,26

R1 ¼ Aðt1; x1; t2; x2Þeih þ c:c:; h � kx0 � Xt0; (52)

where A is the slowly varying complex amplitude depending on only
the slow scales and is a constant in the near field, characterized by t0
and x0; k ð� k�L�Þ is the nondimensional wavenumber (k� is the
dimensional wavenumber); and c:c: denotes the complex conjugate.

Then, eih corresponds to the carrier wave and A to the envelope
wave.10 Here, we focus on only the right-running carrier wave. By
substituting (52) into (44)–(48) and integrating them with respect to t0
and x0, the other first-order variations, i.e., a1, uG1, uL1, pL1, and TG1,
can be expressed in terms of R1,

a1 ¼ b1R1; uG1 ¼ b2R1; uL1 ¼ b3R1;

pL1 ¼ b4R1; TG1 ¼ b5R1
(53)

with

b1 ¼ 1� a0
a0ð1� a0 þ b1Þ

3a0b1 �
ð1� a0Þb4

v2p

" #
;

b2 ¼ vpðb1 � 3Þ; b3 ¼ �vp
a0b1
1� a0

;

b4 ¼ D2ðv2pk2 � 1Þ � 3ðj� ceÞpG0;
b5 ¼ �3ðj� 1Þ;

(54)

where nondimensional phase velocity vp is obtained in (56).
Let us discuss the linear dispersion relation of the implicit form,

Dðk;XÞ, including the calculation of phase velocity vp and group
velocity vg. Substitution of (52) into (51) yields

Dðk;XÞ �D2k2

3a0
1� ðX� u0kÞ2
� �

� ðX� u0kÞ2

þ b1 þ jð1� a0Þ½ �a0 þ b1ðj� ceÞ
b1a0ð1� a0Þ pG0k

2 ¼ 0; (55)

or

X¼ u0kþ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

3a0þD2k2
þ 3pG0f jð1� a0Þþb1½ �a0 þb1ðj� ceÞg

b1ð1� a0Þð3a0þD2k2Þ

s
:

(56)

The phase and group velocities are calculated as

Vp �X
k
¼ vpþu0;

vp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2

3a0þD2k2
þ3pG0f b1þjð1�a0Þ½ �a0þb1ðj�ceÞg

b1a0ð1�a0Þð3a0þD2k2Þ

s
;

(57)

Vg � dX
dk

¼ � @D=@k
@D=@ X

¼ vg þ u0; vg � 3a0vp
3a0 þ D2k2

: (58)

The explicit form of typical phase velocity U� should be determined to
obtain the coefficients depicted in Figs. 2–5 in Secs. IIID and III E. As
the nondimensional phase velocity vp is defined by U�, the choice of
vp determines U�. Then, we put vp � 1 under X � 1 (i.e., k � 1); this
leads to

U� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f b1 þ jð1� a0Þ½ �a0 þ b1ðj� ceÞgp�G0

b1a0ð1� a0Þq�L0

s
: (59)

Although the effect of the initial flow velocity can be observed,
those of the translation and drag force do not appear in the near field.
For the case without the initial flow velocity (i.e., the initially quiescent
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case, u0 ¼ 0), D=Dt0 changes @=@t0, and the result in the present
study coincides with that in our original study.26

B. Linear propagation of envelope wave at far field I

As in the case of OðeÞ, the following set of inhomogeneous equa-
tions of Oðe2Þ is derived:

Da2
Dt0

� 3
DR2

Dt0
þ @uG2

@x0
¼ M1; (60)

a0
Da2
Dt0

� ð1� a0Þ @uL2
@x0

¼ M2; (61)

b1
DuG2
Dt0

� DuL2
Dt0

� �
� 3pG0

@R2

@x0
þ pG0

@TG2

@x0
¼ M3; (62)

ð1� a0ÞDuL2Dt0
� a0b1

DuG2
Dt0

� DuL2
Dt0

� �
� a0u0

Da2
Dt0

þu0ð1� a0Þ @uL2
@x0

þ ð1� a0Þ @pL2
@x0

¼ M4; (63)

D2R2

Dt20
� 3ðce � 1ÞpG0

D2 � 1


 �
R2 � pG0

D2 TG2 þ pL2
D2 ¼ M5; (64)

3ðj� 1ÞDR2

Dt0
þ DTG2

Dt0
¼ M6: (65)

Equations (60)–(64) are then combined into a single inhomogeneous
equation,

L1 R2½ � ¼ MðR1Þ; (66)

where

M ¼� 1
3
DM1

Dt0
þ 1
3a0

DM2

Dt0
þ u0
3a0ð1� a0Þ

@M2

@x0

þ 1� a0 þ b1
3ð1� a0Þb1

@M3

@x0
þ 1
3a0ð1� a0Þ

@M4

@x0

� D2

3a0

@2M5

@x20
� b1 þ a0ð1� a0Þ½ �pG0

3b1a0ð1� a0Þ
ð
@2M6

@x20
dt0: (67)

Introducing (52) and (53) into (67) rewrites the single inhomogeneous
termM,

M ¼ CA2e2ih þ i � @D
@ X

� �
@A
@t1

þ ðvg þ u0Þ @A
@x1


 �
eih þ c:c:; (68)

where real constant C is

C ¼� 2
3

vpkm1 � vpkm2

a0
þ 1� a0 þ b1

ð1� a0Þb1
km3 þ km4

a0ð1� a0Þ



� 2D2k2m5

a0
� b1 þ a0ð1� a0Þ

b1a0ð1� a0ÞX pG0k
2m6

�
(69)

with real constantsmi ði ¼ 1; 2; 3; 4; 5; 6Þ,
m1 ¼ �6ðb1 � 2Þvpk� 2b2ðb1 � 3Þk; (70)

m2 ¼ �2a0b1b3k; (71)

m3 ¼ m̂ þ pG0ð3b1 � b1b5 þ 6b5 � 12Þk; (72)

m4 ¼� a0m̂ � 2ð1� a0Þb23kþ a0b1b4k� 2a0b1b3vpk

þ a0b1 �3ðce � jÞpG0 þ D2
� �

k; (73)

m̂ ¼ ðb1 þ b2Þðb2 � b3Þb1vpk� b1ðb22 � b23Þk; (74)

m5 ¼ 1�3b2vpk
2þ3ð2�ce�b5Þ

2D2 pG0þ5
2
v2pk

2þðb3�b2Þ2
4D2 ; (75)

m6 ¼ 2vpb
2
5kþ 6 3j� 2� jð3j� 1Þ

2


 �
; (76)

wherem5 increases from the original coefficient26 owing to the appear-
ance of the fifth term in the right-hand side of (75), induced by the
effect of translation, and m6 is obtained owing to the consideration of
the thermal effect.

The solvability condition for (67) requires that the coefficient of
eih should be zero;10,26 then, we obtain the linear wave equation for
envelope wave A,30

@A
@t1

þ ðvg þ u0Þ @A
@x1

¼ 0: (77)

Substituting (77) into (68) simplifies (67) into

L1 R2½ � ¼ CA2e2ih þ c:c:; (78)

and its solution is obtained as follows:26

R2 ¼ c0A
2e2ih þ c:c: (79)

with

c0 � C
D22

; D22 � Dð2k; 2XÞ ¼ � 4D2vp2k4

a0
: (80)

Substituting (79) into (60)–(64) yields the explicit forms of the second-
order perturbations,

a2
uG2
uL2
pL2
TG2

0BBBBBB@

1CCCCCCA ¼

c1 d1 0

c2 d2 0

c3 d3 0

c4 d4 cs
c5 0 0

0BBBBBB@

1CCCCCCA
A2e2ih þ c:c:

i @A=@t1ð Þeih þ c:c:

jAj2

0B@
1CA (81)

with real constants ci ði ¼ 1; 2; 3; 4; 5Þ, di ði ¼ 1; 2; 3; 4Þ, and cs,

c1 ¼ � 1
a0vpk

ð1� a0Þc3kþm2

2


 �
; (82)

c2 ¼ ðc1 � 3c0Þvp þm1

2k
; (83)

c3 ¼ 1
vp

c4 � u0m2 þ a0m3 þm4

2ð1� a0Þk � a0pG0ð3c0 � c5Þ
1� a0


 �
; (84)

c4 ¼ ½4v2pD2k2 þ 3ðce � 1ÞpG0 þ c5pG0 � D2�c0 þm5D
2; (85)

c5 ¼ m6

2vpk
; (86)

d1 ¼ � 1
a0vpk

ð1� a0Þd3kþ a0b1
vg

vg þ u0
þ 1� a0
vg þ u0

b3


 �
; (87)

d2 ¼ vpd1 � ð3� b1Þvg
ðvg þ u0Þk�

b2
ðvg þ u0Þk ; (88)

d3 ¼ 1
vp

d4 �
b3vg

ðvg þ u0Þkþ
b4

ðvg þ u0Þk�
pG0a0ð3� b5Þ

ð1� a0Þðvg þ u0Þ

" #
; (89)
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d4 ¼ 2vpD
2 vg
vg þ u0

k; (90)

cs ¼ 6ð2� ce�b5ÞpG0þð2� v2pk
2�2vpb2k

2ÞD2þðb2�b3Þ2
2

: (91)

Here, c1 and c2 are the same as our original coefficients;26 d1, d2, and
d3 are the same as our original and previous coefficients26,30 without
the translation and drag force; note that our original paper26 and pre-
vious paper30 treated without the initial flow velocities and with the
initial flow velocities, respectively.

Before proceeding to the approximation of Oðe3Þ, we note that
the effect of the drag force did not appear in the approximation of
Oðe2Þ, even though that of the translation appeared.

C. Nonlinear propagation of envelope wave at far field
II and resultant NLS equation

In contrast to the low-frequency long wave case,38 the present
moderately-high-frequency short wave case requires third order approx-
imation. The set of inhomogeneous equations ofOðe3Þ is also derived,

Da3
Dt0

� 3
DR3

Dt0
þ @uG3

@x0
¼ N1; (92)

a0
Da3
Dt0

� ð1� a0Þ @uL3
@x0

¼ N2; (93)

b1
DuG3
Dt0

� DuL3
Dt0

� �
� 3pG0

@R3

@x0
þ pG0

@TG3

@x0
¼ N3; (94)

ð1� a0ÞDuL3Dt0
� a0b1

DuG3
Dt0

� DuL3
Dt0

� �
� a0u0

DLa3
Dt0

þ u0ð1� a0Þ @uL3
@x0

þ ð1� a0Þ @pL3
@x0

¼ N4; (95)

D2R3

Dt20
� 3ðce � 1ÞpG0

D2 � 1


 �
R3 � pG0

D2 TG3 þ pL3
D2 ¼ N5; (96)

3ðj� 1ÞDR3

Dt0
þ DTG3

Dt0
¼ N6: (97)

Equations (92)–(96) are combined into

L1 R3½ � ¼ � 1
3
DN1

Dt0
þ 1
3a0

DN2

Dt0
þ u0
3a0ð1� a0Þ

@N2

@x0

þ 1� a0 þ b1
3ð1� a0Þb1

@N3

@x0
þ 1
3a0ð1� a0Þ

@N4

@x0
� D2

3a0

@2N5

@x20

� b1 þ a0ð1� a0Þ½ �pG0
3b1a0ð1� a0Þ

ð
@2N6

@x20
dt0 ¼ N: (98)

The inhomogeneous termN is rewritten as

N ¼ K1e
3ih þ K2e

2ih þ K3e
ih þ c:c:; (99)

whereKi ði ¼ 1; 2; 3Þ are the complex variables including A,

K1 ¼ k1A3; K2 ¼ ik2A
@A
@x1

;

K3 ¼ � @D
@X

� �
i
@A
@t2

þ ðvg þ u0Þ @A
@x2


 ��
þ�1jAj2Aþ i�2Aþ �3

@2A
@x21



¼ 0;

(100)

where the explicit forms of real constants k1 and k2 are not presented
as since they are not essential for the following discussion. Imposing
the solvability condition for (98) and (99),10,26 i.e.,K3 ¼ 0, yields

i
@A
@t2

þ ðvg þ u0Þ @A
@x2


 �
þ �1jAj2Aþ i�2Aþ �3

@2A
@x21

¼ 0: (101)

Combining (69) and (102) with the help of (25) and (26) yields

i
@A
@t

þ ðvg þ u0Þ @A
@x


 �
þ e2ð�1jAj2Aþ i�2AÞ þ �3

@2A
@x2

¼ 0: (102)

Finally, we obtain the following NLS equation (precisely speak-
ing, the NLS equation with a correction dissipation term, i.e., the third
term on the left-hand side):

i
@A
@s

þ �1jAj2Aþ i�2Aþ �3
@2A

@n2
¼ 0; (103)

via a variable transform

s ¼ e2t; n ¼ e x � ðvg þ u0Þt
� �

: (104)

The second, third, and fourth terms on the left-hand side of (103) repre-
sent the nonlinear, dissipation, and dispersion effects, respectively. Real
constants �1, �2, and �3 represent the sizes of the nonlinearity, dissipa-
tion, and dispersion, respectively. Dispersion coefficient �3 is given by

�3 ¼ � 9a0kvpD
2

2ð3a0 þ D2k2Þ2 ¼ 1
2

dvg
dk

¼ 1
2

dVg

dk

� �
< 0; (105)

and this coincides with the original dispersion coefficient.26 Nonlinear
coefficient �1 is

�1 ¼ 1
3

1
@D=@X

kvpn1 � kvp
a0

n2 þ ð1� a0 þ b1Þ
ð1� a0Þb1

kn3 þ kn4
a0ð1� a0Þ



� D2k2n5

a0
� b1 þ a0ð1� a0Þ

b1a0ð1� a0ÞX pG0k
2n6

�
< 0; (106)

with real constants ni (i¼ 1, 2, 3, 4, 5, 6),

n1 ¼� 3vp c0ð4� b1Þ � c1 þ 6b1 � 10½ �k
þ c2ð3� b1Þ þ b2ð3c0 � c1 þ 9b1 � 18Þ½ �k; (107)

n2 ¼ �a0ðb1c3 þ b3c1Þk; (108)

n3 ¼ n̂ þ pG0 ðb5 � 3Þc1 þ 6c0b1 � 2b1b5½
þ 6b1ðb5 � 2Þ þ 3c0b5 þ 3c5 þ 12ð5� 3b1Þ�k; (109)

n4 ¼� a0n̂ � a0vpðb3c1 þ b1c3Þk� 2ð1� a0Þb3c3k
þ a0 u0b3c1 þ 6b1b

2
3 � b4c3 þ b1c4

�
� b1ðc4 � csÞ þ u0b1c3 þ 2c1b4�k
þ a0pG0 b1c5 � 6c1ðce � jÞ þ 3b1c0ðce � 1Þ½
� 6b1ð2� ce � b5Þ�kþ a0D

2ð2c1 � b1c0 � 2b1Þk; (110)

n̂ ¼ð2b1 � b2Þb1ðc2 � c3Þvpk� ðb1 � 2b2Þðb2 � b3Þc1vpk
� b1ðb2 � b3Þ b1ðb2 þ b3Þ þ b2b2½ �k� b1ðb2c2 � b3c3Þk; (111)

n5 ¼� 3þ c0ð�v2pk
2 þ 2Þ þ 2b2 b2k� vpð1þ 3c0Þk

� �
k

þ 3pG0
c0ð2� ce � b5Þ þ 3ce þ 6b5 � c5 � 10

D2

þ ðb2 � b3Þðc2 � c3Þ
2D2 ; (112)
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n6 ¼� 3vp ðjþ 3Þc0 þ 9j2ðj� 3Þ þ 2ð13j� 4Þ � ðj� 1Þc5
� �

k

� 2b2 3ðj� 1Þc0 þ c5 � 3ðj� 2Þð3jþ 1Þ½ �k: (113)

Here, the last term of n5 is owing to the effect of translation which
exhibits increase of nonlinearity compared with the original nonlinear
coefficient,26 and n6 is obtained because the thermal effect is consid-
ered, as in m6. Then, the absolute value of nonlinear coefficient �1
increases by considering the translation of bubbles; however, an ana-
lytical explanation of why this occurs is difficult (see also Sec. IIID).

Dissipation coefficient �2 is decomposed into a linear
combination,

�2 ¼ �2vis þ �2ac þ �2th þ �2dr > 0; (114)

where the dissipation component owing to the liquid viscosity, �2vis,
the acoustic radiation (i.e., liquid compressibility), �2ac, the thermal
conduction, �2th, and drag force, �2dr, are given by

�2vis ¼ 2k2

3a0 þ D2k2
l > 0; (115)

�2ac ¼ D2 � 3ðce � jÞpG0
2ð3a0 þ D2k2Þ Dk2V > 0; (116)

�2th ¼ � 1
@D=@X

b1 þ a0ð1� a0Þ
b1a0ð1� a0Þ ðj� 1ÞpG0 k

2

X
f1 > 0; (117)

�2dr ¼ 1
@D=@X

k

b1D
2 ðb2 � b3Þl > 0: (118)

Here, �2vis is the same as that in our original paper,26 �2ac is different
from that in Ref. 26, and �2th and �2dr are introduced. It should be
noted that �2dr is positive, because @D=@X and ðb2 � b3Þ are negative,
wherein an analytical explanation of the latter may be difficult.
Therefore, the dissipation coefficient �2 increases by considering the
drag force acting on the bubbles (see also Sec. IIIE).

As in the case of a long wave,38 the translation of bubbles only
affects the nonlinear coefficient, and the drag force acting on the bub-
bles only affects the dissipation coefficient; the dispersion coefficient is
not affected by the translation and the drag force. However, the ten-
dencies of the long and short waves are quite different. From now on,
the tendencies are described in detail.

D. Nonlinearity

Figures 2 and 3 illustrate the dependence of nonlinear coefficient
�1 on initial void fraction a0 and wavenumber k, respectively. The
nonlinearity (i.e., absolute value of the nonlinear coefficient) signifi-
cantly increased with the translation case compared to that without
the translation case; as the explicit form of �1 is quite complex, an ana-
lytical explanation of why this occurs is difficult. Further, the differ-
ence between the two cases increased for a large k and a small a0. It
should be noted that the dependence of �1 on the initial bubble radius,
R�
0, is quite small.

It implies that the increase in nonlinearity owing to the translation
for a short wave is quite large compared to that for a long wave.38 This
may be justified by the fact that a slip between the gas and liquid phases
is prominent in short waves.

E. Dissipation

Figures 4 and 5 illustrate the dependence of each component of
the dissipation coefficient [i.e., the liquid viscosity �2vis, acoustic

FIG. 2. Nonlinear coefficient �1 vs initial void fraction a0 under k¼ 2 for the case of
e ¼ 0:07, R�

0 ¼ 10 lm, q�L0 ¼ 103 kg=m3, p�L0 ¼ 101 325 Pa, b1 ¼ b2 ¼ 1=2,
c�L0 ¼ 1500 m=s, r� ¼ 0:0728 N=m, l�L ¼ 10�3 Pa � s, k� ¼ 0:0257 W=ðm�KÞ,
j ¼ 1:41, T�

0 ¼ 290 K, and u�0 ¼ 1 m=s. The same condition is used in Figs. 3–5.

FIG. 3. Nonlinear coefficient �1 vs wavenumber k under a0 ¼ 0:01.

FIG. 4. Each component of dissipation coefficient �2 vs a0 in (114)–(118) under
k¼ 1: dissipation owing to liquid viscosity �2vis is denoted by the dashed-dotted
curve, that owing to acoustic radiation �2ac by the dotted curve, that owing to ther-
mal conduction �2th by the dashed curve, and that owing to drag force �2dr by the
solid curve (same as Fig. 5).
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radiation �2ac, thermal dissipation �2th, and drag force �2dr; see also
(114)–(118)] on a0 and k, respectively. These results are different from
case A of the long wave case (see Sec. III B in our previous paper38). In
addition to the dissipation owing to the liquid viscosity and the acous-
tic radiation, that owing to the thermal conduction and the drag force
have been introduced, and the four dissipation factors coexist in the
form of a linear combination.

The dissipation owing to the drag force, �2dr, is the smallest.
Here, �2vis and �2ac are almost of a similar order, and �2vis > �2ac;
moreover, �2th and �2dr are almost of a similar order, and
�2th > �2dr. Further, �2vis and �2ac are dependent on a0 and k,
whereas �2th is independent of a0 and k; �2dr is dependent on a0
and independent of k.

IV. CONCLUSIONS

We have theoretically examined the weakly nonlinear propaga-
tion of plane progressive pressure waves with thermal conduction in
water flows that uniformly contain many translational microbubbles,
with a special focus on the effects of a translation of bubbles and a
drag force acting on the bubbles. Further, the result obtained in our
previous study on low-frequency long wave38 has successfully been
extended to moderately-high-frequency short wave. The main conclu-
sions are summarized as follows:

(i) Using the method of multiple scales, we derived the NLS
equation that could describe the weakly nonlinear propaga-
tion of the envelope wave of a short carrier wave.

(ii) The translation of bubbles contributed to the nonlinearity
and increased the absolute value of the nonlinear coefficient,
and the drag force acting on the bubbles contributed to the
dissipation and increased the value of the dissipation coeffi-
cient, as in the case of long wave.38

(iii) Owing to the incorporation of bubble translation, the non-
linearity (i.e., absolute value of the nonlinear coefficient)
significantly increased compared to the case of nonlinearity
without translation. Compared to the case of long wave,38

although this trend was qualitatively the same, quantita-
tively, the difference might be considerable. This implied

that the effect of a slip between the gas and liquid phases
was dominant for the case of short wave.

(iv) The dissipation coefficient was expressed as the linear com-
bination of the liquid viscosity, acoustic radiation, thermal
dissipation, and drag force. The dissipation owing to the
drag force was most smallest.
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APPENDIX A: INHOMOGENEOUS TERMS IN
(60)–(65)

Although the present inhomogeneous terms M1 and M2 are
essentially the same as the previous inhomogeneous terms, i.e., S1
and S2 in Appendix B in Ref. 30, respectively; the present terms
assume DG=Dt ¼ DL=Dt ¼ D=Dt.

The inhomogeneous terms in the momentum equations, M3

and M4, are given by

M3¼pG0
@

@x1
þa1

@

@x0

� �
ð3R1�TG1Þþ3

@

@x0
ðR1TG1�2R2

1Þ

 �

þMF;

(A1)
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Dt1

u0a0a1 � ð1� a0ÞuL1½ � � ð1� a0Þ @
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ðpL1 þ u0uL1Þ

þ a0
Da1uL1
Dt0

þ u0a0
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MF ¼ �b1
D
Dt1
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D
Dt0

ðuG1 � uL1Þ

� b1
2

@

@x0
ðu2G1 � u2L1Þ � b2ðuG1 � uL1ÞDa1Dt0

: (A3)

In Keller’s equation, owing to the consideration of translation,
the present inhomogeneous term, M5, is increased from the previ-
ous inhomogeneous term,30

M5¼�2
D2R1

Dt0Dt1
�R1

D2R1

Dt20
�2uG1

D
Dt0

@R1

@x0

� �
�DuG1

Dt0
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@x0
�3
2

DR1

Dt0

� �2

þ 1þ3ð2�ceÞpG0
D2


 �
R2
1�

3pG0
D2 R1TG1þðuG1�uL1Þ2

D2 : ðA4Þ

FIG. 5. Each component of dissipation coefficient �2 vs k under a0 ¼ 0:01.
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Owing to the incorporation of thermal effect, M6 can be expressed as,

M6 ¼ � D
Dt1

TG1 þ 3ðj� 1ÞR1½ � � 3
D
Dt0

ðj� 1ÞTG1R1 � 3j� jðj� 1Þ
2

� 2


 �
R2
1

� 

� uG1

@

@x0
TG1 þ 3ðj� 1ÞR1½ � þ f2

DTG1

Dt0
: (A5)

APPENDIX B: INHOMOGENEOUS TERMS IN (92)–(97)

Although the present inhomogeneous terms, N1 and N2, are essentially the same as the previous inhomogeneous terms, i.e., W1 and W2

in Appendix B in Ref. 30, respectively; the present terms assume DG=Dt ¼ DL=Dt ¼ D=Dt.
The inhomogeneous terms in the momentum equations, N3 and N4, are given by

N3 ¼ pG0
@

@x1
þ a1
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@x0

� �
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In Keller’s equation, owing to the consideration of translation, the present inhomogeneous term, N5, is increased from the previous
inhomogeneous term,30
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Owing to the incorporation of thermal effect, N6 is expressed as,

N6 ¼� D
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