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ABSTRACT

In this study, weakly nonlinear pressure waves in quiescent compressible liquids comprising several uniformly-distributed spherical
microbubbles, at moderately high-frequency and short-wavelength, are theoretically investigated. The energy equation at the bubble–liquid
interface and the effective polytropic exponent are utilized to clarify thermal effects inside bubbles on wave dissipation. In addition, thermal
conduction is investigated in detail using four temperature-gradient models. The following results are drawn: (i) Nonlinear Schr€odinger
equation is derived as an effective equation, wherein three types of dissipation factors, i.e., liquid viscosity, liquid compressibility, and thermal
conduction, are unified into a linear combination as the dissipation coefficient. This is different from our previous result treating the low-
frequency and long-wavelength case [Kamei et al., Phys. Fluids 33, 053302 (2021)], i.e., two types of dissipation terms appeared and did not
unify into a linear combination. (ii) Dissipation due to thermal conduction is more than four times larger than that due to other dissipation
factors. (iii) Dissipation due to thermal conduction at the bubble–liquid interface is considerably larger than that due to thermal conduction
through the bubbly liquid. (iv) It is found that the dissipation effect in the short-wave case is smaller than that in the long-wave case.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0045145

I. INTRODUCTION

This paper is a continuation of our recent paper1 investigating
theoretically nonlinear pressure waves in bubbly liquids from the mac-
roscopic viewpoint based on averaged equations. Pressure wave propa-
gation in a liquid containing microbubbles is one of the most
fundamental and important physical phenomena in the field of multi-
phase flow.2–11 Bubble dynamics12–16 is also a key point (see also the
reviews in Refs. 17 and 18) as oscillations of bubbles in a liquid induce
the effects of dispersion19 and dissipation.19,20 Long-range propagation
of pressure waves in bubbly liquids, accompanied by a weak nonline-
arity, leads to the formation of shock and solitary waves in the cases of
the dissipation–nonlinearity and dispersion–nonlinearity competi-
tions, respectively. Estimating the effect of nonlinearity, dissipation,
and dispersion on the pressure wave is important in determining the
wave evolution into the shock or solitary wave. However, it is a chal-
lenging task from the viewpoint of experiments and direct numerical

simulations. For weakly nonlinear pressure waves,21,22 we can theoreti-
cally derive a nonlinear wave equation (i.e., a linear combination of
the nonlinear, dissipation, and dispersion terms) from basic equations.
This equation is an approximate description of the spatio–temporal
development of the waveform obtained owing to the balance between
the wave nonlinearity, dissipation, and dispersion.21,22 We can then
discuss the relative sizes of the dissipation and dispersion contributing
to the nonlinearity. Numerous types of nonlinear wave equations
describing weakly nonlinear propagation of pressure waves in bubbly
liquids have been developed.19,20,23–33

Recently, we have clarified that low-frequency long waves are
described by the Korteweg–de Vries–Burgers (KdVB) equation and
that high-frequency short waves are described by a nonlinear
Schr€odinger (NLS) equation in the linear dispersion relation in quies-
cent bubbly liquids, as shown the KdVB band in Fig. 1.34,35 For
low-frequency long waves, the waveform obtained as a solution of the
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well-known KdVB equation corresponds to the waveform observed by
experiments.36–38 Furthermore, in our previous paper,1 we re-derived
the KdVB equation by incorporating the thermal conduction at the
bubble–liquid interface and thermodynamics inside the bubble as an
update model. Therein, we highlighted that the solution of the KdVB
equation is similar to the waveform observed in an experimental
study.23 However, there are no reports on the propagation of moder-
ately high-frequency [around the eigenfrequency of single bubble
oscillations signified by (35) in Sec. IID] short waves (i.e., the NLS
band in Fig. 1) as the solution of the NLS equation. Therefore, theoret-
ical predictions for the NLS band have long been strongly desired. On
the other hand, from the theoretical viewpoint, Khismatullin and
Akhatov31 derived another NLS equation focusing on a quite high
(not moderately high) frequency curve, which is above the curve in
Fig. 1 and is induced by the consideration of liquid compressibility.31,39

Although Russian co-workers derived NLS and Ginzburg–Landau
(GL) equations, they also focused on the quite high-frequency
band.27–29 Hence, so far, our original paper34,40 is the only study on
the derivation of the NLS equation in the case of a moderately high-
frequency band; it should be noted that Refs. 34 and 40 utilized the
two-fluid and mixture models as basic equations, respectively.

By focusing on the dissipation effect on high-frequency short
waves, our group considered liquid viscosity at the bubble–liquid
interface and liquid compressibility (i.e., acoustic radiation).40 In addi-
tion, we considered the recently incorporated viscosity of bubbly
liquids and thermal conduction through them.41,42 However, we
found that the effect of thermal conduction through a bubbly liquid is
small.41,42 Therefore, in our model, a consideration of thermal conduc-
tion was strongly desired. Table I summarizes four dissipation factors
used in the present and previous studies.27,31,40,41 The purpose of this
study is to derive an NLS equation incorporating four dissipation
effects: viscosity of a bubbly liquid, viscosity at the bubble–liquid inter-
face, thermal conduction at the bubble–liquid interface, and acoustic
radiation due to liquid compressibility. Based on the derived NLS equa-
tion, we clarified the effects of thermal conduction at the interface and

thermodynamics inside the bubble on nonlinear propagation of mod-
erately high-frequency short waves. We also utilized four widely used
models for evaluating the temperature gradient at the bubble–liquid
interface in (11) and determined the differences between these models.

This paper is organized as follows: Section II introduces basic
equations and perturbation expansions based on the multiple scale
method.22 Especially, the energy equation at the bubble–liquid inter-
face and the effective polytropic exponent24 are incorporated into our
model to investigate the thermal effect. Section III describes the deriva-
tion of the NLS equation. Section IV focuses on the coefficients of the
NLS equation and clarifies the differences between the present and
previous coefficients. We show that the thermal effect contributes to
not only wave dissipation but also to wave dispersion and that thermal
conduction strongly contributes to wave dissipation. We also compare
the present NLS equation with the previous KdVB equation.1 Section
V concludes the study.

II. PROBLEM FORMULATION
A. Problem

Focusing on a moderately high-frequency and short-wavelength
band, as shown in Fig. 1, we consider one-dimensional (i.e., plane)
weakly nonlinear pressure waves in a liquid uniformly containing
numerous spherical gas bubbles. We then clarify the effect of thermal
conduction at the bubble–liquid interface on wave propagation.

For simplifying the formulation of the problem, the following
assumptions1 are used: (i) the viscous coefficients of the gas phase,
bulk viscosity, phase change, and mass transport across the bubble–
liquid interface are ignored. (ii) The temperature of the liquid phase is
constant. (iii) The effect of initial flow43 is neglected; hence, the bubbly
liquid is initially quiescent. (iv) The bubbles do not coalesce, break,
appear, and disappear. (v) The forces exerted on bubbles, such as drag
force,44,45 are neglected. (vi) The polydispersity,46 multi-dimensional-
ity,47 and effect of the encapsulating shell48 are not considered.

B. Basic equations

We use the following conservation equations of mass and
momentum for bubbly liquids:49,50

@q�

@t�
þ @q�u�

@x�
¼ 0; (1)

@q�u�

@t�
þ @q�u�2

@x�
þ @p�L
@x�

� 4
3
l�

@2u�

@x�2
¼ 0; (2)

where t� is time, x� space coordinate, q� density, u� fluid velocity, p�

pressure, and l� viscosity; the subscript L denotes the liquid phase and
the superscript � denotes the dimensional quantity. Here, we assume
that the pressure of the bubbly liquid is equivalent to the averaged
pressure of the liquid.29,40

The bubbly liquid is assumed to be a Newtonian fluid, and the
bulk viscosity is ignored based on the Stokes assumption. As derived
in several works,51,52 the viscosity of the bubbly liquid as a physical
property, l�, is expressed as follows:

l� ¼ ð1þ a0Þl�L; (3)

where a0 is the initial void fraction. Here, l� is higher than l�L because
the mechanical work acting on the water and the velocity of the flow
field are reduced owing to the containing bubbles.53 Note that (3) is

FIG. 1. Conceptual diagram of linear dispersion relationship for pressure waves in
bubbly liquids, where the liquid compressibility is neglected; van Wijngaarden19,20

originally drawn and Kanagawa et al.34,40 decompose into two bands, i.e., KdVB
and NLS equations for low-frequency long wave and moderately high-frequency
short wave, respectively. After many derivations of KdVB equations,20,23,24,36

Kanagawa et al.34,40 derived KdVB and NLS equations in a unified way. Noting that
there exists a quite high-frequency curve above the present curve induced by the
consideration of liquid compressibility31,39 and another NLS equation for quite high-
frequency (not moderately high-frequency) band was reported.27,31
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applicable if a0 < 0:05.54 The volume-averaged density of the bubbly
liquid, q�, is defined as follows:

q� ¼ ð1� aÞq�L; (4)

where a is the void fraction and the density of the gas is neglected. The
void fraction, a, is related to the number density of the bubbles, N�,
using the following equation:

a ¼ 4
3
pR�3N�; (5)

@N�

@t�
þ @N�u�

@x�
¼ 0; (6)

where R� is a representative bubble radius. Equation (5) defines the
void fraction, a, and (6) represents the conservation of the number
density of the bubbles, N�.

Substituting the following conservation equation of mass inside
the bubble:

q�G
q�G0

¼ R�
0

R�

� �3

; (7)

and (5) into (6), we obtain

@

@t�
aq�G
� �þ @

@x�
aq�Gu

�� � ¼ 0; (8)

where the subscript G denotes the gas phase. Furthermore, substitut-
ing (4) into (1) and (2), we obtain

@

@t�
1� að Þq�L

� �þ @

@x�
1� að Þq�Lu�

� � ¼ 0; (9)

@

@t�
1� að Þq�Lu�

� �þ @

@x�
1� að Þq�Lu�2

� �þ @p�L
@x�

� 4
3
l�

@2u�

@x�2
¼ 0:

(10)

To examine the thermal effect inside the bubble, we use the follow-
ing relationship at the bubble–liquid interface proposed by Prosperetti:24

Dp�G
Dt�

¼ 3
R� ðj� 1Þk�G

@T�
G

@r�

����
r�¼R�

� jp�G
DR�

Dt�

" #
; (11)

where k�G is the thermal conductivity of the gas inside the bubble and
j is the ratio of specific heats. Note that R� is not R�ðt�Þ but Rðt�; x�Þ;
the bubble radius is regarded as a field variable defined in all t� and x�.

Note that p�G; T
�
G, and R� do not depend on the time t� but also on

the space x� [e.g., p�Gðt�; x�Þ].
The Keller equation for spherical oscillations of a bubble in a

compressible liquid is given as follows:55

1� 1
c�L0

DR�

Dt�

� �
R� D

2R�

Dt�2
þ 3
2

1� 1
3c�L0

DR�

Dt�

� �
DR�

Dt�

� �2

¼ 1þ 1
c�L0

DR�

Dt�

� �
P�

q�L0
þ R�

q�L0c
�
L0

D
Dt�

p�L þ P�� �
; (12)

where P� is the liquid pressure averaged on the bubble–liquid inter-
face,39 c�L0 is the sound speed in initial unperturbed pure water, subscript
0 denotes the initial unperturbed state, and the material differential
operator, D=Dt� represents the following differential operator:

D
Dt�

¼ @

@t�
þ u�

@

@x�
: (13)

To close the system represented in (8)–(12), we introduce the fol-
lowing Tait's equation of state for liquids, equation of state for ideal
gas, and balance of normal stresses across the bubble–liquid interface:

p�L ¼ p�L0 þ
q�L0c

�2
L0

n
q�L
q�L0

� �n

� 1

" #
; (14)

p�G
p�G0

¼ q�G
q�G0

T�
G

T�
0
; (15)

p�G � p�L þ P�� � ¼ 2r�

R� þ 4l�L
R�

DR�

Dt�
; (16)

where n is the material constant and r� is the surface tension. Note
that the polytropic equation of state used in our original study40 is
changed to (15).

C. Temperature-gradient model

Similar to the long-wave case,1 we incorporated the thermal con-
ductivity at the bubble–liquid interface by introducing (11). Further,
we examined the effect of thermal conductivity caused by the differ-
ences between the temperature-gradient models @T�

G=@r
�jr�¼R� on the

first term on the right-hand side of (11). We used the following four
models:56–59

(i) Shimada et al. (SMK) model,56

TABLE I. Summary of four dissipation factors considered in the present and previous studies.27,31,40–42 We emphasize that Khismatullin and Akhatov31 focused on a quite high-
frequency band with a clear statement and Gumerov27 focused on a quite high-frequency band. In contrast, Kanagawa et al.,40 Kamei and Kanagawa,41,42 and the present study
focus on a moderately high (not quite high) frequency band. These studies are compared in Sec. IV.

Viscosity of bubbly
liquid

Viscosity at
bubble–liquid

interface Liquid compressibility Thermal conduction

Gumerov (1992)27 Not considered Considered Not considered Considered (at bubble–liquid interface)
Khismatullin and Akhatov (2001)31 Not considered Considered Not considered Considered
Kanagawa et al. (2011)40 Not considered Considered Considered Not considered
Kamei and Kanagawa (2019)41 Considered Considered Considered Considered (through bubbly liquid)
This study Considered Considered Considered Considered (at bubble–liquid interface)
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@T�
G

@r�

����
r�¼R�

¼ 5
4
T�
0 � T�

G

R� ; (17)

(ii) Lertnuwat et al. (LSM) model,57

@T�
G

@r�

����
r�¼R�

¼ T�
0 � T�

Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pD�=x�

B

p ; (18)

(iii) Preston et al. (PCB) model,58

@T�
G

@r�

����
r�¼R�

¼ T�
0 � T�

G

jeL�
Pj

; (19)

(iv) Sugiyama et al. (STM) model,59

@T�
G

@r�

����
r�¼R�

¼ ReðeL�
PÞðT�

0 � T�
GÞ

jeL�
Pj2

þ ImðeL�
PÞ

x�
BjeL�

Pj2
DT�

G

Dt�
; (20)

where T�
0 is the initial temperature, D� is the thermal diffusivity of the

gas inside the bubble, and x�
B is the natural frequency of a single bub-

ble and is given as follows:59

x�
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3cep

�
G0 � 2r�=R�

0

q�L0R
�2
0

� 2l�e0
q�L0R

�2
0

� �2
s

; (21)

ce ¼ Re
CN

3

� �
; (22)

l�e0 ¼ l�L þ Im
p�G0CN

4x�
B

� �
; (23)

where ce is the effective polytropic exponent and we do not explicitly
assume ce except for Sec. IV; and l�e0 is the initial effective viscosity;
and Re and Im denote the real and imaginary parts, respectively. The
explicit form of (21) is different from that used in our previous stud-
ies.34,40–48

Moreover, the complex number CN is given as59

CN ¼ 3a2Nj
a2N þ 3ðj� 1ÞðaN coth aN � 1Þ ; (24)

aN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx�

Bp
�
G0R

�2
0

2ðj� 1ÞT�
0k

�
G

s
ð1þ iÞ; (25)

where aN is a complex number and i denotes the imaginary unit.
Therefore, eL�

P in (19) and (20) is the complex number with the dimen-
sions of length and is given by

eL�
P ¼ R�

0ða2N � 3aN coth aN þ 3Þ
a2NðaN coth aN � 1Þ : (26)

D. Multiple scale analysis

The time t� and space coordinate x� are nondimensionalized
using t ¼ x�t� and x ¼ x�=L�, respectively, where x� is the typical
angular frequency of a wave and L� is the typical wavelength. Next, we
introduce new independent variables based on the typical dimension-
less amplitude of a wave, e (�1), for near field [i.e., the temporal and
spatial scales of O(1)], far field I [i.e., the temporal and spatial scales of

Oð1=eÞ], and far field II [i.e., the temporal and spatial scales of
Oð1=e2Þ],22

t0 ¼ t; x0 ¼ x;

t1 ¼ et; x1 ¼ ex;

t2 ¼ e2t; x2 ¼ e2x:

8><>: (27)

Note that far field II was not used in the long-wave case.1

The dependent variables are nondimensionalized and expanded
to powers of e,

R�

R�
0
� 1 ¼ eR1 þ e2R2 þ e3R3 þ Oðe4Þ; (28)

a
a0

� 1 ¼ ea1 þ e2a2 þ e3a3 þ Oðe4Þ; (29)

T�
G

T�
0
� 1 ¼ eTG1 þ e2TG2 þ e3TG3 þ Oðe4Þ; (30)

u�

U� ¼ eu1 þ e2u2 þ e3u3 þ Oðe4Þ; (31)

where U� is the typical phase velocity of the wave. Next, the expansion
of the liquid density in e is given as follows:34,40

q�L
q�L0

¼ 1þ e5qL1 þ e6qL2 þ Oðe7Þ; (32)

which is determined from (14). The expansion was started from Oðe2Þ
in the long-wave case.1 Furthermore, the pressures are nondimension-
alized as

pL ¼ p�L
q�L0U�2 ; pL0 ¼ p�L0

q�L0U�2 ; pG0 ¼ p�G0
q�L0U�2 ; (33)

where pL; pL0, and pG0 areO(1); pL is expanded as

pL ¼ pL0 þ epL1 þ e2pL2 þ e3pL3 þ Oðe4Þ: (34)

As order estimation of constants, there exists a relationship
U� ¼ L�x� among U�; L�, and x�; we determine the values of the
three nondimensionalized parameters as follows:34,40,42,45

U�

c�L0
;
R�
0

L�
;
x�

x�
B

� �
¼ ðVe2;D;XÞ; (35)

where V, D, and X are constants of O(1). The following important
points should be noted: (i) The incident frequency x� � 17 kHz and
the phase velocity U� � 9m=s for milimeter bubble case (i.e.,
R�
0 ¼ 1mm), and x� � 24MHz and U� � 14m=s for micrometer

bubble case (i.e., R�
0 ¼ 1lm) are examples of the order estimation of

each scale. (ii) Three ratios in the set (35) were chosen as O
ffiffi
e

p� �
in

the long-wave case.1 (iii) Although the method of averaged equations
should not be ideally applied to such short waves, the plane wave
problem can be excluded from the restriction because the average vol-
ume along the plane-parallel to the wave front can be sufficiently
large;34 nevertheless, the assumption of spherical symmetry of bubble
oscillations should be validated;34 we will address this problem in
future work. Finally, the nondimensional liquid viscosity and the ini-
tial effective viscosity are defined using e,

l�L
q�L0U�L�

¼ lLe
2; (36)
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l�e0
q�L0U�L�

¼ le0e
2; (37)

where lL and le0 are constants of O(1).

E. Nondimensionalization of energy equation (11)

Equation (11) is nondimensionalized as

D
Dt

TGR
3ðj�1Þ� �

¼ R3j�1 3ðj� 1Þk�G
p�G0x

�
BR

�
0

@T�

@r�

����
r�¼R�

; (38)

where TG ¼ T�
G=T

�
G0 and R ¼ R�=R�

0. The nondimensionalized
expression on the right-hand side of (38) depends on the selected
temperature-gradient model. First, in the case of (17),

ðRHSÞ ¼ 3ðj� 1Þk�G
p�G0x�R�

0

5
4
T�
0

R�
0
R3j�2ð1� TGÞ; (39)

then, we determine the sizes of the nondimensional number in (39)
using e as follows:

3ðj� 1Þk�G
p�G0x�R�

0

5
4
T�
0

R�
0
� fSMKe

2: (40)

In the same manner, we determine the sizes of the nondimensional
numbers in other cases: in (18),

ðRHSÞ ¼ 3ðj� 1Þk�G
p�G0x�R�

0

T�
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pD�=x�
B

p R3j�1ð1� TGÞ; (41)

3ðj� 1Þk�G
p�G0x�R�

0

T�
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pD�=x�
B

p � fLSMe
2; (42)

in (19),

ðRHSÞ ¼ 3ðj� 1Þk�G
p�G0x�R�

0

T�
0

jeL�
Pj
R3j�1ð1� TGÞ; (43)

3ðj� 1Þk�G
p�G0x�R�

0

T�
0

jeL�
Pj

� fPCBe
2; (44)

and in (20),

ðRHSÞ¼3ðj�1Þk�G
p�G0x�R�

0
R3j�1 ReðeL�

PÞT�
0

jeL�
Pj2

ð1�TGÞþx�ImðeL�
PÞT�

0

x�
BjeL�

Pj2
DTG

Dt

" #
;

(45)

3ðj� 1Þk�G
p�G0x�R�

0

ReðeL�
PÞT�

0

jeL�
Pj2

� fSTM1e
2; (46)

3ðj� 1Þk�G
p�G0x�R�

0

x�ImðeL�
PÞT�

0

x�
BjeL�

Pj2
� fSTM2e

2; (47)

where fSMK, fLSM, fPCB, fSTM1, and fSTM2 are constants of O(1). Note
that (42), (44), (46), and (47) determine the sizes of nondimensional
ratios.

III. DERIVATION

This section focuses on the derivation of the NLS equation and a
discussion will be presented in Sec. IV.

A. Leading order of approximation

By equating the coefficients of the like powers of e in the govern-
ing equations (8)–(12), a set of linearized first-order equations can be
derived

@a1
@t0

� 3
@R1

@t0
þ @u1

@x0
¼ 0; (48)

a0
@a1
@t0

� 1� a0ð Þ @u1
@x0

¼ 0; (49)

1� a0ð Þ @u1
@t0

þ @pL1
@x0

¼ 0; (50)

@TG1

@t0
þ 3ðj� 1Þ @R1

@t0
¼ 0; (51)

3ðce � 1ÞpG0 � D2
� �

R1 þ pG0T1 � pL1 � D2 @
2R1

@t20
¼ 0: (52)

Subsequently, we obtain a single partial differential equation with a dis-
persion term for the first-order perturbation of the bubble radius, R1,

l R1½ � ¼ 0;

l ¼ @2

@t20
þ D2 � 3ðce � jÞpG0

3a0ð1� a0Þ
@2

@x20
� D2

3a0ð1� a0Þ
@4

@t20@x
2
0
:

(53)

Because of the dispersion effect, the wave profile is split into each com-
ponent with its own propagation speed if the initial wave is a superpo-
sition of different harmonic components. We, therefore, consider the
solution of (53) in the form of a quasimonochromatic wave train that
evolves into a slowly modulated wave packet,34

R1 ¼ Aðt1; x1; t2; x2Þeih þ c:c:; (54)

h ¼ kx0 � XðkÞ t0; (55)

where A is the complex amplitude, k ¼ k�L� is the nondimensional
wavenumber (k� is the dimensional wavenumber), h is the phase func-
tion, and c:c: denotes complex conjugate. Therefore, the slow variation
of the carrier wave eih is described using envelope wave A.

After substituting (54) into (53), we obtain a linear dispersion
relation,

Dðk;XÞ ¼ �X2 þ D2 þ 3ðj� ceÞpG0
3a0ð1� a0Þ k2 � D2X2k2

3a0ð1� a0Þ ¼ 0; (56)

or

X ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 3ðj� ceÞpG0
3a0ð1� a0Þ þ D2k2

s
: (57)

From (57), the nondimensional phase velocity vp and group velocity
vg are obtained as

vp ¼ X
k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 3ðj� ceÞpG0
3a0ð1� a0Þ þ D2k2

s
; (58)

vg ¼ dX
dk

¼ 3a0ð1� a0ÞX
k 3a0ð1� a0Þ þ D2k2
� � : (59)

Note that both vp and vg include ce, which did not appear in our previ-
ous studies.34,40–44,46–48 This change is the same as in the long-wave
case.1
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After substituting (54) into (48)–(52) and integrating them with
respect to t0 and x0 under the boundary condition at x0 ! 1, where
the bubbly liquid is uniform and at rest, we obtain

a1 ¼ b1R1; u1 ¼ b2R1; T1 ¼ b3R1; pL1 ¼ b4R1 (60)

with

b1 ¼ 3ð1� a0Þ; b2 ¼ �3a0vp;

b3 ¼ �3ðj� 1Þ; b4 ¼ b2ð1� a0Þvp: (61)

B. Second order of approximation

The set of second-order equations is as follows:

@a2
@t0

� 3
@R2

@t0
þ @u2

@x0
¼ M1; (62)

a0
@a2
@t0

� 1� a0ð Þ @u2
@x0

¼ M2; (63)

1� a0ð Þ @u2
@t0

þ @pL2
@x0

¼ M3; (64)

@TG2

@t0
þ 3ðj� 1Þ @R2

@t0
¼ M4; (65)

3ðce � 1ÞpG0 � D2
� �

R2 þ pG0T2 � pL2 � D2 @
2R2

@t20
¼ M5; (66)

where the explicit forms of the inhomogeneous terms Mj

(j ¼ 1; 2; 3; 4; 5) are shown in Appendix A. Equations (62)–(66) can
be reduced to a single inhomogeneous equation for R2,

l R2½ � ¼ CA2e2ih þ i � @D
@X

� �
@A
@t1

þ vg
@A
@x1

� �
eih þ c:c:; (67)

where the real constant C is given by

C ¼ � 2
3

Xm1 � Xm2

a0
� km3

a0ð1� a0Þ þ
pG0m4

a0ð1� a0Þ þ
2D2k2m5

a0ð1� a0Þ

" #
(68)

with

m1 ¼ 6ð2� b1ÞXþ 2b2ð3� b1Þk;
m2 ¼ �2a0b1b2k; m3 ¼ 2a0b1b2Xþ 2ð1� a0Þb22k;

m4 ¼ 6ðj� 1Þ 3j� 4
2!

þ b3

� �
k2;

m5 ¼ 3b2Xk� 5
2
X2 þ 1

D2 3ðb3 þ ce � 2ÞpG0 � D2
� �

:

(69)

From the solvability condition for (67), the coefficient of eih on the
right-hand side of (67) should be zero.22,34 Hence, we obtain

@A
@t1

þ vg
@A
@x1

¼ 0: (70)

Applying (70) to (67), the solution of (67) uniformly valid up to the
concerned far field is given by34

R2 ¼ c0A2e2ih þ c:c:;

c0 ¼ C
D22

; D22 ¼ � 4D2k2X2

a0ð1� a0Þ :
(71)

After substituting (71) into (62)–(66), we obtain

a2
u2
T2

pL2

0BBBB@
1CCCCA ¼

c1 d1 0

c2 d2 0

c3 d3 0

c4 d4 cs

0BBBB@
1CCCCA

A2e2ih þ c:c:

i@A=@t1eih þ c:c:

jAj2

0B@
1CA (72)

with

c1 ¼ � 1
2a0X

2ð1� a0Þc2kþm2½ �;

c2 ¼ 1
2k

ðm1 �m2 � 6a0c0XÞ; c3 ¼ �3ðj� 1Þc0 � m4

2k2
;

c4 ¼ 3ðce � 1ÞpG0 � ð1� 4X2ÞD2
� �

c0 þ pG0c3 � D2m5;

d1 ¼ � 1
a0X

ð1� a0Þd2kþ a0b1 þ 1� a0
vg

b2


 �
;

d2 ¼ 1
k

2a0b1 � 3a0 � 2a0 � 1
vg

b2

� �
;

d3 ¼ 0; d4 ¼ pG0d3 � 2D2X;

cs ¼ D2ð2b2kþ XÞXþ 2 3ðce þ b3 � 2ÞpG0 � D2
� �

:

(73)

C. Third order of approximation and resultant NLS
equation

The set of third-order equations is as follows:

@a3
@t0

� 3
@R3

@t0
þ @u3

@x0
¼ N1; (74)

a0
@a3
@t0

� 1� a0ð Þ @u3
@x0

¼ N2; (75)

1� a0ð Þ @u3
@t0

þ @pL3
@x0

¼ N3; (76)

@TG3

@t0
þ 3ðj� 1Þ @R3

@t0
¼ N4; (77)

3ðce � 1ÞpG0 � D2
� �

R3 þ pG0T3 � pL3 � D2 @
2R3

@t20
¼ N5; (78)

where the explicit forms of the inhomogeneous terms Nj

(j ¼ 1; 2; 3; 4; 5) are shown in Appendix B. Equations (74)–(78) are
reduced to the following single inhomogeneous equation for R3:

l R3½ � ¼ K1e
3ih þ K2e

2ih þ K3e
ih þ c:c:; (79)

where K1 and K2 are not shown because they are not essential for the
derivation of the NLS equation. By imposing the nonsecular condi-
tion22,34 to (79), we obtain

K3 ¼ � @D
@X

� �
i

@A
@t2

þ vg
@A
@x2

� �
þ �1jAj2Aþ i�2Aþ �3

@2A
@x21

" #
¼ 0:

(80)

Combining (70) and (80) with the help of the derivative expansion
method22 based on multiple-scales (27), we have

i
@A
@t2

þ vg
@A
@x2

� �
þ e2ð�1jAj2Aþ i�2AÞ þ �3

@2A
@x21

¼ 0: (81)
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Finally, we obtain the NLS equation,

i
@A
@s

þ �1jAj2Aþ i�2Aþ �3
@2A

@n2
¼ 0; (82)

s ¼ e2t; n ¼ eðx � vgtÞ; (83)

where the real constant �1 is the nonlinear coefficient,

�1 ¼ 1
3

1
@D=@X

Xn1 � X
a0

n2 þ kn3
a0ð1� a0Þ



þ pG0n4
a0ð1� a0Þ �

D2k2n5
a0ð1� a0Þ

�
(84)

with

n1 ¼ 3 c0ð4� b1Þ � c1 þ 6b1 � 10½ �X
þ c2ð3� b1Þ þ b2ð3c0 � c1 þ 9b1 � 18Þ½ �k;

n2 ¼�a0ðb1c2 þ b2c1Þk;
n3 ¼ n2vp þ b2 3a0b1b2 � 2ð1� a0Þc2½ �k;

n4 ¼ 3ðj� 1Þ c3 þ b3c0 þ ð3j� 4Þ c0 þ 3b3
2

þ 3j� 5
2

� �
 ��
� 2b2c3 þ 2b2c0 þ b3c2 þ 3ðj� 1Þc2½
þð3j� 3Þð3j� 4Þb2 þ 6ðj� 1Þb2b3� kX



k2;

n5 ¼�3þ c0ð2�X2Þ þ 2b2 b2k� ð1þ 3c0ÞX½ �k
� 3ð10� 4c0 þ c3 þ b3c0 � 6b3 þ 2cec0 � 3ceÞ

D2 pG0:

(85)

Furthermore, the real constants �2 and �3 are the dissipation and dis-
persion coefficients, respectively,

�2 ¼ � 1
@D=@X

Xk2

3a0ð1� a0Þ � 4ð1þ a0Þb2lLk
3X

þ 4lL

�
þVD D2 � 3ðce � 1Þ þ b3½ �pG0

� �
� pG0b3f

X2

�
; (86)

�3 ¼� 1
@D=@X

vg
3a0ð1� a0Þ

�
ð1� a0Þd2kþ pG0d3k2

X
� D2k2


 �
vg

� ð1� a0Þd2Xþ d4k½ �


; (87)

where f represents fSMK; fLSM; fPCB, and fSTM1.

IV. DISCUSSION

In this section, we discuss the differences between the present
study and two previous studies (Kanagawa et al.40 and Kamei and
Kanagawa41,42). It should be noted that the existing studies, which
derived NLS equations, focused on a quite-high (not moderately
high) frequency band.27,31 Herein, first, we introduce the NLS
equation derived in the previous studies.40–42 The equation
reported in Ref. 40 is as follows:

i
@A
@s

þ e�1 jAj2Aþ i e�2Aþ e�3 @2A

@n2
¼ 0; (88)

s ¼ e2t; n ¼ eðx � vgtÞ (89)

with

e�1 ¼ 1
@D=@X

X en1
3

� X en2
3a0

þ k en3
3a0ð1� a0Þ � k2 en4
 �

; (90)

e�2 ¼ ð4lL þ D3VÞX2

2D2 ; (91)

e�3 ¼ � 3ð1� X2ÞX3

2k2
: (92)

The constants enj (j ¼ 1; 2; 3; 4; 5) are defined in Eq. (63) in our origi-
nal paper40 (see the detailed definitions and explanations in Ref. 40).
In our original study,40 we used c rather than ce; the thermal conduc-
tion was not considered. In Sec. IVA, we express the quantity obtained
in our previous study40 using e .

Further, the other NLS equation41,42 is given by

i
@A
@s

þ b�1 jAj2Aþ i b�2Aþ b�3 @2A

@n2
¼ 0; (93)

s ¼ e2t; n ¼ eðx � vgtÞ (94)

with

b�1 ¼� 1
3

1
@D=@X

�X bn1 þ X bn2
a0

� k bn3
a0ð1� a0Þ



� pG0 bn4
a0ð1� a0Þð1� a0 � dpG0Þ þ

D2k2 bn5
a0ð1� a0 � dpG0Þ

�
; (95)

b�2 ¼ k2

2 3a0ð1� a0 � dpG0Þ þ D2k2
� �
4lLa0ð1þ a0Þ 1� a0 � dpG0

1� a0
þ k

3a0dpG0
1� a0

þ 4lL

�
þ VD D2 � 3 c� 1� a0d

X2

k2

� �
pG0


 �)
; (96)

b�3 ¼ � 1
@D=@X

�3Xþ kvg
6a0ð1� a0Þ d4 �

D2k2vg
3a0ð1� a0 � dpG0Þ

" #
vg: (97)

The constants bnj (j ¼ 1; 2; 3; 4; 5) are defined in Eqs. (53)–(55) in
the previous paper42 (see the detailed definitions and explanations in
Ref. 42). In the previous studies,41,42 we used c rather than ce and con-
sidered the thermal conduction through the bubbly liquid instead of
the bubble–liquid interface. In Subsections IVA–IVE, we express the
quantity obtained in the previous studies41,42 using b .

A. Effective polytropic exponent

Herein, we discuss the dependences of some coefficients on the
initial bubble radius R�

0 and the nondimensional wavenumber k. First,
the effective polytropic exponent, ce, depends on R�

0 but not on k.
Next, for a small value of R�

0, the thermodynamic processes occurring
inside the bubble become isothermal (i.e., ce ! 1), and for a large
value of R�

0, the processes become adiabatic (i.e., ce ! j).

B. Dispersion coefficient

Dispersion coefficient in this study, �3, increases with increasing
R�
0, while b�3 decreases with increasing R�

0; e�3 does not depend on R�
0.

For the dependence of k, �3, e�3 , and b�3 have an extremum at a small
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wavenumber. With regard to the size of dispersion (i.e., the absolute
value of dispersion coefficient), we obtain j�3j < j e�3 j< j b�3 j.
C. Dissipation coeffcient: Overall trend

Herein, we discuss the most important aspect: dissipation coeffi-
cients. In this study, we obtained only one type of dissipation term
i�2A, subsequently, all the dissipation factors were included as linear
combination in the dissipation coefficient �2, while the dissipation
effects for the case of KdVB equation (i.e., low frequency long wave)1

were included in two types of dissipation terms—the well-known sec-
ond-order derivative with respect to the space coordinate and the term
without differentiation. Therefore, we can discuss the dissipation effect
by focusing on only �2. In the following, we present the dependence of
�2 on the initial bubble radius R�

0 and nondimensional wavenumber k
since the dependence of �2 on the initial void fraction a0 is quite small.

Figure 2(a) shows the dependence of the dissipation coefficients,
�2, e�2 , and b�2 on R�

0, where the SMK model (17) is used as the
temperature-gradient model in �2. All coefficients decrease with
increasing R�

0. The present coefficient �2 is the largest among all coef-
ficients because the thermal conduction at the bubble–liquid inter-
face is incorporated, and the present dissipation effect becomes more
than four times larger than the cases without thermal conduction.
Figure 2(b) shows the dependence of �2, e�2 , and b�2 on k. All

coefficients increase with increasing k. As in the case of the depen-
dence on R�

0 [Fig. 2(a)], the present coefficient �2 has the largest value
among all coefficients because the thermal conduction at the bubble–
liquid interface is incorporated.

D. Dissipation coefficient: Three factors

We next discuss each dissipation factor. The three dissipation
coefficients, �2, e�2 , and b�2 , are decomposed into

�2¼�visþ�acþ�th;

�vis¼� 1
@D=@X

Xk2

3a0ð1�a0Þ 4lLþ
4ð1þa0Þb2lLk

3X


 �
;

�ac¼� 1
@D=@X

Xk2

3a0ð1�a0ÞVD D2� 3ðce�1Þþb3½ �pG0
� �

;

�th¼ 1
@D=@X

Xk2

3a0ð1�a0Þ
pG0b3f

X2 ;

(98)

e�2 ¼ f�vis þ f�ac ;
f�vis ¼ 4lLX

2

2D2 ; f�ac ¼ VDX2

2
;

b�2 ¼ c�vis þ c�ac þ c�th ;
(99)

c�vis ¼ k2

2 3a0ð1� a0 � dpG0Þ þ D2k2
� �

� 4lLa0ð1þ a0Þ 1� a0 � dpG0
1� a0

þ 4lL


 �
;

c�ac ¼ k2

2 3a0ð1� a0 � dpG0Þ þ D2k2
� �

�VD D2 � 3 c� 1� a0d
X2

k2

� �
pG0


 �
;

c�th ¼ k2

2 3a0ð1� a0 � dpG0Þ þ D2k2
� � k 3a0dpG0

1� a0
;

(100)

where f represents fSKM; fLSM; fPCB, and fSTM1, and the subscripts
“vis,” “ac,” and “th” represent the viscosity, acoustic radiation due to
the liquid compressibility, and thermal conduction, respectively.

Regarding the viscosity, Fig. 3(a) shows the dependence of the
dissipation coefficients: �vis; f�vis , and c�vis on R�

0. Clearly, �vis is larger
than c�vis but is comparable to f�vis . Figure 3(b) shows the dependence
of �vis; f�vis , and c�vis on k. Whereas �2 has the smallest value among
all coefficients for small k, �vis is larger than c�vis and is smaller thanf�vis with increasing k.

Regarding the acoustic radiation, Fig. 4(a) shows the dependence
of the dissipation coefficients: �ac; f�ac , and c�ac on R�

0. All the coeffi-
cients decrease with increasing R�

0, �ac has the largest value among all
coefficients. Figure 4(b) shows the dependence of �ac; f�ac , and c�ac on
k. All the coefficients increase with increasing R�

0. Similar to the case of
the dependence on the bubble radius, �ac has the largest value among
all coefficients.

Regarding the thermal conduction, Fig. 5(a) shows the dependence
of �th and c�th on R�

0. All the temperature-gradient models [i.e., SMK
model (17), LSM model (18), PCB model (19), and STM model (20)]
are used in �th. Note that our original study40 neglected the effect of
thermal conduction. From the comparison, the effect of thermal con-
duction at the bubble–liquid interface (green, red, blue, and orange
curves) is larger than that of thermal conduction through the bubbly

FIG. 2. Dissipation coefficients, �2 (green), e�2 (orange), and b�2 (green): depen-
dence of (a) initial bubble radius R�

0 and (b) nondimensional wavenumber k for
e ¼ 0:07; a0 ¼ 0:01, k¼ 10, c�L0 ¼ 1500 m=s, and l�L ¼ 1� 10�3 Pa s; the
same condition is used in Figs. 3–5.
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liquid (purple curve). The order of �th is more than O(10), whereas that
of c�th is less than Oð10�6Þ.41 This indicates that, in this study, the effect
of thermal conduction is evaluated correctly by focusing on the heat
entering and leaving individual bubbles by incorporating the energy
equation (11). Although the difference among the four models
(17)–(20) is small for milliscale bubbles, the values in the PCB and STM
models are large compared with those in the LSM and SMKmodels for
microscale bubbles. The PCB model is similar to the STM model, and
the LSM model is similar to the SMK model. Figure 5(b) shows the
dependence of �th and c�th on k; �th is a constant and has no depen-
dence. The order of �th is O(10), whereas that of c�th is less than
Oð10�7Þ.41 Hence, similar to the discussion of R�

0 dependence [Fig. 5
(a)], we conclude that the effect of thermal conduction is evaluated
correctly.

E. Comparison of present NLS case with previous
KdVB case

Finally, we compare the results of the present NLS equation (82)
with those of the previous KdVB equation.1 The similarities between
the NLS and KdVB equations are summarized as follows: (i) The dissi-
pation effect due to viscosity is decreased; (ii) the dissipation effect due
to acoustic radiation is increased; and (iii) the thermal conduction at the
bubble–liquid interface has the largest contribution to the dissipation
effect.

The differences between the NLS and KdVB equations are sum-
marized as follows: (iv) The dissipation factors are consolidated into
one type of dissipation coefficient �2 as a linear combination in the
NLS equation (82), in the KdVB equation, the dissipation factors are
divided into two types of dissipation coefficients; (v) the dissipation
effect is mostly due to thermal conduction in the KdVB equation,
whereas dissipation due to thermal conduction is approximately half
of all dissipation effects in the NLS equation (82).

V. CONCLUSIONS

Weakly nonlinear propagation of pressure waves with a moder-
ately high (not quite-high) frequency and a short wavelength (Fig. 1
and Table I) was theoretically studied in an initially quiescent com-
pressible liquid comprising several uniformly-distributed spherical
microbubbles. The investigation was based on the derivation of the
NLS equation (82). In particular, the energy equation at the bubble–
liquid interface (11) and the effective polytropic exponent (22)24 were
introduced.

The main results of this paper are summarized as follows:

(i) The effect of thermal conduction at the bubble–liquid inter-
face on dissipation was the largest among all dissipation
effects (i.e., the viscosity, acoustic radiation, and thermal
conduction).

FIG. 4. Dissipation coefficients due to the acoustic radiation, �ac (blue), f�ac
(orange), and c�ac (green): dependence of (a) R�

0 and (b) k.
FIG. 3. Dissipation coefficients due to the viscosity, �vis (blue), f�vis (orange), and c�vis
(green): dependence of (a) R�

0 and (b) k. Note that �vis is quite close to f�vis in (a).
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(ii) Four models (17)–(20)56–59 were utilized to evaluate the
thermal dissipation effect. The difference between the four
models was significant for microscale bubbles and insignifi-
cant for milliscale bubbles.

(iii) All dissipation effects were summarized in one type of dissi-
pation term i�2A as a linear combination. However, in the
case of the KdVB equation,1 those were summarized in two
types of dissipation terms: the well-known second-order
derivative term with respect to the space coordinate and the
newly discovered undifferentiated term.

(iv) The presented thermal effect contributed not only to the
dissipation coefficient �2 but also to the dispersion coeffi-
cient �3.

(v) Dissipation due to thermal conduction was approximately
half of all dissipation effects in the present short-wave case.
In the long-wave case, dissipation due to thermal conduc-
tion was close to all dissipation effects.1

In summary, we achieved a detailed understanding of the thermal
effect inside bubbles on the pressure wave in bubbly liquids in the
framework of weakly nonlinear theory for the case of the NLS equa-
tion. In a forthcoming paper, we will introduce the temperature in the
liquid phase as an unknown variable.
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APPENDIX A: INHOMOGENEOUS TERMS IN
(62)–(66)

Explicit forms of the inhomogeneous terms Mj

(j ¼ 1; 2; 3; 4; 5) are given by

M1 ¼ � @a1
@t1

� 3
@R1

@t1
þ @u1

@x1

� �
þ3

@

@t0
a1R1 � 2R2

1

� �þ @

@x0
ð3u1R1 � a1u1Þ;

(A1)

M2 ¼ � a0
@a1
@t1

� 1� a0ð Þ @u1
@x1


 �
� a0

@a1u1
@x0

; (A2)

M3 ¼ � 1� a0ð Þ @u1
@t1

þ @pL1
@x1


 �
þ a0

@a1u1
@t0

� ð1� a0Þ @u
2
1

@x0
; (A3)

M4 ¼� @TG1

@t1
þ 3ðj� 1Þ @R1

@t1


 �
� u1

@TG1

@x0

� 3ðj� 1Þ u1
@R1

@x0
þ @TG1R1

@t0
þ 3ðj� 1Þ � 1

2
@R2

1

@t0


 �
; (A4)

M5 ¼ 2D2 @2R1

@t0@t1
þ D2 @u1

@t0

@R1

@x0
þ 2D2u1

@2R1

@t0@x0
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2R1

@t20

þ 3D2

2
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� �2

þ 3pG0R1T1 þ 3ðce � 2ÞpG0 � D2
� �

: (A5)

APPENDIX B: INHOMOGENEOUS TERMS IN (73)–(77)

Explicit forms of the inhomogeneous terms Nj (j ¼ 1; 2; 3; 4; 5)
are given by

N1 ¼� @a1
@t2

� 3
@R1

@t2
þ @u1

@x2

� �
� @a2

@t1
� 3

@R2
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þ 3
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1
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þ 10
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1
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þ 3
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1Þ
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þ 3
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þ 3
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þ 3
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; (B1)

N2 ¼� a0
@a1
@t2

� 1� a0ð Þ @u1
@x2


 �
� a0

@a2
@t1

� 1� a0ð Þ @u2
@x1


 �
� a0

@a1u1
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� a0
@a1u2
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@a2u1
@x0

; (B2)

FIG. 5. Dissipation coefficients due to the thermal conduction, �th (purple) and c�th
(blue, orange, red, and green): dependence of (a) R�

0 and (b) k. Blue, orange, red,
and green curves represent SMK, LSM, STM, and PCB models, respectively.
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