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Weakly nonlinear propagation of plane pressure waves in flowing compressible water containing many spherical
microbubbles is theoretically investigated. Special focus is placed on the thermal conduction inside the bubble and drag
force acting on translational bubbles. From the method of multiple scales, the Korteweg–de Vries–Burgers equation is
derived and two types of dissipation terms appear: a term with a second-order partial derivative owing to the liquid
compressibility and a term without differentiation owing to the drag force and thermal conduction. Finally, we
numerically found that the dissipation effect due to the thermal conduction is the largest, followed by that due to the
acoustic radiation and drag force.

In nonlinear acoustics or nonlinear wave theory, a pressure
wave evolves into a shock wave owing to the competition
between the nonlinear and the dissipation effects, or into
a stable wave [a so-called (acoustic) soliton] owing to the
competition between the nonlinear and the dispersion effects.
It is essential to evaluate the nonlinear, dissipation, and
dispersion effects, because the shock wave and the soliton
have considerably different properties. In the field of weakly
nonlinear (i.e., finite but small amplitude) waves in bubbly
liquids, the derivation of nonlinear wave equations such as
the Korteweg–de Vries–Burgers (KdVB) equation is effec-
tive for obtaining the sizes of the nonlinear, dissipation, and
dispersion effects as constant coefficients.1) Kuznetsov et al.2)

showed that the theoretically predicted waveform obtained
using the KdVB equation agreed with the experimental
result.

Although the KdVB equation has long been used to predict
weakly nonlinear waves in bubbly flows,2–4) previous
theoretical studies have ignored some factors. In particular,
the translation of the bubble and drag force acting on bubbles
are practically significant factors for high-speed cavitating
flows in hydraulic machinery. Our previous study1) was the
first to consider the translation and drag forces; in this study,
the KdVB equation was derived from a two-fluid model,5)

and it was found that the translation increased the non-
linearity and the drag force increased the dissipation.
However, for simplicity, our previous study1) ignored the
effect of thermal conduction at the bubble–liquid interface on
the dissipation of waves; instead, only the drag force and
acoustic radiation were compared. Nevertheless, the impor-
tance of the effect of thermal conduction on wave dissipation
has been well known.3) Therefore, the present study aims to
derive the KdVB equation by considering the thermal effect
and to compare the dissipation effects due to the drag force,
acoustic radiation, and thermal conduction.

In this study, we theoretically investigate the weakly
nonlinear (i.e., finite but small amplitude) propagation of
one-dimensional (plane) progressive pressure waves in
flowing compressible water that uniformly contains many
spherical oscillating bubbles, as shown in Fig. 1.1) As in our

previous studies,1,6) we newly introduce the drag force and
translation as bubble dynamics. The main assumptions are as
follows: (i) the bubble motion is spherically symmetric; (ii)
the bubbles do not coalesce, break up, disappear, and appear;
(iii) in the initial state, the gas and liquid phases flow with
constant velocity; (iv) the temperature of the liquid phase is
constant; and (v) for simplicity, the lift, gravitation, direct
interactions between bubbles, gas phase viscosity, Reynolds
stress, and phase change and mass transport across the
bubble–liquid interface are omitted. Although these assump-
tions are the same as those in our previous study,1) in the
present study, the equation of the thermal conduction at the
bubble–liquid interface3) with a temperature gradient model7)

is used to express thermal effect inside bubbles.
As basic equations, to introduce the drag force8) in

interfacial momentum transport, we use the mass and
momentum conservation laws for the gas and liquid phases
based on a two-fluid model:5)
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Fig. 1. Concept of problem: pressure wave propagation in bubbly flows.
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where t� is the time, x� is the space coordinate normal to the
wave front, α is the void fraction (0 < � < 1), �� is the
density, u� is the velocity, p� is the pressure, P� is the liquid
pressure averaged on the bubble–liquid interface,5) and F� is
the virtual mass force utilizing the model;9) the subscripts G
and L denote the gas and liquid phases, respectively, and the
superscript � denotes a dimensional quantity. The following
model for the drag force term D� for spherical bubbles is
introduced:1,6,10)

D� ¼ � 3
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where R� is the bubble radius and CD is the drag coefficient
for a single spherical bubble. In addition, we use the equation
of motion for bubbles, which is represented as a linear
combination of the volumetric oscillations of bubbles11) and
the translation of bubbles:12)

1 � 1

c�L0

DGR
�

Dt�

� �
R� D

2
GR

�

Dt�2
þ 3

2
1 � 1

3c�L0

DGR
�

Dt�

� �
DGR

�

Dt�

� �2

¼ 1 þ 1

c�L0

DGR
�

Dt�

� �
P�

��L0
þ R�

��L0c
�
L0

DG

Dt�
ðp�L þ P�Þ

þ ðu�G � u�LÞ2
4

; ð6Þ
where c�L0 is the speed of sound in pure water, the subscript
0 denotes the initial unperturbed state, and the Lagrange
derivative DG=Dt

� is defined as
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The novelty of this paper is the introduction of equation for
thermal conduction at the bubble–liquid interface3) to express
the thermal effect inside a bubble:
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where ��G is the thermal conductivity of the gas inside the
bubble, γ is the ratio of specific heats, T�

G is the temperature
of the gas phase, and r� is the radial distance from the center
of the bubble. Although some models13–17) have been
proposed for the temperature gradient as an approximation
of the first term on the right-hand side of (8), in this study, we
use the following model by Shimada et al.:7)
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Furthermore, the equation of state for ideal gas, the Tait’s
equation of state for liquid, conservation equation of mass
inside the bubble, and the balance of normal stresses across
the bubble–liquid interface are introduced:
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where n is a material constant (e.g., n ¼ 7:15 for water), �� is
the surface tension, and ��L is the liquid viscosity.

The temperature of the gas phase is nondimensionalized
and expanded in a power series of ε:

T�
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�
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where ε (� 1) is a finite but small nondimensional wave
amplitude. The expansions of the other dependent variables
are the same as those in our previous paper.1) As the scaling
relations of nondimensional ratios derived by using ε, low-
frequency long waves are described by introducing the
following ratios:1)
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where V, Δ, and Ω are constants of Oð1Þ, U� is the typical
propagation speed, L� is the typical wavelength, !� is the
typical frequency of waves, and !�

B is the natural frequency
of a single bubble.1) The liquid viscosity ��L is also
nondimensionalized as

��L
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where μ is a constant of Oð1Þ. Furthermore, the size of
the nondimensional ratio for thermal conduction is intro-
duced:13)
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where ζ is a constant of Oð1Þ.
As a result, the leading order of approximation in (8) is

derived from the method of multiple scales:
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where R1 and R2 are first and second order perturbations of
bubble radius, respectively,1) and the definition of the linear
Lagrange derivative D=Dt0 is
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where t0 (¼ t) and x0 (¼ x) are extended independent
variables; and t1 (¼ "t) and x1 (¼ "x) represent slow scales
appearing in the second order of approximation, as in
Appendix in Ref. 18.
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Finally, we obtain the KdVB equation:

@f

@	
þ �1 f

@f

@

þ �2

@2f

@
2
þ �3

@3f

@
3
þ ð�4A þ�4BÞf ¼ 0; ð23Þ

through the variable transform
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where f is the first order perturbation of the nondimensional
bubble radius1) and vp is the phase velocity. Here, �0, �1,
and �3 are the advection, nonlinear, and dispersion
coefficients, respectively, and �2, �4A, and �4B are the
dissipation coefficients due to acoustic radiation, drag force,
and thermal conduction, respectively. The forms of �0 and
�3 are given by

�0 ¼ � ð1 � �0Þvp�2V2
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and are not affected by drag force, translation, and thermal
conduction; i.e., they are the same as in Ref. 4. The explicit
form of �1 is affected by translation and is quite complex
[see Eq. (57) in Ref. 1]. The dissipation coefficients in (23)
are given by
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In the case in which the thermal effect inside the bubble is
ignored (i.e., �4B ¼ 0), the present result agrees with the
result of our previous study.1)

Because the dissipation term due to the acoustic radiation
(�2@

2f=@
2) has a different mechanism from that due to the
drag force and thermal conduction (�4A f and �4B f ) with
regard to the unknown variable, they cannot be compared
using the coefficients (�2, �4A, and �4B). Therefore, we
conducted a numerical analysis employing the split-step
Fourier method used in our previous studies.1,13,19–21)

Figure 2 shows the temporal evolution of the numerical
solutions for the KdVB equation. The solid, dashed, and
dotted curves represent the waveforms with only the acoustic
radiation, only the drag force, and only the thermal
conduction, respectively. We assume that the initial wave-
form of the solution is a cosine wave. Figure 3 shows the
maximum value of the waveform as time passes. The

Fig. 2. Temporal evolution of the numerical solutions of the KdVB
equation for �0 ¼ 0:01, R�

0 ¼ 500 µm,
ffiffiffi
"

p ¼ 0:15, � ¼ 1:4, vp ¼ 1, ��L0 ¼
1000 kg=m3, ��L ¼ 10�3 Pa·s, T�

G0 ¼ 298K, ��G ¼ 0:025W=(m·K), p�L0 ¼
101325Pa, �� ¼ 0:0728N=m, grid steps = 1024, duration of numerical
integration of time = 0.001, and size of computational domain = 8�. The
solid, dashed, and dotted curves represent the waveforms with only the
acoustic radiation, only the drag force, and only the thermal conduction,
respectively.

Thermal conduction

Drag force

Acoustic radiation

Fig. 3. Comparison of the three dissipation effects. The calculation
condition is the same as that in Fig. 2.
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dissipation effect of thermal conduction is the largest,
followed by that of the acoustic radiation and drag force.
This order is effective in the range from R�

0 ¼ 50 µm to 1mm.
In summary, we theoretically investigated the weakly

nonlinear propagation of one-dimensional progressive pres-
sure waves in flowing compressible water that uniformly
contained many spherical oscillating bubbles by deriving
the KdVB equation, and identified three dissipation effects:
acoustic radiation, drag force, and thermal conduction. From
the numerical analysis, we clarified that the dissipation effect
of the thermal conduction was the largest, followed by that of
the acoustic radiation and drag force.
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