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ABSTRACT

In this study, the weakly nonlinear propagation of plane progressive pressure waves in an initially quiescent liquid was theoretically
investigated. This liquid contains several small uniformly distributed spherical polydisperse gas bubbles. The polydispersity considered here
represents various types of initial bubble radii, and the liquid contains multiple bubbles, each with an initial radius. Using the method of
multiple scales, we first derived the Korteweg–de Vries–Burgers (KdVB) equation with a correction term as a nonlinear wave equation. This
equation describes the long-range wave propagation with weak nonlinearity, low frequency, and long wavelength in the polydisperse bubbly
liquid using the basic equations in a two-fluid model. The utilization of the two-fluid model incorporates the dependence of an initial void
fraction on each coefficient in the nonlinear, dissipation, and dispersion terms in the KdVB equation. Furthermore, unlike previous studies
on waves in polydisperse bubbly liquids, we achieved the formulation without assuming an explicit form of the polydispersity function.
Consequently, we discovered the contribution of polydispersity to the various effects of wave propagation, that is, the nonlinear, dissipation,
and dispersion effects. In particular, the dispersion effect of the waves was found to be strongly influenced by polydispersity.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0099282

I. INTRODUCTION

Pressure waves in liquid containing several microbubbles (i.e.,
bubbly liquid) convert either into shock waves or into an acoustic soli-
ton1 through competition between the nonlinear effects of waves and
the dispersion effect owing to bubble oscillations in the medium.
Because shock waves and solitons have different properties than waves,
it is necessary to evaluate them (i.e., nonlinearity, dissipation, and dis-
persion) to predict their development. Several studies have been con-
ducted on pressure waves in bubbly liquids by both experimental
measurements2–12 and numerical simulations.5,10,13–52 Although it is
difficult to directly evaluate the magnitude of the three properties with
these methods, few theoretical approaches have facilitated it. Several
theoretical studies on pressure wave propagation in bubbly liquids
have been conducted to investigate waveforms by deriving a nonlinear
wave equation.53–60 For weakly nonlinear pressure waves, we can

theoretically derive a weakly nonlinear wave equation, which describes
the spatiotemporal evolution through a competition of the three prop-
erties. Using this equation, we can evaluate the balance between the
three properties. Korteweg–de Vries–Burgers (KdVB) equation, in
particular, is one of the most prominent weakly nonlinear wave equa-
tions that describes low-frequency long-wave pressure waves in bubbly
liquids. It has been derived in several theoretical studies1–3,9,61–65 and
agrees with a few experimental results.3

Recently, our group has been improving and re-deriving the
KdVB equation, and evaluating the effects of previously ignored
viewpoints on wave propagation and the three properties. Some
additional wave propagation properties being considered are the ini-
tial nonuniform distribution of velocities in gas and liquid phases,66

drag force acting on the bubbles, and bubble translation,67,68 and
quasi-one-dimensional propagation as a focused ultrasound.69
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Moreover, we re-considered previously incorporated viewpoints such
as thermal conduction under monodispersity70 and polydispersity71

assumptions. In particular, our group72,73 clarified the incorporation
of the initial void fraction dependence on the three properties for the
utilization of the two-fluid model equations in the case of monodis-
perse bubbly liquids.

The KdVB equation describing pressure wave propagation in
bubbly liquids was first derived by van Wijngaarden.65 Since then, sev-
eral theoretical studies have proposed new and improved KdVB equa-
tions.57,61–64 Although the KdVB equation predicts the theoretical
evolution of pressure waves in bubbly liquids well, few papers have
reported its disagreement with experimental results. Watanabe and
Prosperetti74 compared the numerical solution of the model by
Caflisch et al.75 based on Wijngaarden’s model with the experimental
results76 and found significant differences in some results. They con-
cluded that a few flaws existed in Wijngaarden’s model and other
models (i.e., basic equations and approximation methods). However,
they could not clarify the physical reasons for these differences.
Beylich and G€ulhan76 claimed the validity of the theoretical model,
but this result challenges it. Kameda et al.5,77 found that the cause of
this discrepancy was the initial nonuniformity of bubble size (i.e., ini-
tial polydispersity). They compared the results of shock wave tube
experiments using bubbly liquids with the numerical solutions of a
mathematical model65 and found close quantitative agreement. These
results suggest that polydispersity is a non-negligible factor in the
accurate prediction of pressure wave propagation in bubbly liquid.

In the last few decades, pressure wave propagation in
bubbly liquids has been actively studied with a focus on
polydispersity.8,15,78–91 In particular, Ando et al.15,86 numerically ana-
lyzed shock waves propagating in a polydisperse bubbly liquid and
clarified the phenomenon of phase cancellation, which is caused by
the independent oscillation of bubbles with different initial sizes and
does not occur in the monodisperse case. It is understood that most
bubbly liquids have polydispersity, and it is therefore a factor that can-
not be ignored when considering pressure waves in bubbly liquids.
Nevertheless, few studies53,71 have considered polydispersity in the
weakly nonlinear wave equation, which enables qualitative evaluation
of pressure waves in bubbly liquids. However, the three properties
have not been considered in the evaluation. This is a significant prob-
lem for the global understanding of pressure waves in bubbly liquids.

Gumerov53 first derived the KdVB equation considering initial
polydispersity by using mixture model equations.62 However, the
dependence of the three properties on the initial void fraction could
not be reflected in the resultant KdVB equation. Later, using two-fluid
model equations, our group71 also derived the KdVB equation consid-
ering initial polydispersity, but the size of the polydispersity was signif-
icantly small. Surprisingly, the previous studies53,71 assumed that
bubbles obey only one type of eigenfrequency for a representative bub-
ble with multiple bubbles.

In this paper, we propose introducing multiple eigenfrequencies
for each bubble in polydisperse bubbly liquids with a discrete distribu-
tion of initial bubble radii. This assumption results in the incorpora-
tion of acoustic properties, such as phase cancellation, caused by
interactions between the various bubble oscillations of each initial size.
The purpose of this study was to theoretically elucidate the effects of a
discrete distribution of the initial bubble radius on weakly nonlinear
propagation of pressure waves in polydisperse bubbly liquids. This

was based on deriving the KdVB equation, where the polydispersity is
non-negligible, and the dependence of the initial void fraction is incor-
porated using basic equations by the two-fluid model.

The remainder of the paper is organized as follows. In Sec. II, we
describe a problem in which several bubbles with a discrete distribution
of initial radii are represented as N types of bubbles oscillating indepen-
dently. To incorporate the effect of the independent motion of bubbles,
for the polydisperse case, the oscillations of several bubbles in bubbly
liquids are described by the Keller equation (7), for multiple, instead of
single, initial radii. In this study, “polydispersity” represents a discrete
distribution of bubble radii. In Sec. III, we derive the KdVB equation
with polydispersity using the method of multiple scales for basic equa-
tions in the two-fluid model, and discuss the effects of polydispersity on
the three properties (i.e., nonlinearity, dissipation, and dispersion) under
the assumption that the bubble radius follows a lognormal distribution,
which is often adopted as the distribution of polydisperse bubbly liquids.
Finally, Sec. IV presents the conclusions of this study.

II. PROBLEM FORMULATION
A. Assumption

In this study, the weakly nonlinear (i.e., finite but small ampli-
tude) propagation of a plane (one-dimensional) progressive pressure
wave in a compressible liquid that contains a large number of uni-
formly distributed small spherical gas bubbles was theoretically con-
sidered, as shown in Fig. 1. We focused on examining the effects of
polydispersity of the initial radius of bubble on wave propagation. The
bubbly liquid was initially assumed to be quiescent. The coalescence,
breakup, appearance, and extinction of bubbles were not considered.
The following factors were not considered for simplicity: gas
viscosity, thermal conductivities of the liquid,61,70,74,92,93 bubble inter-
action,24,94–99 phase change, and mass transport across the bubble wall
(i.e., gas–liquid interface).100 As clarified by our previous papers,69,73

initial nonuniformity of bubble distribution (i.e., number density of
bubbles) contributes to an advection effect of waves (i.e., propagation
speed of waves), but we here assume the initially uniform bubble dis-
tribution for simplicity. The pressure and density of gas were assumed
to be uniform inside each bubble.

Polydispersity was considered; that is, it was assumed that the ini-
tial bubble radius has N types80 at any position, as shown in Fig. 1.
These bubble groups move independently from each other. It should
be noted that the content rate of each bubbly liquid bubble type is ini-
tially uniform.

B. Basic equations

The utilization of basic equations based on a two-fluid model101

enables us to describe the dependence of the initial void fraction on
the weakly nonlinear wave equations. Therefore, mass and momen-
tum conservation equations for the gas and liquid phases in the two-
fluid model were initially used

@

@t�
ðaq�GÞ þ

@

@x�
ðaq�Gu�GÞ ¼ 0; (1)

@

@t�
ð1� aÞq�L
� �þ @

@x�
ð1� aÞq�Lu�L
� � ¼ 0; (2)

@

@t�
ðaq�Gu�GÞ þ

@

@x�
aq�Gu

�
G
2

� �þ a
@p�G
@x�

¼ F�; (3)
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@

@t�
ð1� aÞq�Lu�L
� �þ @

@x�
ð1� aÞq�Lu�L2
� �

þ ð1� aÞ @p
�
L

@x�
þ P� @a

@x�
¼ �F�; (4)

where t� is time, x� is the space coordinate, a is the void fraction (vol-
ume fraction of the gas phase), u� is the fluid velocity, q� is the
volume-averaged density, p� is the volume-averaged pressure, and P�

is the liquid pressure averaged at the bubble–liquid interface. The
subscripts G and L represent volume-averaged variables in the gas and
liquid phases, respectively, and the superscript � represents a dimen-
sional quantity. As an interfacial momentum transportation model,
the model for virtual mass force F� was employed102,103

F� ¼ � b1aq
�
L

DGu�G
Dt�

� DLu�L
Dt�

� �
� b2q

�
Lðu�G � u�LÞ

DGa
Dt�

� b3aðu�G � u�LÞ
DGq�L
Dt�

; (5)

where coefficients bj ðj ¼ 1; 2; 3Þ are set to 1/2 for the case of spherical
bubbles. Lagrange derivatives DG=Dt� and DL=Dt� are defined as
follows:

DG

Dt�
� @

@t�
þ u�G

@

@x�
;

DL

Dt�
� @

@t�
þ u�L

@

@x�
: (6)

The spherically symmetric bubble oscillations in a compressible
liquid are governed by the Keller equation104 (i ¼ 1; 2;…;N)

1� 1
c�L0

DGR�
i

Dt�

� �
R�
i
D2

GR
�
i

Dt�2
þ 3
2

1� 1
3c�L0

DGR�
i

Dt�

� �
DGR�

i

Dt�

� �2

¼ 1þ 1
c�L0

DGR�
i

Dt�

� �
P�
i

q�L0
þ R�

i

q�L0c
�
L0

DG

Dt�
ðp�L þ P�

i Þ; (7)

where c�L0 is the speed of sound in pure water and R�
i ðx�; t�Þ is the

bubble radius when the initial type is ith. We introduce polydispersity
with a different initial condition of oscillations for each i type.

Equation for thermal conduction at the gas–liquid interface61 is
described as

DGp�Gi
Dt�

¼ 3
R�
i

ðj� 1Þk�G
@T�

Gi

@r�

����
r�¼R�

i

� jp�Gi
DGR�

i

Dt�

" #
; (8)

where T�
Gi is the temperature of the gas phase for the ith bubble, j is

the ratio of the specific heats, r� is the radial distance from the center
of the bubble, and kG is the thermal conductivity of the gas phase. For
the temperature gradient expressed in the first term on the right-hand
side of (8), we used the following model:105

@T�
Gi

@r�

����
r�¼R�

i

¼ Reð~L�
PÞðT�

G0 � T�
GiÞ

j~L�
Pj2

þ Imð~L�
PÞ

x�
Bj~L

�
Pj2

DGT�
Gi

Dt�
; (9)

where T�
G0 is the initial temperature (note isothermal as the initial con-

dition) and x�
B is the natural angular frequency of the spherically sym-

metric oscillations of a single bubble, for which we use

x�
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3cep

�
G0 � 2r�=Rref�

0

q�L0R
ref�2
0

� 2l�e0
q�L0R

ref�2
0

� �2
s

; (10)

ce ¼ Re
CN

3

� �
; (11)

l�e0 ¼ l� þ Im
p�G0CN

4x�
B

� �
; (12)

CN ¼ 3a2Nj
a2N þ 3ðj� 1ÞðaN coth aN � 1Þ ; (13)

aN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx�

Bp
�
G0R

ref�2
0

2ðj� 1ÞT�
G0k

�
G

s
ð1þ jÞ; (14)

where ce is the effective polytropic exponent, l
�
e0 is the initial effective

viscosity, CN and aN are complex numbers, and j denotes the imagi-
nary unit. Further, ~L

�
P is the complex number with the length

dimension

~L
�
P ¼ Rref�

0 ða2N � 3aN coth aN þ 3Þ
a2NðaN coth aN � 1Þ : (15)

To close the set of (1)–(8), we introduce (i) the equation of an
ideal gas state; (ii) Tait, equation of liquid state; (iii) the conservation
law of mass inside the bubble; and (iv) the balance of normal stresses
across the gas–liquid interface

p�Gi
p�Gi0

¼ q�Gi
q�Gi0

� �
T�
Gi

T�
G0

� �
; (16)

FIG. 1. Conceptual diagram of problem statement: (a) propagation of pressure waves in a polydisperse bubbly liquid and (b) the model for the elements of a polydisperse bub-
bly liquid.
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p�L ¼ p�L0 þ
q�L0c

�2
L0

n
q�L
q�L0

� �n

� 1

" #
; (17)

q�Gi
q�Gi0

¼ R�
i0

R�
i

� �3

; (18)

p�Gi � ðp�L þ P�
i Þ ¼

2r�

R�
i
þ 4l�

R�
i

DGR�
i

Dt�
; (19)

where q�Gi is the gas density inside the bubbles of the ith type, p�Gi is
the gas pressure inside the bubbles of the ith type, P�

i is the pressure
on the bubbles of the ith type, n is the material constant, r� is the sur-
face tension, and l� is the liquid viscosity. The physical quantities in
the initial unperturbed state are constants and are denoted by the sub-
script 0. Equations (16), (18), and (19) are used for i ¼ 1;…;N , as in
(7). Note that our previous monodisperse cases66–70,72,106,107 consid-
ered Ri as R, and our previous polydisperse case71 also regarded Ri as
R, because the previous study71 defined the initial polydispersity in
perturbation expansions. These extensions are justified by the assump-
tion that the bubbles do not directly affect each other. Essentially, the
motion of a single bubble is the same as that of a bubble in a bubbly
liquid.

In addition, we can close these equations explicitly by introducing
the relations between averaged quantities and quantities of each bubble
type

p�G ¼
XN
i¼1

ðXiR
�
i
3p�GiÞ


XN
i¼1

ðXiR
�
i
3Þ; (20)

q�G ¼
XN
i¼1

ðXiR
�
i
3q�GiÞ


XN
i¼1

ðXiR
�
i
3Þ; (21)

P� ¼
XN
i¼1

ðXiR
�
i
2P�

i Þ

XN

i¼1

ðXiR
�
i
2Þ; (22)

where Xi are the content rates of the ith bubble type and are constants.
We emphasize that the present problem incorporates the effect of

gas–liquid interface (i.e., bubble wall); that is, the dynamics of bubble
wall is described by (7), the balance of normal stresses is by (19), and
the surface averaged liquid pressure P focuses on the gas–liquid
interface.

C. Analysis by multiple scales

The relationship U� ¼ L�x� exists, where U�; L�, and T� are
the typical propagation speed of waves, wavelength, and period of
waves, respectively [x� (� 1=T�) is the typical incident frequency of
waves]. We determine the magnitudes of the set of three ratios72

U�

c�L0
� O

ffiffi
�

p� �
¼ V

ffiffi
�

p
; (23)

Rref�
0

L�
� O

ffiffi
�

p� �
¼ D

ffiffi
�

p
; (24)

x�

x�
B
� O

ffiffi
�

p� �
¼ X

ffiffi
�

p
; (25)

where � (\ll1) is a typical nondimensional amplitude of weakly
nonlinear waves and is used as a perturbation; the constants V, D,
and X are of O(1); and Rref�

0 is the representative initial bubble

radius. The physical meaning of (23) is as follows: the speed of
sound in bubbly liquids is significantly low compared with that in
pure water, the representative bubble radius is considerably short
compared with the wavelength, and the incident frequency of
waves is significantly low compared with the natural frequency of
bubble oscillations.

The magnitude of nondimensional ratio with regard to thermal
conduction is also determined70,71

3ðj� 1Þk�G
p�G0x�R�

i0

Reð~L�
PÞT�

G0

j~L�
Pj2

¼ fi1�; (26)

3ðj� 1Þk�G
p�G0x�R�

i0

x�Imð~L�
PÞT�

G0

x�
Bj~L

�
Pj2

¼ fi2�
2; (27)

where fi1 and fi2 are constants of O(1).
Furthermore, we determine the magnitude of polydispersity (i.e.,

the distribution of initial size of each bubble) as follows:

R�
i0

Rref�
0

� Oð1Þ ¼ Ri0 ði ¼ 1; 2;…;NÞ: (28)

Equation (28) indicates that the initial radius of each type is compara-
ble to the representative radius. This equation expresses the magnitude
of the polydispersity allowed in this study, and we considered
and incorporated polydispersity that is not small (i.e., not on the order
of �).

The nondimensionalization results of time t� and space coordi-
nates x� are t � t�=T� and x � x�=L�, respectively. Subsequently, we
introduce four independent variables for near field denoted by the sub-
script 0 and far field denoted by the subscript 1108

t0 ¼ t; x0 ¼ x; t1 ¼ �t; x1 ¼ �x: (29)

Dependent variables are expanded in power series of � after non-
dimensionalization. For example, perturbation expansions of p�L, a, Ri,
and q�L are given by

p�L=ðq�L0U�2Þ ¼ pL0 þ �pL1 þ �2pL2 þ Oð�3Þ; (30)

a=a0 ¼ 1þ �a1 þ �2a2 þ Oð�3Þ; (31)

R�
i =R

�
i0 ¼ 1þ �Ri1 þ �2Ri2 þ Oð�3Þ; (32)

q�L=q
�
L0 ¼ 1þ �2qL1 þ Oð�3Þ: (33)

Notably, all the perturbation expansions begin with Oð�1Þ except
for q�L.

72

The initial nondimensional pressures for the gas and liquid
phases are p�G0 and p�L0, respectively, and liquid viscosity l� is intro-
duced as

p�G0
q�L0U�2 � Oð1Þ ¼ pG0; (34)

p�L0
q�L0U�2 � Oð1Þ ¼ pL0; (35)

l�

q�L0U�L�
� Oð�Þ ¼ l�; (36)

where pG0; pL0, and l are constants of the order of unity. In this study,
an effect of liquid viscosity acting on only the gas–liquid interface was
incorporated.
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III. THEORETICAL ANALYSIS
A. First-order approximation

By substituting (23)–(34) into (1)–(22) and equating each coeffi-
cient of the like powers of � in the resultant equations, the set of linear-
ized equations is obtained as follows:

(i) Mass conservation in the gas phase

@a1
@t0

� 3
XN
i¼1

XVi
@Ri1

@t0

� �
þ @uG1

@x0
¼ 0; (37)

(ii) Mass conservation in the liquid phase

a0
@a1
@t0

� ð1� a0Þ @uL1
@x0

¼ 0; (38)

(iii) Momentum conservation in the gas phase

b1
@uG1
@t0

� b1
@uL1
@t0

� 3pG0
XN
i¼1

XVi
@Ri1

@x0

� �

þ pG0
XN
i¼1

XMi
@TGi1

@x0

� �
¼ 0; (39)

(iv) Momentum conservation in the liquid phase

ð1� a0 þ b1a0Þ
@uL1
@t0

� b1a0
@uG1
@t0

þ ð1� a0Þ @pL1
@x0

¼ 0; (40)

(v) Keller equation for bubbles of the ith type (i ¼ 1; 2;…;N)

Ri1 þ 3ðce � 1ÞRi0

2D2=X2 þ 3 ð3ce � 1ÞRi0 � 2ce½ �pL0
pL1

� D2=X2 þ ð3ce � 1ÞRi0 � 3ce½ �pL0
2D2=X2 þ 3 ð3ce � 1ÞRi0 � 2ce½ �pL0

TGi1 ¼ 0; (41)

(vi) Equation of thermal conduction for bubbles of the ith type

@TGi1

@t0
þ 3ðj� 1Þ @Ri1

@t0
¼ 0: (42)

Note that the N Keller equation (41) includes Ri0. This implies that N
types of bubbles with different initial bubble radii follow N different
equations.

By eliminating a1, uG1; uL1, and pL1 from (37)–(42), as a single
equation, the linear wave equation for a first-order variation of the liq-
uid pressure pL1 is derived as follows:

@2pL1
@t20

� v2p
@2pL1
@x20

¼ 0; (43)

with the phase velocity vp,

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a0ð1� aþ b1ÞpG0Dþ b1ð1� a0Þ

3b1a0ð1� a0ÞC

s
; (44)

where

C¼�
XN
i¼1

ðXVi sRiÞ; D¼�
XN
i¼1

XViþðj�1ÞXMi½ � sRi
� �

;

XVi ¼XiR3
i0


XN
i¼1

ðXiR
3
i0Þ; XMi ¼XipGi0R

3
i0


XN
i¼1

ðXipGi0R
3
i0Þ;

sRi ¼� ð3ce�1ÞRi0

ð3j�1ÞD2=X2þ3pL0 jð3ce�1ÞRi0�ceð3j�1Þ½ � :

(45)

In the first order of approximation, the second- and first-order deriva-
tives of the original Keller equation (7) are dropped, and the bubble
dynamics are regarded as static (not dynamic) in (44). Furthermore,
because vp includes a0, only static bubbles were observed. This result is
correctly reflected by the long-wave approximation in (44).

By focusing only on the right-running wave pL1, a phase function
u0 is introduced

72 as

u0 ¼ x0 � t0: (46)

On rewriting (37)–(41) using u0, we have the expressions of the other
variations uG1; uL1, a1, Ri1, and TGi1, in terms of the liquid pressure
variation f (¼ pL1),

uG1 ¼ s1pL1; uL1 ¼ s2pL1; a1 ¼ s3pL1;

Ri1 ¼ sRipL1; TGi1 ¼ sTipL1
(47)

with

s1 ¼ 1þ 3pG0
ð1� a0 þ b1a0Þ

b1ð1� a0Þ D; s2 ¼ 1þ 3pG0
a0

1� a0
D;

s3 ¼ � 1� a0
a0

s2; sTi ¼ �3ðj� 1ÞsRi:
(48)

Notably, from the boundary conditions at x0 ! 1 where the bubbly
liquid is quiescent, constants of integration are dropped. That is, wave
propagation does not have the three properties in the first-order
approximation, as in our monodisperse case.72

B. Second-order approximation and resultant KdVB
equation

In this subsection, the approximation of second order is done
and the system of equations is derived

(i) Mass conservation law in gas phase

@a2
@t0

� 3
XN
i¼1

XVi
@Ri2

@t0

� �
þ @uG2

@x0
¼ K1; (49)

(ii) Mass conservation law in liquid phase

a0
@a2
@t0

� ð1� a0Þ @uL2
@x0

¼ K2; (50)

(iii) Momentum conservation law in gas phase

b1
@uG2
@t0

� b1
@uL2
@t0

� 3pG0
XN
i¼1

XVi þ ðj� 1ÞXMi½ � @Ri2

@x0

 �
¼ K3;

(51)

(iv) Momentum conservation law in liquid phase

ð1� a0 þ b1a0Þ
@uL2
@t0

� b1a0
@uG2
@t0

þ ð1� a0Þ @pL2
@x0

¼ K4; (52)

(v) Keller equation for bubbles of the ith type

Ri2 þ 3ðce � 1ÞRi0

2D2=X2 þ 3 ð3ce � 1ÞRi0 � 2ce½ �pL0
pL2

� D2=X2 þ ð3ce � 1ÞRi0 � 3ce½ �pL0
2D2=X2 þ 3 ð3ce � 1ÞRi0 � 2ce½ �pL0

TGi2 ¼ KRi; (53)
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(vi) Equation of thermal conduction for bubbles of the ith type

@TGi2

@t0
þ 3ðj� 1Þ @Ri2

@t0
¼ KTi; (54)

with inhomogeneous terms Km (m ¼ 1; 2; 3; 4;Ri;TiÞ; they are explic-
itly presented in Appendix A. In the second-order approximation, the
second-order and first-order derivatives in the original Keller equation
(7) remain unlike the first-order approximation. Therefore, N kinds of
bubbles with different initial bubble radii follow N oscillation equa-
tions describing different dynamics (e.g., inertia, damping, and eigen-
frequency). Equations (49)–(54) are combined into

� C
@2pL2
@t20

þ pG0
1� a0 þ b1
b1ð1� a0Þ Dþ 1

3a0

� �
@2pL2
@x20

¼ KðpL1;u0; t1; x1Þ
¼ 1

3
@K1

@u0
� 1
3a0

@K2

@u0
þ 1� a0 þ b1
3b1ð1� a0Þ

@K3

@u0
þ 1
3a0ð1� a0Þ

@K4

@u0

�
XN
i¼1

2D2=X2 þ 3 ð3ce � 1ÞRi0 � 2ce½ �pL0
ð3j� 1ÞD2=X2 þ 3 jð3ce � 1ÞRi0 � ceð3j� 1Þ½ �pL0

 

� XVi � pG0ð1� a0 þ b1Þ
b1ð1� a0Þ XVi þ ðj� 1ÞXMi½ �

 �
@2KRi

@u2
0

!

þ
XN
i¼1

D2=X2 þ ð3ce � 1ÞRi0 � 3ce½ �pL0
ð3j� 1ÞD2=X2 þ 3 jð3ce � 1ÞRi0 � ceð3j� 1Þ½ �pL0

 

� XVi � pG0ð1� a0 þ b1Þ
b1ð1� a0Þ XVi þ ðj� 1ÞXMi½ �

 �
@KTi

@u0

!

þ
XN
i¼1

pG0ð1� a0 þ b1Þ
3b1ð1� a0Þ XMi

@KTi

@u0

� �
: (55)

From the solvability condition72 of (55), which is equivalent to
the nonsecular condition for expansion in (30)–(33), we have

K ¼� 2C
@

@u0

@pL1
@t1

þ @pL1
@x1

þP0
@pL1
@u0

þP1pL1
@pL1
@u0

�

�P21
@2pL1
@u2

0
þP3

@3pL1
@u3

0
þP22pL1

�
¼ 0: (56)

Subsequently, we get the KdVB equation

@pL1
@s

þP1pL1
@pL1
@n

�P21
@2pL1
@n2

þP3
@3pL1
@n3

þP22pL1 ¼ 0; (57)

via a variable transformation

s � �t; n � x � ð1þ �P0Þt; (58)

whereP1 is the nonlinear coefficient (constant coefficient of nonlinear
term), P21 and P22 are the dissipation coefficients (constant coeffi-
cients of dissipation terms), P3 is the dispersion coefficient (constant
coefficient of dispersion term), and P0 is the advection coefficient
related to phase velocity (advection). It is a linear sum of terms that
represent each of the three properties. They are constant coefficients
given by

P0 ¼ �ð1� a0ÞV2

6a0C
; (59)

P21 ¼ 1
2C

XN
i¼1

�
XVi�pG0

1�a0þb1
b1ð1�a0Þ XViþðj�1ÞXMi½ �

 �

�� 4ls2Ri|ffl{zffl}
viscosity

� VDRi0sRi|fflfflfflfflffl{zfflfflfflfflffl}
acoustic radiation

��
; (60)

P22 ¼� 3ðj� 1Þ
XN
i¼1

XVi � pG0ð1� a0 þ b1Þ
b1ð1� a0Þ

�

� XVi þ ðj� 1ÞXMi½ �
�
pGi0fi1s

2
Ri

�

þ 3ðj� 1Þ
XN
i¼1

pG0ð1� a0 þ b1Þ
3b1ð1� a0Þ XMifi1sRi

� �
; (61)

P3¼ 1
2C

XN
i¼1

XVi�pG0
1�a0þb1
b1ð1�a0Þ XViþðj�1ÞXMi½ �

 �
ðD2R2

i0s
2
RiÞ

� �
:

(62)

The form of P1 is explicitly shown in Appendix B because its explicit
form is significantly complex.

As dissipation coefficients, P21 is attributed to the viscosity and
acoustic radiation owing to the compressibility of liquids, and P22 is
attributed to thermal conduction.70 Two types of coefficients repre-
senting dissipation exist, which implies that the dissipation mechanism
owing to viscosity and acoustic radiation is different from that owing
to thermal conduction. The effects of polydispersity are observed in all
nonlinear coefficients P1, dissipation coefficients P21 and P22, and
dispersion coefficientsP3.

C. Effect of polydispersity on three properties

In this discussion, as an example of the bubble radius distribution
for bubbly liquid, we incorporate the commonly used lognormal distri-
bution.86,109 The lognormal distribution for bubble radius is given by

FIG. 2. Lognormal distribution (63) for dimensionless equilibrium bubble radius
R0 ¼ R�

0=R
ref
0

�
, where R�

0 is the equilibrium bubble radius and Rref
0

�
is the repre-

sentative initial bubble radius for four cases of rR ¼ 0:01; 0:1; 0:3; and 0.5.
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f ðR0Þ ¼ 1ffiffiffiffiffi
2p

p
rRR0

exp
�ðlogR0Þ2

r2R

" #
; (63)

where R0 � R�
0=R

ref
0

�
is the dimensionless equilibrium bubble radius,

rR represents the magnitude of polydispersity, and rR ! 0 leads
f ðR0Þ to the Dirac delta function (i.e., the monodisperse case) as
shown in Fig. 2.

Figures 3 and 4 show the nonlinear coefficient P1, dissipation
coefficients P21 and P22, and dispersion coefficient P3 vs the initial
void fraction a0 for Xi, satisfying f ðR0ÞdR0 with N¼ 1000 for micro-
meter bubble scale and millimeter bubble scale, respectively.

The dissipation coefficient owing to viscosity and acoustic radia-
tionP21 and the dispersion coefficientP3 in all polydisperse cases are
larger than those in the monodisperse case. However, the dissipation
coefficient owing to thermal conductivity P22 is reduced by polydis-
persity from the monodisperse case. P21; P22, and P3 were signifi-
cantly affected when rR was large. Since the effect of polydispersity on

the two types of dissipation coefficients is opposite, the effect on the
total dissipation is discussed later with regard to the waveform. Figure
3 shows that P1 is reduced by polydispersity, but the change is rela-
tively small. In Figs. 3 and 4, we observe that the effect of polydisper-
sity on each coefficient is similar even if the scale of Rref

0
�
is different.

The focus of these results is that the change inP3 is significantly larger
than the change in other coefficients. Originally, wave dispersion was
caused by bubble oscillations1 and was affected by bubble size (i.e.,
polydispersity). This result implies a strong connection between poly-
dispersity and wave dispersion, which is strongly affected by bubble
size.

D. Numerical example

As an example of the waveform, we numerically solve the KdVB
equation (57) using the split-step Fourier–Galerkin method (see also
the detailed scheme in Refs. 110 and 111). We assume the initial wave-
form as

FIG. 3. (a) Dissipation coefficient owing to viscosity and acoustic radiation P21, (b) dissipation coefficient owing to thermal conductivity P22,
70 (c) nonlinear coefficient P1,

and (d) dispersion coefficient P3 as a function of the initial void fraction a0 when Xi follows lognormal distribution (63). A representative initial bubble radius
R ref

0
� ¼ 10lm;

ffiffi
�

p ¼ 0:15; p�L0 ¼ 101 325 Pa; q�L0 ¼ 1000 kg=m3; r� ¼ 0:0728 N=m; c�L0 ¼ 1500m=s; l� ¼ 1� 103Pa � s. rR ¼ 0:01 corresponds to the monodis-
perse case. Note that P21; P22, andP3 depend weakly on a0. P1 decreases slightly to the extent that it is difficult to see it in the graph.
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pL1 ¼ 1
4
exp

�2ðx � 10Þ2
9

� �
; (64)

where pL1 is the first-order perturbation of nondimensional liquid
pressure. The temporal evolution of the wave (64) is investigated.
Figures 5 and 6 show the cases of rR ¼ 0:01 (i.e., monodispersity) and

0.5 (i.e., polydisperse), respectively. There is a clear difference between
monodisperse and polydisperse cases.

IV. CONCLUSIONS

The weakly nonlinear propagation process of plane progressive
pressure waves in liquids containing several spherical gas bubbles was

FIG. 4. (a) P21, (b) P22, (c) P1, and (d) P3 for millimeter case (i.e., R ref
0

�¼1 mm) as counterpart of Fig. 3 (i.e., the micrometer case). These values, except for R ref
0

�
, are

used in Fig. 3.

FIG. 5. Polydisperse case of temporal evolution of the initial waveform (64) by KdVB equation (57) for a0 ¼ 0:005; Rref
0

� ¼ 10 lm, gridsteps Ngrid ¼ 1024, duration of numer-
ical integration Ds ¼ 0:001, and size of the computational domain W¼ 40 and rR ¼ 0:01.
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analytically investigated. Our special focus was polydispersity (i.e., dis-
crete distribution of initial bubble radius), where a bubbly liquid con-
tains multiple bubbles of different sizes and the content rate is
uniform and optional.

Subsequently, we derived the KdVB equation with a correction
term, describing pressure waves in polydisperse bubbly liquids, where
all the coefficients of the nonlinear, dissipation, and dispersion terms
are influenced by polydispersity. In particular, the dispersion effect in
the present polydisperse case increased significantly compared with
that in our previous monodisperse case. Furthermore, in the case of
the dispersion coefficient, polydispersity contributes more significantly
compared with the cases of the nonlinear and dissipation coefficients.
This implies a strong relationship between wave dispersion and the
polydispersity of bubble size.

Although the present results discussed dissipation as a linear
combination, we will incorporate a nonlinear dissipation effect112–114

in a forthcoming paper.
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APPENDIX A: INHOMOGENEOUS TERMS

The inhomogeneous terms Km (m ¼ 1; 2; 3; 4;Ri;Ti) are given by

K1 ¼ 3
XN
i¼1

XVi
@ða1Ri1Þ

@t0
� @a1

@t1
þ 3
XN
i¼1

XVi
@Ri1

@t1
� @ða1uG1Þ

@x0

þ 3
XN
i¼1

XVi
@ðuG1Ri1Þ

@t0
� @uG1

@x1
þ 6
XN
i¼1

XViRi1
@Ri1

@t0

� �

� 18
XN
i¼1

ðXViRi1Þ
XN
i¼1

XVi
@Ri1

@t0

� �
; (A1)

K2 ¼ ð1� a0ÞV2 @pL1
@t0

� a0
@a1
@t1

� a0
@ða1uL1Þ

@t0
þ ð1� a0Þ @uL1

@x1
;

(A2)

K3 ¼� b1a1
@uG1
@t0

� @uL1
@t0

� �
� b1

@uG1
@t1

� @uL1
@t1

� �

� b1 uG1
@uG1
@t0

� uL1
@uL1
@t0

� �
� b2ðuG1 � uL1Þ @a1

@t0

þ 3pG0
XN
i¼1

XVi
@R2

i1

@x0

� �
� 18pG0

XN
i¼1

ðXViRi1Þ
XN
i¼1

XVi
@Ri1

@x0

� �

þ pG0a1
XN
i¼1

3XVi
@Ri1

@x0
� XMi

@TGi1

@x0

� �
þ pG0

XN
i¼1

3XVi
@Ri1

@x1

�

�XMi
@TGi1

@x1

�
þ 3pG0

XN
i¼1

ðXViRi1Þ
XN
i¼1

XMi
@TGi1

@x0

� �

þ 3pG0
XN
i¼1

ðXMiTGi1Þ
XN
i¼1

XVi
@Ri1

@x0

� �
; (A3)

FIG. 6. Polydisperse case of temporal evolution of the initial waveform (64) by KdVB equation (57) for a0 ¼ 0:005; Rref
0

� ¼ 10 lm, gridsteps Ngrid ¼ 1024, duration of numer-
ical integration Ds ¼ 0:001, and size of the computational domain W¼ 40 and rR ¼ 0:5.
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K4 ¼ b1a1a0
@uG1
@t0

� @uL1
@t0

� �
þ b1a0

@uG1
@t1

� @uL1
@t1

� �

þ b1a0 uG1
@uG1
@t0

� uL1
@uL1
@t0

� �
þ b2a0ðuG1 � uL1Þ @a1

@t0

þ a0
@ða1uL1Þ

@t0
� ð1� a0Þ @uL1

@t1
� ð1� a0Þ @u

2
L1

@x0

þ a0a1
@pL1
@x0

� ð1� a0Þ @pL1
@x1

; (A4)

KRi ¼5D2=X2 þ 3 2ð3ce � 1ÞRi0 � 5ce½ �pL0
2D2=X2 þ 3 ð3ce � 1ÞRi0 � 2ce½ �pL0

R2
i1

� ð3ce � 1ÞRi0

2D2=X2 þ 3 ð3ce � 1ÞRi0 � 2ce½ �pL0
4l

@Ri1

@t0
�VDRi0

@pL1
@t0

� �

� ð3ce � 1ÞD2R3
i0

2D2=X2 þ 3 ð3ce � 1ÞRi0 � 2ce½ �pL0
@2Ri1

@t20

� 3D2=X2 þ 3 ð3ce � 1ÞRi0 � 3ce½ �pL0
2D2=X2 þ 3 ð3ce � 1ÞRi0 � 2ce½ �pL0

Ri1TGi1; (A5)

KTi¼�3ðj�1Þ@Ri1

@t1
�@TGi1

@t1
�3ðj�1Þð3j�4ÞRi1

@Ri1

@t0

�3ðj�1Þ@ðTGi1Ri1Þ
@t0

�3ðj�1ÞuG1@Ri1

@x0
�uG1

@TGi1

@x0
�fi1TGi1:

(A6)

APPENDIX B: THE NONLINEAR COEFFICIENT

We shall present the explicit forms of the nonlinear coefficient
of the KdVB equation, P1,
t

P1 �� 1
6C

k1 þ 1
6a0C

k2 � 1� a0 þ b1
6b1ð1� a0ÞC k3 � 1

6a0ð1� a0ÞCk4

þ 1
2C

XN
i¼1

�
2D2=X2 þ 3 ð3ce � 1ÞRi0 � 2ce½ �pL0

ð3j� 1ÞD2=X2 þ 3 jð3ce � 1ÞRi0 � ceð3j� 1Þ½ �pL0
� XVi � pG0ð1� a0 þ b1Þ

b1ð1� a0Þ XVi þ ðj� 1ÞXMi½ �
 �

kRi

�

� 1
2C

XN
i¼1

�
D2=X2 þ ð3ce � 1ÞRi0 � 3ce½ �pL0

ð3j� 1ÞD2=X2 þ 3 jð3ce � 1ÞRi0 � ceð3j� 1Þ½ �pL0
� XVi � pG0ð1� a0 þ b1Þ

b1ð1� a0Þ XVi þ ðj� 1ÞXMi½ �
 �

kTi

�

� 1
2C

XN
i¼1

pG0ð1� a0 þ b1Þ
3b1ð1� a0Þ XMikTi

� �
; (B1)

where

k1 ¼ �2s1s3 � 6ðs1 � s3ÞC � 6
XN
i¼1

ðXVis
2
RiÞ þ 18C2;

k2 ¼ �2a0s2s3;

k3 ¼ ðb1 þ b2Þs3 � b1ðs1 þ s2Þ½ �ðs1 � s2Þ � 3pG0s3D

þ 6pG0
XN
i¼1

ðXVis
2
RiÞ � 18pG0CD; (B2)

k4 ¼�a0 ðb1þb2Þs3�b1ðs1þ s2Þ½ �ðs1� s2Þ�2a0s2s3

�2ð1�a0Þs22þa0s3;

kRi ¼ 2
ð9j�4ÞD2=X2þ3 ð3j�1Þð3ce�1ÞRi0�ceð9j�4Þ½ �pL0

2D2=X2þ3 ð3ce�1ÞRi0�2ce½ �pL0
s2Ri;

kTi ¼�3ð3j�2Þðj�1Þs2Ri:
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