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A B S T R A C T

Herein, the weak, nonlinear propagation of pressure waves in an initially quiescent liquid containing many
small spherical gas bubbles is theoretically studied. We focus on the initial, polydispersity features of the bubble
radius and bubble number density. Our analysis was not based on any assumptions about explicit polydispersity
forms. Using equations based on a two-fluid model and the method of multiple scales with perturbation
expansions, the Korteweg–de Vries–Burgers equation for a low-frequency long wave and nonlinear Schrödinger
equation for a high-frequency short wave were derived. In both cases, the polydispersity contributes to the
advection and dissipation effects of waves, and every coefficient in both equations includes the initial void
fraction as one of the most important parameters, owing to the use of the two-fluid model.
1. Introduction

The propagation properties of pressure (acoustic) waves in liquids
containing microbubbles are considerably different from those in pure
liquids (see, e.g., van Wijngaarden, 1972). In the case of pure liquids,
the pressure wave generally evolves into a shock wave owing to the
balance between the nonlinear effect of waves and the dissipation
effect of the medium. However, in the case of bubbly liquids, volu-
metric oscillations of bubbles induce a dispersion effect of waves (van
Wijngaarden, 1968), which then evolves into (acoustic) soliton as a
result of the balance between the nonlinear and dispersion effects for a
nondissipative medium (van Wijngaarden, 1968). Because the physical
properties of shock waves and solitons are considerably different, the
correct prediction of the evolved waveform is considerably important.
Hence, the estimation of the magnitude of the three effects (i.e., non-
linear, dissipation, and dispersion effects) is effective for predicting the
evolved waveform. Propagation properties of pressure waves in bubbly
liquids have long been theoretically (e.g., van Wijngaarden, 1968,
1972; Noordzij and van Wijngaarden, 1974; Kuznetsov et al., 1978;
Biesheuvel and van Wijngaarden, 1984; Caflisch et al., 1985; Com-
mander and Prosperetti, 1989; Nigmatulin, 1991; Prosperetti, 1991;
Gumerov, 1992a,b; Nakoryakov et al., 1993; Akhatov et al., 1994,
1996; Jamshidi and Brenner, 2013; Gubaidullin and Fedorov, 2013;
Gubaidullin et al., 2013, 2022; Kudryashov and Sinelshchikov, 2014;
Gubaidullin and Fedorov, 2015, 2016; Gumerov and Akhatov, 2017),
numerically (e.g., Nigmatulin, 1991; Nakoryakov et al., 1993; Kameda
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and Matsumoto, 1996; Kameda et al., 1998; Vanhille and Campos-
Pozuelo, 2009; Ando et al., 2011; Frolov et al., 2017), and experi-
mentally (e.g., Kuznetsov et al., 1978; Nigmatulin, 1991; Nakoryakov
et al., 1993; Kameda and Matsumoto, 1996; Kameda et al., 1998; Frolov
et al., 2017) studied. However, we cannot obtain the magnitude of the
three effects through experiments and direct numerical simulations of
the governing equations. The key role in obtaining the three effects
is a theoretical derivation of the weakly nonlinear wave equation as
a linear combination of the three effects. By deriving nonlinear wave
equations via theoretical analysis and estimating the magnitude of the
three effects, experiments and numerical calculations are supported.

Various studies on nonlinear wave equations in bubbly liquids
have been published (van Wijngaarden, 1968, 1972; Noordzij and
van Wijngaarden, 1974; Kuznetsov et al., 1978; Nigmatulin, 1991;
Prosperetti, 1991; Gumerov, 1992a,b; Nakoryakov et al., 1993; Akhatov
et al., 1994, 1996; Gubaidullin and Fedorov, 2013; Gubaidullin et al.,
2013, 2022; Kudryashov and Sinelshchikov, 2014; Gubaidullin and Fe-
dorov, 2015, 2016). In particular, the derivation of Korteweg–de Vries
(KdV) and KdV–Burgers (KdVB) equations by van Wijngaarden (van
Wijngaarden, 1968, 1972) is the most famous work. Recently, our
group (Kanagawa et al., 2010, 2021a; Yano et al., 2013; Kanagawa,
2015) derived two equations, that is, the KdVB equation for low
frequency long waves (Kanagawa et al., 2010, 2021a; Yano et al., 2013;
Kanagawa, 2015) and the nonlinear Schrödinger (NLS) equation for
high frequency short waves (Kanagawa et al., 2010, 2021a; Yano et al.,
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Fig. 1. The linear dispersion relation for pressure waves in bubbly liquids, and
a decomposition into two frequency bands, that is, the low frequency band and
the high frequency band described by the KdVB equation and the NLS equation,
respectively (Kanagawa et al., 2010, 2021a; Yano et al., 2013).

2013; Kanagawa, 2015), based on a systematic decomposition of two
frequency bands, as illustrated in Fig. 1 (Kanagawa et al., 2010). In this
study, only one set of basic equations is used throughout this paper, but
the equations for scaling (see (13) below) are switched to derive two
types of equations (KdVB and NLS) corresponding to the two bands in
Fig. 1.

Nonlinear wave equations are derived from model (or basic) equa-
tions for bubbly flows (or bubbly liquids). Although numerous model
equations have been proposed, volumetric averaged models (Biesheuvel
and van Wijngaarden, 1984; Caflisch et al., 1985; Jones and Prosperetti,
1985; Nigmatulin, 1991; Egashira et al., 2004) have been generally
used. All the researchers except for our group (Kanagawa et al., 2010,
2021a; Yano et al., 2013; Kanagawa, 2015) have long been utilizing
mixtures or homogeneous models (see, e.g., van Wijngaarden, 1968,
1972; Noordzij and van Wijngaarden, 1974; Kuznetsov et al., 1978;
Biesheuvel and van Wijngaarden, 1984; Nigmatulin, 1991; Prosperetti,
1991; Nakoryakov et al., 1993; Akhatov et al., 1994, 1996; Kudryashov
and Sinelshchikov, 2014). Our recent study (Yano et al., 2013) revealed
that the use of a mixture model cannot express the dependence of
coefficients in nonlinear, dissipation, and dispersion terms of non-
linear wave equations on the initial void fraction, which is a fatal
disadvantage from the perspective of engineering or industrial appli-
cations; in contrast, the use of two-fluid model equations (Biesheuvel
and van Wijngaarden, 1984; Egashira et al., 2004; Kanagawa et al.,
2010; Yano et al., 2013; Kanagawa et al., 2021a) can reflect the
dependence of each coefficient on the initial void fraction (Kana-
gawa et al., 2010; Yano et al., 2013). However, our previous studies
(e.g., Kanagawa et al., 2010; Yano et al., 2013) except for Kanagawa
et al. (2021a) and Kanagawa et al. (2022) assumed initial monodis-
persity of a bubbly liquid. In the real situation, the bubbly liquid has
polydispersity (i.e., nonuniformity of the bubble radius and spatial
distribution). Although some studies (Gumerov, 1992a,b; Gubaidullin
and Fedorov, 2013; Gubaidullin et al., 2013, 2022; Gubaidullin and
Fedorov, 2015, 2016) incorporated the initial polydispersity, no study
using the two-fluid model incorporated the initial polydispersity de-
spite the independence of using the two-fluid model and incorporating
polydispersity. Although our previous study (Kanagawa et al., 2021a)
succeeded in incorporating the initial small polydispersity into our
original monodisperse case (Kanagawa et al., 2010), Kanagawa et al.
(2021a) contains a critical restriction of polydispersity. In Kanagawa
et al. (2021a), when the field was divided into several regions, an
assumption was made that polydispersity appeared only in specific
regions. Thus, the purpose of this study is to incorporate general initial
small polydispersity in all regions using nonlinear wave equations from
two-fluid model equations that model the initial polydispersity (see
Fig. 2).

The contents of the present paper are as follows: Section 2 intro-
duces the basic equations and perturbation expansions based on the
multiple-scale method, with a special focus on the formulation of the
2

initial polydispersity. Section 3 derives the resultant KdVB equation
Fig. 2. Difference between (a) our previous study (Kanagawa et al., 2021a) and (b)
this study for KdVB equation. Although the polydispersity of bubble radius (not bubble
number density) does not appear in near field, the polydispersity of bubble radius
appears in this figure.

and Section 4 derives the resultant NLS equation including new terms.
Section 5 discusses the physical meanings of the terms of the resultant
equations and compares the new equations with those in previous
studies. Section 6 is devoted to the summary of this study.

2. Formulation of the problem

2.1. Problem statement

The propagation of nonlinear pressure waves in initially quiescent
compressible liquids containing a number of small spherical gas bub-
bles is theoretically studied. We focus on the one-dimensional propaga-
tion because bubble oscillations are assumed as spherically symmetric,
and then the phenomenon can be regarded as a one-directional depen-
dency. Initially, the bubbly liquid has a small (see (28) and (29) below)
polydispersity (i.e., nonuniformity of bubble radius, bubble number
density, and void fraction). The amplitude of the pressure wave is finite
but is sufficiently small (i.e., a weakly nonlinear wave (e.g., Jeffrey and
Kawahara, 1982)) The bubbles do not coalesce, break up, appear, and
disappear. For simplicity, the gas viscosity, thermal conduction (e.g.,
Prosperetti, 1991; Kameda and Matsumoto, 1996; Preston et al., 2007;
Stricker et al., 2011; Kanagawa and Kamei, 2021; Kamei et al., 2021),
and mass transport across the bubble–liquid interface are ignored.
We consider the liquid viscosity at the bubble–liquid interface. The
drag (Yatabe et al., 2021; Kanagawa et al., 2021b; Arai et al., 2022)
and lift forces acting on the bubbles, Reynolds stress, and gravitation
are not considered.

2.2. Basic equations

The basic equations are composed of nine equations: four con-
servation equations, bubble dynamics equations, and four constitu-
tive equations. As volumetric-averaged equations based on a two-
fluid model (Egashira et al., 2004; Yano et al., 2006) to describe
the dependence of the initial void fraction (Kanagawa et al., 2010),
conservation laws of mass and momentum for gas and liquid phases
are first introduced as follows:
𝜕
𝜕𝑡∗

(𝛼𝜌∗G) +
𝜕

𝜕𝑥∗
(𝛼𝜌∗G𝑢

∗
G) = 0, (1)

𝜕
𝜕𝑡∗

[

(1 − 𝛼)𝜌∗L
]

+ 𝜕
𝜕𝑥∗

[

(1 − 𝛼)𝜌∗L𝑢
∗
L
]

= 0, (2)

𝜕
𝜕𝑡∗

(𝛼𝜌∗G𝑢
∗
G) +

𝜕
𝜕𝑥∗

(𝛼𝜌∗G𝑢
∗
G
2) + 𝛼

𝜕𝑝∗G
𝜕𝑥∗

= 𝐹 ∗, (3)

𝜕
𝜕𝑡∗

[

(1 − 𝛼)𝜌∗L𝑢
∗
L
]

+ 𝜕
𝜕𝑥∗

[

(1 − 𝛼)𝜌∗L𝑢
∗
L
2
]

+ (1 − 𝛼)
𝜕𝑝∗L
𝜕𝑥∗

+ 𝑃 ∗ 𝜕𝛼
𝜕𝑥∗

= −𝐹 ∗,
(4)
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where 𝑡∗ is time, 𝑥∗ is the space coordinate, 𝛼 is the void fraction, 𝜌∗
s the density, 𝑢∗ is the fluid velocity, 𝑝∗ is the pressure, and 𝑃 ∗ is the
urface-averaged pressure (Jones and Prosperetti, 1985); the subscripts

and L denote the gas and liquid phases, respectively.
As the interfacial transport term of momentum 𝐹 ∗, we use the

irtual mass force model (Yano et al., 2006; Eames and Hunt, 2004):

∗ = −𝛽1𝛼𝜌∗L

(

DG𝑢∗G
D𝑡∗

−
DL𝑢∗L
D𝑡∗

)

−𝛽2𝜌
∗
L(𝑢

∗
G−𝑢∗L)

DG𝛼
D𝑡∗

−𝛽3𝛼(𝑢∗G−𝑢∗L)
DG𝜌∗L
D𝑡∗

,

(5)

here 𝛽1, 𝛽2, and 𝛽3 are the virtual mass coefficients and are 1/2
or the case of spherical bubbles. Furthermore, DG∕D𝑡∗ and DL∕D𝑡∗

re material derivatives for the gas and liquid phases, respectively, as
ollows:
DG
D𝑡∗

= 𝜕
𝜕𝑡∗

+ 𝑢∗G
𝜕

𝜕𝑥∗
, (6)

DL
D𝑡∗

= 𝜕
𝜕𝑡∗

+ 𝑢∗L
𝜕

𝜕𝑥∗
. (7)

For bubble dynamics, the Keller equation (Keller and Kolodner,
1956; Keller and Miksis, 1980) for spherically symmetric volume os-
cillations of bubbles in a compressible liquid is utilized, as follows:
(

1 − 1
𝑐∗L0

DG𝑅∗

D𝑡∗

)

𝑅∗
D2
G𝑅

∗

D𝑡∗2
+ 3

2

(

1 − 1
3𝑐∗L0

DG𝑅∗

D𝑡∗

)

(

DG𝑅∗

D𝑡∗

)2

=

(

1 + 1
𝑐∗L0

DG𝑅∗

D𝑡∗

)

𝑃 ∗

𝜌∗L0
+ 𝑅∗

𝜌∗L0𝑐
∗
L0

DG
D𝑡∗

(

𝑝∗L + 𝑃 ∗) , (8)

here 𝑅∗ is the bubble radius, 𝑐∗L0 is the speed of sound in the pure
iquid, and the subscript 0 denotes the initial quantity.

The following constitutive equations close (1)–(8):
i) Tait equation of state for liquid

∗
L = 𝑝∗L0 +

𝜌∗L0𝑐
∗
L0

2

𝑛

[(

𝜌∗L
𝜌∗L0

)𝑛

− 1

]

, (9)

where 𝑛 is material constant; e.g., 𝑛 = 7.15 for water, (ii) polytropic
equation of state for gas,

𝑝∗G
𝑝∗G0

=

(

𝜌∗G
𝜌∗G0

)𝛾

, (10)

where 𝛾 is polytropic exponent, (iii) the conservation law of mass inside
bubble,

𝜌∗G
𝜌∗G0

=

(

𝑅∗
0

𝑅∗

)3

, (11)

(iv) the balance of normal stress across the bubble–liquid interface,

𝑝∗G −
(

𝑝∗L + 𝑃 ∗) = 2𝜎∗
𝑅∗ +

4𝜇∗

𝑅∗
DG𝑅∗

D𝑡∗
, (12)

here 𝜎∗ is the surface tension and 𝜇∗ is the liquid viscosity.

.3. Parameter scaling

The scaling relations of nondimensional ratios among the physi-
al parameters appropriate to the low-frequency and long-wavelength
and (i.e., weak dispersion band) and the high-frequency and short-
avelength band (i.e., strong dispersion band) shown in Fig. 1 are
efined as follows (Kanagawa et al., 2010).

𝑅∗
00

𝐿∗ , 𝜔
∗

𝜔∗
B
, 𝑈

∗

𝑐L0

)

≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

𝑂
(

√

𝜖
)

, 𝑂
(

√

𝜖
)

, 𝑂
(

√

𝜖
))

≡
(

𝛥
√

𝜖,𝛺
√

𝜖, 𝑉
√

𝜖
)

, (KdVB) ,
(

𝑂 (1) , 𝑂 (1) , 𝑂
(

𝜖2
))

≡
(

𝛥,𝛺, 𝑉 𝜖2
)

, (NLS) ,

(13)
3

where 𝜖 is a nondimensional wave amplitude (0 < 𝜖 ≪ 1); 𝛥, 𝛺, and 𝑉
re parameters of 𝑂 (1), 𝑅∗

00 is the initial radius of a single bubble, 𝐿∗ is
typical wavelength, 𝜔∗ is an angular frequency of incident waves, and
∗
B is the natural angular frequency of the linear spherical symmetric
scillation of a typical bubble given by

∗
B =

√

√

√

√

3𝛾
(

𝑝∗L0 + 2𝜎∗∕𝑅∗
00
)

− 2𝜎∗∕𝑅∗
00

𝜌∗L0𝑅
∗
00

2
, (14)

and 𝑈∗ is a phase velocity of the incident wave. This study derives
the KdVB and NLS equations. Here and hereafter, the labels (KdVB)
and (NLS) at the end of equations signify the KdVB and NLS equations,
respectively.

The ratio for length scale 𝑅∗
00∕𝐿

∗ (or 𝛥) in (13) signifies the mag-
nitude of the dispersion effect of waves in bubbly liquid, caused by
bubble oscillations (van Wijngaarden, 1968). The long wavelength case
(the KdVB equation) is relatively weakly dispersive compared with the
short wavelength case (the NLS equation), because the dispersion effect
is owing to bubble oscillations. Bubble oscillations can be clearly ob-
served in the short wavelength case compared with the low frequency
case. This explains the right-hand side of (13).

Furthermore, the scaling relation of the liquid viscosity 𝜇∗ is

𝜇∗

𝜌∗L0𝑈
∗𝐿∗ ≡

{

𝑂 (𝜖) ≡ 𝜇𝜖, (KdVB) ,
𝑂
(

𝜖2
)

≡ 𝜇𝜖2, (NLS) ,
(15)

where 𝜇 is a constant of 𝑂(1). By changing the right-hand side of (13)
nd (15), two types of nonlinear wave equations are derived without
hanging the basic equations (i.e., (1)–(12)).

.4. Perturbation expansions and multiple scales analysis

First, independent variables 𝑡∗ and 𝑥∗ are nondimensionalized:

= 𝑡∗

𝑇 ∗ , 𝑥 = 𝑥∗

𝐿∗ , (16)

where 𝑇 ∗ is a typical period of the waves and satisfies the following:

1
𝑇 ∗ =

{

𝜔∗, (KdVB) ,
𝜔∗
B, (NLS) .

(17)

sing 𝑡 and 𝑥, the near-field, far-field I, and far-field II are described
y extended independent variables in the method of multiple scales
e.g., Jeffrey and Kawahara, 1982):

0 = 𝜖0𝑡, 𝑥0 = 𝜖0𝑥, (near field) , (18)

1 = 𝜖1𝑡, 𝑥1 = 𝜖1𝑥, (far field I) , (19)

2 = 𝜖2𝑡, 𝑥2 = 𝜖2𝑥, (far field II) . (20)

n the case of the KdVB equation, far field II is not used (see Section 3),
nd far field I is called far field for simplicity. The differential operators
re then expanded as follows:

𝜕
𝜕𝑡

=
𝑗
∑

𝑖=0
𝜖𝑖 𝜕
𝜕𝑡𝑖

, 𝜕
𝜕𝑥

=
𝑗
∑

𝑖=0
𝜖𝑖 𝜕
𝜕𝑥𝑖

, (21)

where 𝑗 = 1 for the KdVB equation and 𝑗 = 2 for the NLS equation.
Dependent variables are now regarded as functions of the extended

independent variables in (18)–(20). The expansions of dependent vari-
ables except for bubble radius 𝑅∗ and void fraction 𝛼 are as fol-
lows (Kanagawa et al., 2010, 2021a)

𝑢∗G∕𝑈
∗ =

{

𝜖1𝑢G1 + 𝜖2𝑢G2 + 𝑂(𝜖3), (KdVB) ,
𝜖1𝑢G1 + 𝜖2𝑢G2 + 𝜖3𝑢G3 + 𝑂(𝜖4), (NLS) ,

(22)

𝑢∗L∕𝑈
∗ =

{

𝜖1𝑢L1 + 𝜖2𝑢L2 + 𝑂(𝜖3), (KdVB) ,
𝜖1𝑢L1 + 𝜖2𝑢L2 + 𝜖3𝑢L3 + 𝑂(𝜖4), (NLS) ,

(23)

𝑝∗L∕
(

𝜌∗L0𝑈
∗2
)

=

{

𝑝L0 + 𝜖1𝑝L1 + 𝜖2𝑝L2 + 𝑂(𝜖3), (KdVB) ,
1 2 3 4

(24)

𝑝L0 + 𝜖 𝑝L1 + 𝜖 𝑝L2 + 𝜖 𝑝L3 + 𝑂(𝜖 ), (NLS) ,
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𝛼

w

𝑣

a

𝑈

n

𝜌∗L∕𝜌
∗
L0 =

{

1 + 𝜖2𝜌L1 + 𝜖3𝜌L2 + 𝑂(𝜖4), (KdVB) ,
1 + 𝜖5𝜌L1 + 𝜖6𝜌L2 + 𝑂(𝜖7), (NLS) ,

(25)

where (25) is determined by (9) and (13) (Kanagawa et al., 2010).
Equation (25) expresses the difference of compressibility between gas
and liquid (i.e., gas is more compressible than liquid). We assume an
initially quiescent bubbly liquid, and the effect of the initial flow of
velocity is neglected, and the terms of 𝑂(1) do not appear in the right
hand sides of (22) and (23). As constants, the nondimensional pressures
for the gas and liquid phases in the unperturbed state 𝑝G0 and 𝑝L0 are
given as

𝑝G0 =
𝑝∗G00

𝜌∗L0𝑈
∗2

≡ 𝑂(1), 𝑝L0 =
𝑝∗L0

𝜌∗L0𝑈
∗2

≡ 𝑂(1), (26)

here 𝑝∗G00 is the initial gas pressure in a single bubble. The ratio of
he initial densities of the gas and liquid phases is

𝜌∗G00
𝜌∗L0

= 𝑂
(

𝜖3
)

, (27)

where 𝜌∗G00 is the initial gas density of a single bubble.

2.5. Formulation of initial polydispersity

We incorporate a small initial polydispersity of the bubble radius
∗ and bubble number density 𝑛∗ (Kanagawa, 2015) by expanding 𝑅∗

nd void fraction 𝛼 as

∗∕𝑅∗
00 =

{

1 + 𝜖
[

𝑅1 + 𝛿𝑅1(𝑥0, 𝑥1)
]

+ 𝜖2𝑅2 + 𝑂(𝜖3), (KdVB) ,
1 + 𝜖𝑅1 + 𝜖2

[

𝑅2 + 𝛿𝑅2(𝑥0, 𝑥1, 𝑥2)
]

+ 𝜖3𝑅3 + 𝑂(𝜖4), (NLS) ,

(28)

𝛼∕𝛼00 =

{

1 + 𝜖
[

𝛼1 + 𝛿𝛼1(𝑥0, 𝑥1)
]

+ 𝜖2𝛼2 + 𝑂(𝜖3), (KdVB) ,
1 + 𝜖𝛼1 + 𝜖2

[

𝛼2 + 𝛿𝛼2(𝑥0, 𝑥1, 𝑥2)
]

+ 𝜖3𝛼3 + 𝑂(𝜖4), (NLS) ,

(29)

where 𝛿𝑅1, 𝛿𝑅2, 𝛿𝛼1, and 𝛿𝛼2 are initially given variables representing
small initial nonuniformities of 𝑅∗ and 𝛼, respectively, and 𝛼00 is the
initial typical void fraction. For the monodisperse case (Kanagawa
et al., 2010), 𝛿𝑅1, 𝛿𝑅2, 𝛿𝛼1, and 𝛿𝛼2 are equal to zero. The important
difference between our previous polydisperse (Kanagawa et al., 2021a)
and the present cases is that 𝛿𝑅1 and 𝛿𝛼1 do not depend on 𝑥0 in
the KdVB equation, and 𝛿𝑅2 and 𝛿𝛼2 do not depend on 𝑥0 and 𝑥1 in
the NLS equation in our previous polydisperse case (Kanagawa et al.,
2021a). From a practical viewpoint, a process of bubble production
may cause manufacturing errors. Then, the polydispersity defined in
(28) and (29) can be applied to express manufacturing errors, and
various applications using microbubbles for medical use will also be
expected.

The following relation among 𝑅∗, 𝛼, and 𝑛∗ is imposed:

𝛼 = 4
3
𝜋𝑅∗3𝑛∗. (30)

We also express the polydispersity of the bubble number density, 𝛿𝑛1
and 𝛿𝑛2, by substituting (28) and (29) into (30) as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑛∗00
(

1 + 𝜖𝛿𝑛1 + 𝜖2𝛿𝑛2
)

=
3𝛼00

(

1 + 𝜖𝛿𝛼1
)

4𝜋𝑅∗
00

3 (1 + 𝜖𝛿𝑅1
)3

, (KdVB) ,

𝑛∗00
(

1 + 𝜖2𝛿𝑛2
)

=
3𝛼00

(

1 + 𝜖2𝛿𝛼2
)

4𝜋𝑅∗
00

3 (1 + 𝜖2𝛿𝑅2
)3

, (NLS) .
(31)

From now on, 𝛿𝑅𝑖 and 𝛿𝛼𝑖 (𝑖 = 1, 2) are explicitly used, and 𝛿𝑛1 and 𝛿𝑛2 do
not appear. Furthermore, substituting (28) into (10) and (11) gives the
4

expansions of gas pressure and gas density with initial nonuniformity, a
respectively,

𝑝∗G∕
(

𝜌𝐿0𝑈
∗2
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝G0 + 𝜖
[

𝑝G1 + 𝛿𝑝1(𝑥)
]

+ 𝜖2
[

𝑝G2 + 𝛿𝑝2(𝑥) + 𝑝G1
𝛿𝑝1(𝑥)
𝑝G0

]

+𝑂(𝜖3), (KdVB) ,
𝑝G0 + 𝜖𝑝G1 + 𝜖2

[

𝑝G2 + 𝛿𝑝2(𝑥)
]

+ 𝜖3𝑝G3 + 𝑂(𝜖4), (NLS) ,

(32)

here

𝑝1 = 𝛾𝛿𝜌1, (KdVB) , (33)

𝛿𝑝2 = −
(

𝛥2

𝛺2
− 3𝛾𝑝G0

)

𝛿2𝑅1, (KdVB) , (34)

𝛿𝑝2 = 𝛾𝛿𝜌2, (NLS) , (35)

∗
G∕𝜌

∗
G00 =

⎧

⎪

⎨

⎪

⎩

1 + 𝜖
[

𝜌G1 + 𝛿𝜌1(𝑥)
]

+𝜖2
[

𝜌G2 + 𝛿𝜌2(𝑥) + 𝜌G1𝛿𝜌1(𝑥)
]

+ 𝑂(𝜖3), (KdVB) ,
1 + 𝜖𝜌G1 + 𝜖2

[

𝜌G2 + 𝛿𝜌2(𝑥)
]

+ 𝜖3𝜌G3 + 𝑂(𝜖4), (NLS) ,

(36)

here

𝜌1 =
1
𝛾

(

𝛥2

𝛺2
− 3𝛾𝑝G0

)

𝛿𝑅1, (KdVB) , (37)

𝛿𝜌2 =
1
𝛾

(

𝛥2

𝛺2
− 3𝛾𝑝G0

)[

𝛾 − 1
2𝛾

(

𝛥2

𝛺2
− 3𝛾𝑝G0

)

− 1
]

𝛿2𝑅1, (KdVB) , (38)

𝛿𝜌2 =
𝛥2 − 3𝛾𝑝G0

𝛾
𝛿𝑅2, (NLS) . (39)

3. Derivation of KdVB equation for long waves

3.1. Linear propagation at near field

Substituting (13), (15) and (21)–(29), (32) and (36) into basic
eqations (1)–(12) and equating each coefficient of like powers of 𝜖 in
the set of resultant equations, we have a set of linear equations as the
first-order equations:
𝜕𝛼1
𝜕𝑡0

− 3
𝜕𝑅1
𝜕𝑡0

+
𝜕𝑢G1
𝜕𝑥0

= 0, (40)

00
𝜕𝛼1
𝜕𝑡0

− (1 − 𝛼00)
𝜕𝑢L1
𝜕𝑥0

= 0, (41)

𝛽1
𝜕𝑢G1
𝜕𝑡0

− 𝛽1
𝜕𝑢L1
𝜕𝑡0

− 3𝛾𝑝G0
𝜕𝑅1
𝜕𝑥0

+
𝜕𝛿𝑝1
𝜕𝑥0

= 0, (42)

(1 − 𝛼00 + 𝛽1𝛼00)
𝜕𝑢L1
𝜕𝑡0

− 𝛽1𝛼00
𝜕𝑢G1
𝜕𝑡0

+ (1 − 𝛼00)
𝜕𝑝L1
𝜕𝑥0

= 0, (43)

𝑅1 +
𝛺2

𝛥2
𝑝L1 = 0. (44)

Removing 𝛼1, 𝑢G1, 𝑢L1, and 𝑝L1 from (40)–(44), we have the linear
wave equation for unknown 𝑅1:

𝜕2𝑅1

𝜕𝑡20
− 𝑣2p

𝜕2𝑅1

𝜕𝑥20
= −

1 − 𝛼00 + 𝛽1
3𝛽1

(

1 − 𝛼00
)

𝜕2𝛿𝑝1
𝜕𝑥20

, (45)

here the phase velocity 𝑣p is given by

p =

√

3𝛼00(1 − 𝛼00 + 𝛽1)𝛾𝑝G0 + 𝛽1(1 − 𝛼00)𝛥2∕𝛺2

3𝛽1𝛼00(1 − 𝛼00)
, (46)

nd the explicit form of 𝑈∗ is then determined as follows:

∗ =

√

√

√

√

3𝛼00(1 − 𝛼00 + 𝛽1)𝛾𝑝∗G00∕𝜌
∗
L0 + 𝛽1(1 − 𝛼00)𝑅∗

0
2𝜔∗

B
2

3𝛽1𝛼00(1 − 𝛼00)𝑣2p
, (47)

ote that 𝐿∗ ≡ 𝑈∗𝑇 ∗ = 𝑈∗∕𝜔∗ is simultaneously determined. Now, we

ssume 𝑣p = 1 for simplicity.
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Hereafter, we focus on only the right-running wave 𝑅1 = 𝑓 (𝜑0;
1, 𝑥1), and the phase function 𝜑0 is then defined as

0
(

𝑡0, 𝑥0
)

≡ 𝑥0 − 𝑡0. (48)

The independent variables in (40)–(44) are rewritten using 𝜑0; all
the first-order variables, i.e., 𝛼1, 𝑢G1, 𝑢L1, and 𝑝L1 are expressed via
𝑓 (= 𝑅1):

𝛼1 = 𝑠1𝑓, 𝑢G1 = 𝑠2𝑓, 𝑢L1 = 𝑠3𝑓, 𝑝L1 = 𝑠4𝑓, (49)

with

𝑠4 = − 𝛥2

𝛺2
, 𝑠1 =

(

1 − 𝛼00
) [

3𝛼00𝛽1 −
(

1 − 𝛼00
)

𝑠4
]

𝛼00
(

1 − 𝛼00 + 𝛽1
) ,

2 = 𝑠1 − 3, 𝑠3 = −
𝛼00𝑠1
1 − 𝛼00

. (50)

The constants of integration are omitted because the boundary condi-
tions at 𝑥0 → ∞ (where the bubbly liquid is at rest) and 𝜕𝛿𝑝1∕𝜕𝑥0 are
equal to zero because the conditions at 𝑡0 → ∞ (when 𝛼1, 𝑢G1, 𝑢L1, and
𝑝L1) should not be ∞.

The results of the leading order of approximation coincide with
those of our monodisperse case (Kanagawa et al., 2010), and the initial
polydispersity appears in the following order.

3.2. Nonlinear propagation at far field

We proceed with the approximation of 𝑂(𝜖2), and the second-order
set of equations is derived as
𝜕𝛼2
𝜕𝑡0

− 3
𝜕𝑅2
𝜕𝑡0

+
𝜕𝑢G2
𝜕𝑥0

= �̂�1, (51)

00
𝜕𝛼2
𝜕𝑡0

− (1 − 𝛼00)
𝜕𝑢L2
𝜕𝑥0

= �̂�2, (52)

𝛽1
𝜕𝑢G2
𝜕𝑡0

− 𝛽1
𝜕𝑢L2
𝜕𝑡0

− 3𝛾𝑝G0
𝜕𝑅2
𝜕𝑥0

= �̂�3, (53)

1 − 𝛼00 + 𝛽1𝛼00)
𝜕𝑢L2
𝜕𝑡0

− 𝛽1𝛼00
𝜕𝑢G2
𝜕𝑡0

+ (1 − 𝛼00)
𝜕𝑝L2
𝜕𝑥0

= �̂�4, (54)

2 +
𝛺2

𝛥2
𝑝L2 = �̂�5, (55)

where the forms of inhomogeneous terms �̂�𝑖 (𝑖 = 1, 2, 3, 4, 5) are explic-
itly presented in Appendix B, and new terms including polydispersity,
𝛿𝑅1 and 𝛿𝛼1, appear in �̂�𝑖. Excluding the second-order variables except
for 𝑅2 from (51)–(55), we have the inhomogeneous wave equation as
counterpart of (45):

𝜕2𝑅2

𝜕𝑡20
−

𝜕2𝑅2

𝜕𝑥20
= �̂�

(

𝑅1;𝜑0, 𝑡1, 𝑥1
)

= −1
3
𝜕�̂�1
𝜕𝑡0

+ 1
3𝛼00

𝜕�̂�2
𝜕𝑡0

+
1 − 𝛼00 + 𝛽1
3𝛽1(1 − 𝛼00)

𝜕�̂�3
𝜕𝑥0

+ 1
3𝛼00(1 − 𝛼00)

𝜕�̂�4
𝜕𝑥0

− 𝛥2

3𝛼00𝛺2

𝜕2�̂�5

𝜕𝑥20
. (56)

ewriting �̂�𝑖 using 𝜑0 and substituting the first-order variables, which
re proportional to 𝑅1 (see (49)), into �̂� yields

̂ = 2 𝜕
𝜕𝜑0

{

𝜕𝑅1
𝜕𝑡1

+
𝜕𝑅1
𝜕𝑥1

+
[

𝛱0 + �̂�4
(

𝑥0, 𝑥1
)] 𝜕𝑅1

𝜕𝜑0

+𝛱1𝑅1
𝜕𝑅1
𝜕𝜑0

+𝛱2
𝜕2𝑅1

𝜕𝜑2
0

+𝛱3
𝜕3𝑅1

𝜕𝜑3
0

+ �̂�5
(

𝑥0, 𝑥1
)

𝑅1 −
1 − 𝛼00 + 𝛽1
6𝛽1

(

1 − 𝛼00
)

𝜕𝛿𝑝1
𝜕𝑥1

}

. (57)

ow, we impose the solvability (i.e., non-secular) condition for (56)
Kanagawa et al., 2010; Jeffrey and Kawahara, 1982) to discuss the
niformly valid approximate solution 𝑅1 (Kanagawa et al., 2010). From
21) and (48), the independent variables 𝜑 , 𝑡 , and 𝑥 in (57) are
5

0 1 1
xpressed by the transformed independent variables 𝜏 and 𝜉 (see (59)
elow), and we have the KdVB equation with a correction term:

𝜕𝑅1
𝜕𝜏

+𝛱1𝑅1
𝜕𝑅1
𝜕𝜉

+𝛱2
𝜕2𝑅1

𝜕𝜉2
+𝛱3

𝜕3𝑅1

𝜕𝜉3
+�̂�5𝑅1−

1
𝜖

1 − 𝛼00 + 𝛽1
6𝛽1

(

1 − 𝛼00
)

𝜕𝛿𝑝1
𝜕𝜉

= 0,

(58)

𝜏 ≡ 𝜖𝑡, 𝜉 ≡ 𝑥 −
{

1 + 𝜖
[

𝛱0 + �̂�4 (𝑥)
]}

𝑡, (59)

where 𝛱𝑖 (𝑖 = 0, 1, 2, 3) is the constant coefficient, and �̂�𝑗 (𝑗 = 4, 5) is
he variable coefficient containing 𝛿𝑅1 and 𝛿𝛼1. Here, 𝛱0, 𝛱1, 𝛱2, and
𝛱3 in (58) and (59) are the same as those in our previous monodisperse
results (Kanagawa et al., 2010), and explicit forms are omitted from this
paper.

The coefficients �̂�4 and �̂�5 in (58) and (59) do not appear in our
previous monodisperse result (Kanagawa et al., 2010) and are given as

�̂�4 = �̂�41𝛿𝑅1 + �̂�42𝛿𝛼1, (60)

where

�̂�41 =1 +
𝑠1
3

𝛿𝜌1
𝛿𝑅1

−
𝛿𝜌1
𝛿𝑅1

−
𝑠2
3

𝛿𝜌1
𝛿𝑅1

+
1 − 𝛼00 + 𝛽1
𝛽1

(

1 − 𝛼00
) 𝛾

( 𝛿𝑝1
𝛿𝑅1

− 𝑝G0

)

− 1
3𝛼00

[

3𝛾𝑝G0 + (3𝛾 − 2)
(

3𝛾𝑝G0 −
𝛥2

𝛺2

)]

, (61)

�̂�42 = − 1 +
1 − 𝛼00 + 𝛽1
𝛽1

(

1 − 𝛼00
) 𝛾𝑝G0 +

𝑠4 − 𝑠3
3
(

1 − 𝛼0
) , (62)

�̂�5 =�̂�50
𝜕𝛿𝛼1
𝜕𝑥0

, (63)

here

̂ 50 =
1
2

[

1 − 𝛼00 + 𝛽1
𝛽1

(

1 − 𝛼00
) 𝛾𝑝G0 +

𝑠4 − 𝑠3
3
(

1 − 𝛼00
)

]

, (64)

where �̂�41, �̂�42, and �̂�50 are constants, and 𝑠𝑖 (𝑖 = 1, 2, 3, 4) are
resented in Appendix A. The coefficients �̂�4 and �̂�5 include 𝛿𝑅1 and

𝛿𝛼1, and they are due to the polydispersity.

4. Derivation of NLS equation for short waves

4.1. Linear propagation of carrier waves at a near field

As in the previous case of (40)–(44), we have the following set of
linear equations:
𝜕𝛼1
𝜕𝑡0

− 3
𝜕𝑅1
𝜕𝑡0

+
𝜕𝑢G1
𝜕𝑥0

= 0, (65)

00
𝜕𝛼1
𝜕𝑡0

− (1 − 𝛼00)
𝜕𝑢L1
𝜕𝑥0

= 0, (66)

𝛽1
𝜕𝑢G1
𝜕𝑡0

− 𝛽1
𝜕𝑢L1
𝜕𝑡0

− 3𝛾𝑝G0
𝜕𝑅1
𝜕𝑥0

= 0, (67)

1 − 𝛼00 + 𝛽1𝛼00)
𝜕𝑢L1
𝜕𝑡0

− 𝛽1𝛼00
𝜕𝑢G1
𝜕𝑡0

+ (1 − 𝛼00)
𝜕𝑝L1
𝜕𝑥0

= 0, (68)

𝜕2𝑅1

𝜕𝑡20
+ 𝑅1 +

𝑝L1
𝛥2

= 0. (69)

The difference between the KdVB and NLS cases is the form of the
linearized Keller equation (i.e., (44) and (69)). In the NLS case, the
dispersion effect is stronger than that in the KdVB case, and the
dispersion effect appears in the leading order of approximation (i.e.,
the second-order derivative of 𝑅1).

By combining five equations (65)–(69) into a single equation, the
five unknown variables in (65)–(69) are reduced to only 𝑅1:

1
[

𝑅1
]

= 0, 1 ≡
𝜕2

𝜕𝑡20
−
[

𝛥2

3𝛼00
+

(1 − 𝛼0 + 𝛽1)𝛾𝑝G0
𝛽1(1 − 𝛼00)

]

𝜕2

𝜕𝑥20
− 𝛥2

3𝛼00
𝜕4

𝜕𝑡20𝜕𝑥
2
0

.

(70)
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The fourth order derivative of (70) represents the dispersion term
owing to the second-order derivative (i.e., acceleration of the bubble
wall) in (69), which did not appear in the near field in the KdVB
case (see (44)). We now assume the form of the solution of (70) as
a quasi-monochromatic wave train evolving into a slowly modulated
wave packet:

𝑅1 = 𝐴(𝑡1, 𝑡2, 𝑥1, 𝑥2)ei𝜃 + c.c., (71)

where

𝜃 = 𝑘𝑥0 −𝛺(𝑘)𝑡0, (72)

where 𝐴 is the slowly varying complex amplitude depending only
on slow-scale variables (i.e., 𝑡1, 𝑡2, 𝑥1, and 𝑥2) and i represents the
maginary unit, c.c. represents the complex conjugate. 𝐴 is clearly
onstant in the near field denoted by fast scale variables (i.e., 𝑡0 and
0). Substituting (71) into (65)–(69) gives

1 = 𝑏1𝑅1, 𝑢G1 = 𝑏2𝑅1, 𝑢L1 = 𝑏3𝑅1, 𝑝L1 = 𝑏4𝑅1, (73)

ith

4 = 𝛥2(𝛺2 − 1), 𝑏1 =
(1 − 𝛼00)[3𝛽1𝛼00 − (1 − 𝛼00)𝑏4𝑘2∕𝛺2]

𝛼1(1 − 𝛼00 + 𝛽1)
,

2 = (𝑏1 − 3)𝛺
𝑘
, 𝑏3 = −

𝛼00𝑏1𝛺
(1 − 𝛼00)𝑘

, (74)

where 𝛺 depends on 𝑘 through a linear dispersion relation

𝐷 ≡ 𝛥2𝑘2(1 −𝛺2)
3𝛼00

+
(1 − 𝛼00 + 𝛽1)𝛾𝑝G0

𝛽1(1 − 𝛼00)
𝑘2 −𝛺2 = 0, (75)

or

𝛺 = ±𝑘

√

𝛥2

3𝛼00 + 𝛥2𝑘2
+

3𝛼00(1 − 𝛼00 + 𝛽1)𝛾𝑝G0
𝛽1(1 − 𝛼00)(3𝛼00 + 𝛥2𝑘2)

. (76)

The positive 𝛺 in (76) corresponds to the right-running carrier wave.
The nondimensional phase velocity 𝑣p and group velocity 𝑣g are imme-
diately obtained as follows:

𝑣p =
𝛺
𝑘
, 𝑣g =

d𝛺
d𝑘

=
3𝛼00𝛺

𝑘(3𝛼00 + 𝛥2𝑘2)
. (77)

mposing 𝑣p = 1 under 𝛺 = 1, the explicit form of 𝑈∗ is determined
s (Kanagawa et al., 2010)

∗ =

√

√

√

√

(

1 − 𝛼00 + 𝛽1
)

𝛾𝑝∗G0
𝛽1

(

1 − 𝛼00
)

𝜌∗L0
. (78)

ote that 𝐿 ≡ 𝑈∗𝑇 ∗ = 𝑈∗∕𝜔∗
B is simultaneously determined (see (17)).

he initial polydispersity does not affect the results of the approxima-
ion in near field.

.2. Linear propagation of envelopes at a far field I

The set of equations as the second-order equations is derived as
ollows:
𝜕𝛼2
𝜕𝑡0

− 3
𝜕𝑅2
𝜕𝑡0

+
𝜕𝑢G2
𝜕𝑥0

= 𝑀1, (79)

00
𝜕𝛼2
𝜕𝑡0

− (1 − 𝛼00)
𝜕𝑢L2
𝜕𝑥0

= 𝑀2, (80)

1
𝜕𝑢G2
𝜕𝑡0

− 𝛽1
𝜕𝑢L2
𝜕𝑡0

− 3𝛾𝑝G0
𝜕𝑅2
𝜕𝑥0

= 𝑀3 −
𝜕𝛿𝑝2
𝜕𝑥0

, (81)

1 − 𝛼00 + 𝛽1𝛼00)
𝜕𝑢L2
𝜕𝑡0

− 𝛽1𝛼00
𝜕𝑢G2
𝜕𝑡0

+ (1 − 𝛼00)
𝜕𝑝L2
𝜕𝑥0

= 𝑀4, (82)

𝜕2𝑅2

𝜕𝑡20
+ 𝑅2 +

𝑝L2
𝛥2

= 𝑀5, (83)

here 𝑀𝑖 (𝑖 = 1, 2, 3, 4, 5) are in the same form in our original monodis-
erse case (Kanagawa et al., 2010). The reduction of (79)–(83) to a
ingle equation for 𝑅2 is performed as follows:

1
[

𝑅2
]

= − 1 𝜕𝑀1 + 1 𝜕𝑀2 +
1 − 𝛼00 + 𝛽1 𝜕𝑀3
6

3 𝜕𝑡0 3𝛼00 𝜕𝑡0 3𝛽1(1 − 𝛼00) 𝜕𝑥0
+ 1
3𝛼00(1 − 𝛼00)

𝜕𝑀4
𝜕𝑥0

− 𝛥2

3𝛼00

𝜕2𝑀5

𝜕𝑥20
−

1 − 𝛼00 + 𝛽1
3𝛽1

(

1 − 𝛼00
)

𝜕𝛿𝑝2
𝜕𝑥0

=𝛤𝐴2e2i𝜃 + i
(

− 𝜕𝐷
𝜕𝛺

)

(

𝜕𝐴
𝜕𝑡1

+ 𝑣g
𝜕𝐴
𝜕𝑥1

)

ei𝜃

+ c.c. −
1 − 𝛼00 + 𝛽1
3𝛽1

(

1 − 𝛼00
)

𝜕𝛿𝑝2
𝜕𝑥0

, (84)

where 𝛤 is the same form in our original monodisperse case (Kanagawa
et al., 2010). From the solvability condition for (84), the coefficient of
ei𝜃 on the right-hand side of (84) must be zero. Thus, we have
𝜕𝐴
𝜕𝑡1

+ 𝑣g
𝜕𝐴
𝜕𝑥1

= 0. (85)

sing (85) to (84), 𝑅2 is considered such that the coefficients other
han the term of e2i𝜃 on the right-hand side are zero, a uniformly valid
olution up to the far field of (86) is obtained:

2 = 𝑐0𝐴e2i𝜃 + c.c.. (86)

ubstituting (86) into (79)–(83) yields the following:

𝛼2
𝑢G2
𝑢L2
𝑝L2

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

𝑐1 𝑑1 0
𝑐2 𝑑2 0
𝑐3 𝑑3 0
𝑐4 𝑑4 𝑐s

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝐴2e2i𝜃 + c.c.
i(𝜕𝐴∕𝜕𝑡1)ei𝜃 + c.c.

|𝐴2
|

⎞

⎟

⎟

⎠

, (87)

where the explicit forms of 𝑐0, 𝑐𝑖, 𝑑𝑖 (𝑖 = 1, 2, 3, 4, 5), and 𝑐s are the same
as those in our monodisperse case (Kanagawa et al., 2010).

As in the leading order of approximation in 4.1, the forms of in-
dependent valuables of the second-order approximation in this section
coincides with our original monodisperse case (Kanagawa et al., 2010).
The effect of initial polydispersity appears next order of approximation.

4.3. Nonlinear propagation of envelope waves at a far field II

The third-order of approximation gives
𝜕𝛼3
𝜕𝑡0

− 3
𝜕𝑅3
𝜕𝑡0

+
𝜕𝑢G3
𝜕𝑥0

= �̂�1, (88)

00
𝜕𝛼3
𝜕𝑡0

− (1 − 𝛼00)
𝜕𝑢L3
𝜕𝑥0

= �̂�2, (89)

𝛽1
𝜕𝑢G3
𝜕𝑡0

− 𝛽1
𝜕𝑢L3
𝜕𝑡0

− 3𝛾𝑝G0
𝜕𝑅3
𝜕𝑥0

= �̂�3, (90)

1 − 𝛼00 + 𝛽1𝛼00)
𝜕𝑢L3
𝜕𝑡0

− 𝛽1𝛼00
𝜕𝑢G3
𝜕𝑡0

+ (1 − 𝛼00)
𝜕𝑝L3
𝜕𝑥0

= �̂�4, (91)

𝜕2𝑅3

𝜕𝑡20
+ 𝑅3 +

𝑝L3
𝛥2

= �̂�5, (92)

where the explicit forms of the inhomogeneous terms �̂�𝑖 (𝑖 = 1, 2, 3, 4, 5)
re quite complex, as presented in Appendix B. The initial polydisper-
ity (i.e., 𝛿𝑅2 and 𝛿𝛼2) appears in �̂�𝑖.

The single inhomogeneous equation for 𝑅3 is

1
[

𝑅3
]

= 𝛬1e3i𝜃 + 𝛬2e2i𝜃 + �̂�3ei𝜃 + c.c. −
1 − 𝛼0 + 𝛽1
3𝛽1

(

1 − 𝛼0
)

𝜕𝛿𝑝2
𝜕𝑥1

, (93)

where 𝛬𝑖 (𝑖 = 1, 2, 3) are the complex variables composed of 𝐴. Here,
𝛬1 and 𝛬2 are not shown because they are not essential to derive the
NLS equation; �̂�3 is given as

�̂�3 =
(

− 𝜕𝐷
𝜕𝛺

)

{

i
(

𝜕𝐴
𝜕𝑡2

+ 𝑣g
𝜕𝐴
𝜕𝑥2

)

+ 1
2
d𝑣g
d𝑘

𝜕2𝐴
𝜕𝑥21

+ 𝜈1|𝐴|
2𝐴

+ i
[

𝜈2 + �̂�4
(

𝑥0, 𝑥1, 𝑥2
)]

𝐴 + �̂�3
(

𝑥0, 𝑥1, 𝑥2
)

𝐴
}

, (94)

where 𝐷 is shown in (75), and should be zero under the non-secular
condition for (93). Using (21) and (70), we rewrite (94) as the following
NLS equation with a correction term:

i 𝜕𝐴 + 1 d𝑣g 𝜕2𝐴 + 𝜈1|𝐴|
2𝐴 + i

(

𝜈2 + �̂�4
)

𝐴 = 0, (95)

𝜕𝜏 2 d𝑘 𝜕𝜉2
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w
𝜈
c

w
(

(

w
(

𝜏

B
w
c
d
i

d
t
d
o
(
l
a

t

T
d

via a variable transformation

𝜏 ≡ 𝜖2𝑡, 𝜉 ≡ 𝜖
(

𝑥 − 𝑣g𝑡
)

+ 𝜖2
�̂�3
𝐾

, (96)

here 𝐾 is the non-dimensional wave number of the envelope wave,
1 and 𝜈2 are the constant coefficients, and �̂�3 and �̂�4 are the variable
oefficients, including 𝛿𝑅2 and 𝛿𝛼2. Here, 𝜈1 and 𝜈2 in (95) are the same

as those in our previous monodisperse results (Kanagawa et al., 2010),
and explicit forms are omitted in this paper.

The coefficients �̂�3 and �̂�4 in (95) and (96) do not appear in our
previous monodisperse result (Kanagawa et al., 2010) and are given as

�̂�3 = �̂�31𝛿𝑅2 + �̂�32𝛿𝛼2 + �̂�33
𝜕2𝛿𝛼2
𝜕𝑥20

, (97)

here

− 𝜕𝐷
𝜕𝛺

)

�̂�31 =
( 𝛿𝜌2
𝛿𝑅2

− 1 −
𝑏1
3

𝛿𝜌2
𝛿𝑅2

)

𝛺2 + 1
3
𝑏2𝑘𝛺

𝛿𝜌2
𝛿𝑅2

−

(

1 − 𝛼00 + 𝛽1
)

𝛾𝑘2

𝛽1(1 − 𝛼00)

( 𝛿𝑝2
𝛿𝑅2

− 𝑝G0

)

+ 𝑘2

3𝛼00

[

3𝛾𝑝G0 (3𝛾 − 1) − (3𝛾 − 2)𝛥2 + 𝛥2𝛺2] , (98)
(

− 𝜕𝐷
𝜕𝛺

)

�̂�32 = 𝛺2 −
1 − 𝛼00 + 𝛽1
𝛽1(1 − 𝛼00)

𝛾𝑝G0𝑘
2 +

𝑏3𝛺 − 𝑏4𝑘
3(1 − 𝛼00)

𝑘, (99)

− 𝜕𝐷
𝜕𝛺

)

�̂�33 =
𝛥2𝛺2

3(1 − 𝛼00)
, (100)

�̂�4 = �̂�40
𝜕𝛿𝛼2
𝜕𝑥0

, (101)

here

− 𝜕𝐷
𝜕𝛺

)

�̂�40 =
[

1 − 𝛼00 + 𝛽1
𝛽1(1 − 𝛼00)

𝛾𝑝G0𝑘 +
𝛥2𝛺2𝑘 + 𝑏4𝑘 − 𝑏3𝛺

3(1 − 𝛼00)

]

, (102)

where �̂�3𝑖 (𝑖 = 1, 2, 3) and �̂�40 are constants. The coefficients �̂�3 and �̂�4
include 𝛿𝑅2 and 𝛿𝛼2, and they are due to the polydispersity as in �̂�4
and �̂�5 in (58).

5. Effect of polydispersity

Again, let us show the resultant equations derived in the previous
sections: KdVB equation,

𝜕𝑅1
𝜕𝜏

+𝛱1𝑅1
𝜕𝑅1
𝜕𝜉

+𝛱2
𝜕2𝑅1

𝜕𝜉2
+𝛱3

𝜕3𝑅1

𝜕𝜉3
+�̂�5𝑅1−

1
𝜖

1 − 𝛼00 + 𝛽1
6𝛽1

(

1 − 𝛼00
)

𝜕𝛿𝑝1
𝜕𝜉

= 0,

(58)

≡ 𝜖𝑡, 𝜉 ≡ 𝑥 −
{

1 + 𝜖
[

𝛱0 + �̂�4 (𝑥)
]}

𝑡, (59)

and NLS equation,

i 𝜕𝐴
𝜕𝜏

+ 1
2
d𝑣g
d𝑘

𝜕2𝐴
𝜕𝜉2

+ 𝜈1|𝐴|
2𝐴 + i

(

𝜈2 + �̂�4
)

𝐴 = 0, (95)

𝜏 ≡ 𝜖2𝑡, 𝜉 ≡ 𝜖
(

𝑥 − 𝑣g𝑡
)

+ 𝜖2
�̂�3
𝐾

. (96)

oth the KdVB equation (58) and NLS equation (95) describe the
eakly nonlinear propagation of waves. They are composed of a linear

ombination of terms representing the three effects (i.e., nonlinear,
issipation, and dispersion effects), and the sixth term of (58) is the
nhomogeneous term.

In the following, we discuss the physical meaning of each term in
etail. The second term of (58) and the third term of (95) are nonlinear
erms and represent the size of the nonlinear effect. Deriving the linear
ispersion relation of (58) and (95) reveals the physical meanings of
ther terms. The third and fifth terms of (58) and the fourth term of
95) represent the dissipation effect. Here, 𝛱2 and 𝜈2 are related to the
iquid viscosity, and �̂�5 and �̂�4 the polydispersity; �̂�5 and �̂�4 did not
ppear in our previous polydisperse result (Kanagawa et al., 2021a).
7

Fig. 3. Dependence of the constant dissipation coefficient �̂�50 in (64) on the initial
void fraction 𝛼00 for the case of 𝛺 = 1,

√

𝜖 = 0.15, 𝛾 = 1.4, 𝛽1 = 0.5, 𝑅∗
00 = 10 μm, and

he normal condition of the air–water system.

he fourth term of (58) and the second term of (95) represent the
ispersion effect. The coefficients �̂�4 and �̂�3 in the moving coordinate

𝜉 in (59) and (96) represent the advection effect of waves due to the
polydispersity. Hence, polydispersity contributes �̂�4 and �̂�5 in (58) and
�̂�3 and �̂�4 in (95) and affects the dissipation and advection effects of
waves.

The advection effect only moves the wave and does not essentially
affect the waveform (see (59) and (96)). The dissipation coefficients
�̂�5 and �̂�4 are expressed by using 𝜕𝛿𝛼∕𝜕𝑥0, where 𝛿𝛼 represents the
polydispersity of the void fraction.

�̂�5 = �̂�50
𝜕𝛿𝛼1
𝜕𝑥0

, (63)

�̂�50 =
1
2

[

1 − 𝛼00 + 𝛽1
𝛽1

(

1 − 𝛼00
) 𝛾𝑝G0 +

𝑠4 − 𝑠3
3
(

1 − 𝛼00
)

]

, (64)

�̂�4 = �̂�40
𝜕𝛿𝛼2
𝜕𝑥0

, (101)

(

− 𝜕𝐷
𝜕𝛺

)

�̂�40 =
[

1 − 𝛼00 + 𝛽1
𝛽1(1 − 𝛼00)

𝛾𝑝G0𝑘 +
𝛥2𝛺2𝑘 + 𝑏4𝑘 − 𝑏3𝛺

3(1 − 𝛼00)

]

. (102)

The dependences of each coefficient in (64) and (102) on the initial
void fraction 𝛼00 and the wavenumber 𝑘 are shown in Figs. 3 and 4,
respectively. Here, �̂�50 and �̂�40 are always positive. Importantly, the
positive and/or negative of �̂�5 and �̂�4 depends on the value of the slope
𝜕𝛿𝛼∕𝜕𝑥0. As can be seen in the dissipation terms in (58) and (95), the
larger the coefficients �̂�5 and �̂�4, the stronger the dissipation effect.
The dissipation effect is strong where the polydispersity of the void
fraction is larger and is weak where it is smaller. Hence, the magnitude
of the dissipation effect can be controlled by the value of the initial void
fraction.

6. Conclusions

We theoretically investigated the propagation of nonlinear pressure
waves in a liquid containing numerous gas bubbles and particularly
focused on the initial small polydispersity of bubble size and bubble
number density. Polydispersity exists in all of the regions; it is intro-
duced into the expansion of the void fraction and the bubble radius
without determining the explicit form and appears in the expansions
of the gas density and pressure. Thus, we derived two nonlinear wave
equations (i.e., KdVB (58) and NLS (95)), including terms to represent
the polydispersity using the basic equations based on the two-fluid
model.
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(

𝐾

𝐾

𝐾

(

𝑁

Fig. 4. Dependence of the constant dissipation coefficient �̂�40 on (a) the wavenumber
𝑘, and dependence of �̂�40 on (b) the initial void fraction 𝛼00 for the case of 𝜖 = 0.07,
𝛾 = 1.4, 𝛽1 = 0.5, 𝑅∗

00 = 10 μm, and the normal condition of the air–water system.

First, we clarified that the polydispersity contributes to the dissipa-
tion and advection effects of waves and accordingly induces variable
coefficients in the KdVB and NLS equations; the dissipation terms
owing to the polydispersity do not appear in our previous polydisperse
study (Kanagawa et al., 2021a). Since the dissipation effect becomes
smaller in a field such that the void fraction decreases, the dissipation
effect can be artificially changed by controlling the value of the void
fraction. Second, we successfully incorporated the dependence of the
initial void fraction on every coefficient in the KdVB and NLS equations
owing to the use of the two-fluid model. These results highlight the
effect of the initial polydispersity on weakly nonlinear waves in bubbly
liquid.

In a forthcoming paper, we will apply the present theory to physico-
mathematical modelling of potential applications such as a medical
ultrasound enhanced by microbubbles. Especially, ultrasound-contrast-
agent as microbubbles coated by a visco-elastic shell (e.g., Kanagawa
et al., 2023; Kikuchi et al., 2023) and thermal ablation of tumor
by using microbubble enhanced focused ultrasound (e.g., Kagami and
Kanagawa, 2022) will be developed based on the present model for
polydisperse bubbly liquids.
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Appendix A. Explicit forms of �̂�𝒊

Explicit forms of the inhomogeneous terms �̂�𝑖 (𝑖 = 1, 2, 3, 4, 5) in
51)–(55) are given by

̂1 = 𝐾1 +
(

3𝛿𝛼1 − 3𝛿𝑅1 − 𝑠1𝛿𝜌1 + 3𝛿𝜌1
) 𝜕𝑅1
𝜕𝑡0

−
(

𝛿𝛼1 + 𝛿𝜌1
)

𝑠2
𝜕𝑅1
𝜕𝑥0

− 𝑠2
𝜕𝛿𝛼1
𝜕𝑥0

𝑅1, (A.1)

�̂�2 = 𝐾2 − 𝛼00𝑠3𝛿𝛼1
𝜕𝑅1
𝜕𝑥0

− 𝛼00𝑠3
𝜕𝛿𝛼1
𝜕𝑥0

𝑅1, (A.2)

�̂�3 = 𝐾3 − 𝛽1
(

𝑠2 − 𝑠3
)

𝛿𝛼1
𝜕𝑅1
𝜕𝑡0

+ 3𝛾
(

𝛿𝑝1 − 𝑝G0𝛿𝑅1 + 𝑝G0𝛿𝛼1
) 𝜕𝑅1
𝜕𝑥0

−
𝜕𝛿𝑝1
𝜕𝑥1

,

(A.3)

̂4 = 𝐾4 + 𝛼00
[

𝛽1
(

𝑠2 − 𝑠3
)

+ 𝑠3
]

𝛿𝛼1
𝜕𝑅1
𝜕𝑡0

+ 𝛼00𝑠4𝛿𝛼1
𝜕𝑅1
𝜕𝑥0

, (A.4)

̂5 = 𝐾5 +
𝛺2

𝛥2

[

3𝛾𝑝G0 + (3𝛾 − 2)
(

3𝛾𝑝G0 −
𝛥2

𝛺2

)]

𝑅1𝛿𝑅1, (A.5)

where 𝐾𝑖 (𝑖 = 1, 2, 3, 4, 5) is the original inhomogeneous term for the
monodisperse case (Kanagawa et al., 2010).

Appendix B. Explicit forms of �̂�𝒊

Explicit forms of the inhomogeneous terms �̂�𝑖 (𝑖 = 1, 2, 3, 4, 5) in
88)–(92) are given by

̂ 1 = 𝑁1 +
(

3𝛿𝛼2 + 3𝛿𝜌2 − 3𝛿𝑅2 − 𝑏1𝛿𝜌2
) 𝜕𝑅1
𝜕𝑡0

− 𝑏2
(

𝛿𝛼2 + 𝛿𝜌2
) 𝜕𝑅1
𝜕𝑥0

− 𝑏2
𝜕𝛿𝛼2
𝜕𝑥0

𝑅1, (B.1)

�̂�2 = 𝑁2 − 𝛼00𝑏3𝛿𝛼2
𝜕𝑅1
𝜕𝑥0

− 𝛼00𝑏3
𝜕𝛿𝛼2
𝜕𝑥0

𝑅1, (B.2)

�̂�3 = 𝑁3 − 𝛽1
(

𝑏2 − 𝑏3
)

𝛿𝛼2
𝜕𝑅1
𝜕𝑡0

+ 3𝛾
(

𝛿𝑝2 + 𝑝G0𝛿𝛼2 − 𝑝G0𝛿𝑅2
) 𝜕𝑅1
𝜕𝑥0

−
𝜕𝛿𝑝2
𝜕𝑥1

, (B.3)

�̂�4 = 𝑁4 + 𝛼00
[

𝛽1
(

𝑏2 − 𝑏3
)

+ 𝑏3
]

𝛿𝛼2
𝜕𝑅1

𝜕𝑡0

http://www.editage.com
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𝑁

+ 𝛼00𝑏4𝛿𝛼2
𝜕𝑅1
𝜕𝑥0

+ 𝛼00𝛥
2𝛺2 𝜕𝛿𝛼2

𝜕𝑥0
𝑅1, (B.4)

̂ 5 = 𝑁5 +
[

3𝛾𝑝G0 (3𝛾 − 1)
𝛥2

− (3𝛾 − 2) +𝛺2
]

𝛿𝑅2𝑅1, (B.5)

where 𝑁𝑖 (𝑖 = 1, 2, 3, 4, 5) is the original inhomogeneous term for the
monodisperse case (Kanagawa et al., 2010).
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