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ABSTRACT

The importance of viscoelasticity of biological media that are used in medical ultrasounds has been discussed in the literature. Furthermore,
the use of microbubbles in biological media drastically improves the efficiency of both diagnostic and therapeutic ultrasounds. Weakly
nonlinear wave equations for ultrasound propagation in liquids containing microbubbles have long been studied, although the viscoelasticity
of the liquid phase has been ignored for simplicity. In this study, we derived a nonlinear wave equation for ultrasound propagation in a
viscoelastic liquid containing microbubbles by considering the effect of the elasticity of the liquid. Additionally, we evaluated how the
elasticity of the liquid modifies the nonlinear, dissipation, and dispersion effects of the ultrasound in a few tissue models (i.e., liver, muscle,
breast cancer, fat, and skin models and that without shear elasticity). The results revealed that liquid shear elasticity decreases the nonlinear
and dissipation effects and increases the dispersion effect, and this tendency is more significantly observed in the breast cancer tissue
compared with other tissues. Furthermore, we numerically solved the nonlinear wave equation and investigated the changes in ultrasonic
wave evolution with and without shear elasticity.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0131091

I. INTRODUCTION

Various types of cavitation phenomena occur in soft tissues.
High intensity focused ultrasound (HIFU) is a treatment modality that
focuses ultrasound waves on a focal area and ablates the tumor tissue
by increasing its temperature.' ° However, if there are tissues that
absorb or reflect ultrasound waves, such as fat or bone, it is difficult to
focus the ultrasound waves, thereby rendering the treatment ineffec-
tive as the required temperature would not be reached. However, by
injecting microbubbles around the tumor tissue, the thermal effect can
be enhanced by the generation of thermal energy owing to the excita-
tion of the microbubble, thus, increasing the therapeutic effect, even

utilizes the mechanical effect of cavitation. The latter is an example of
cavitation that causes damage to the body. Extracorporeal shock wave
lithotripsy (ESWL) is a treatment modality in which shock waves are
irradiated from outside the body to destroy stones, although the nor-
mal tissue surrounding the stones can be damaged simultaneously.
Moreover, in traumatic brain injury, when a person’s head is impacted
by a strong force, such as an accident, cavitation can occur inside the
skull, which can damage the brain tissue.'” Furthermore, studies focus-
ing on pressure wave propagation in soft tissues have indicated that
shock waves propagating in soft tissues can cause considerable
damage.”® "

when it is difficult to focus the ultrasound wave.” * Histotripsy uses
focused ultrasound to generate and collapse cavitation clouds to
destroy the tumor tissue in the focal region.'”'" In recent years, vari-
ous methods have been developed and experimentally verified to
increase the efficiency of tissue fractionation or to shorten the treat-
ment time."" '* The difference between HIFU and histotripsy is that
HIFU utilizes the thermal effect of cavitation, whereas histotripsy

Soft tissues are often considered as viscoelastic bodies containing
bubbles. Numerous studies on viscoelastic materials containing bub-
bles have been conducted in recent years, especially from the view-
point of multiphase flow. For example, experiments and simulations
have been conducted to understand the motion of bubbles in visco-
elastic bodies to elucidate the mechanism of cavitation.'”"” *°
Experiments have also been performed to evaluate the material
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of viscoelastic bodies

27-34

properties using cavitation instead of
rheometry. In those studies, a viscoelastic material model was
applied, and the physical properties were estimated by using the data
obtained from bubble oscillation.

Pressure waves in liquids containing bubbles have three effects:
nonlinear, dissipation, and dispersion. The nonlinear effect in the pre-
sent context is the effect of steepening the pressure wave, dissipation is
the effect of attenuating the pressure wave, and dispersion is the effect
of scattering the pressure wave into the waves with various frequency
components owing to bubble oscillation. As the characteristics of pres-
sure wave propagation change depending on the balance between the
nonlinear, dissipation, and dispersion effects, quantitative evaluation
of these three effects is important to accurately predict pressure wave
propagation. However, these three effects of pressure waves cannot be
measured from experiments. Therefore, a theoretical evaluation
method is required. This is made possible using the Korteweg—de
Vries—Burgers (KdVB) equation’” derived by van Wijngaarden, which
can be used to evaluate the balance between nonlinear, dissipation,
and dispersion effects. The KdVB equation™ does not include the
effect of the elasticity of the liquid, and, to date, there is still no equa-
tion that includes it. However, to accurately predict pressure wave
propagation in soft tissues while performing HIFU and histotripsy, it
is essential to consider the effect of the elasticity of the liquid.
Therefore, in this study, we investigate how the nonlinear, dissipation,
and dispersion effects change when the effect of liquid shear elasticity
is considered and aim to construct a mathematical model that can
describe pressure wave propagation in viscoelastic materials contain-
ing bubbles.

The paper is organized as follows: In Sec. II, the problem setup
and assumptions are clarified, and the basic equations used to formu-
late the problem are described. In addition, the multiscale method
used in the theoretical analysis is described. In Sec. 111, the linear wave
equation for the near field and the KdVB equation as nonlinear wave
equation for the far field are derived, and in Sec. I'V, we focused on the
coefficients of the derived KdVB equation and discussed how they
change in the presence of liquid shear elasticity. In addition, we
numerically solved the obtained KdVB equation and considered the
change in pressure waves caused by liquid shear elasticity.

Il. PROBLEM FORMULATION
A. Problem statement

We considered a weakly nonlinear (i.e., finite but with small
amplitude) propagation of plane and progressive pressure wave in a
bubbly liquid. In this study, the following assumptions were made for
simplicity:

(i) The liquid is slightly compressible.

(ii) The initial flow velocities of gas and liquid phases are zero.

(iii) The number of bubbles is constant, that is, the bubbles do not
coalesce, break up, appear, or disappear.

(iv) Only one bubble size is considered, and bubble distribution is
spatially uniform.

(v) Bubble-bubble interaction®” is neglected.

(vi) Mass transport through the bubble-liquid interface® is
neglected, that is, the number of molecules inside the gas core
of each bubble is constant.

(vii) Bubble oscillations are spherically symmetric and are the
same in an averaged volume.

scitation.org/journal/phf

(viii) The translation of and drag force on the bubbles™ ** are neglected.

(ix) The gas inside the bubbles is composed of only non-
condensable gas.

(x) The temperature fluctuation of the gas inside the bubble is
considered, but the temperature of the liquid phase is
assumed to be constant.

(xi) We used the Zener model’ as the constitutive equation to
represent the properties of viscoelastic liquids.

(xii) Shear modulus (i.e., rigidity) of the liquid is considered, but
Young’s modulus and bulk modulus (i.e., bulk elasticity) of
the liquid is neglected for simplicity.

B. Basic equations

The basic equations are composed of nine equations: four conser-
vation equations, bubble dynamics equation, and four constitutive
equations. As volumetric-averaged equations based on a two-fluid
model’”*" to describe the dependence of the initial void fraction™
were used, conservation laws of mass and momentum for gas and lig-
uid phases are first introduced as follows:

A (095) o (sp3) =0, <1>

D la-wpi)+ L0 mpp] =0, @

9 (o) + o)) + o e @)
o 11— 2piui] + s [~ 2dpiai”]

+(1—a)%+P*%:—F*, (4)

where t* is the time, x* is the space coordinate, o is the void fraction,
p* is the density, u* is the fluid velocity, p* is the pressure, and P is
the surface-averaged pressure.”’ The subscript * denotes a dimensional
quantity, and the subscripts G and L denote the gas and liquid phases,
respectively. As the interfacial transport term of momentum F*, we
used the virtual mass force model as follows:*"** **

y . (Dcug  Druj Yl s . Dgo
F* = —ﬁlapL( Dt*G _ Dt*L) _ ﬁsz(uG — uL) D

Dgpp
Dt ’

— Byar(ug — uf) (5)
where f31, 5, and f35 are the virtual mass coefficients and are 1/2 in the
case of spherical bubbles. Furthermore, Dg/Dt* or Dy /Dt* are mate-
rial derivatives of the gas and liquid phases, respectively, and are given
as follows:

D 0

Dt Ot*

o D_0 .0
Dt~ o Loxr’

*

Uu
G Oy’

(6)

For bubble dynamics, we utilized the modified Keller equation
(7), which was derived by adding the terms that are attributed to lig-
uid shear elasticity’® to the original Keller equation’”"® for spheri-
cally symmetric volume oscillations of bubbles in a compressible
liquid,"(’
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where ¢} is the speed of sound in the pure liquid, R* is the bubble
radius, 7}, |, is the radial component of the deviatoric stress at the
bubble wall, the subscript 0 denotes the initial quantity, and q* is
defined as

o0 T*
q" (R, t") EJ r—’*’dr*, (8)
where r* is the radial distance from the center of the bubble.
As in our recent reports,”” *' the energy equation”” for thermal

conduction at the bubble-liquid interface was used to express the ther-
mal effect inside the bubble as

*

;Do
— Kpg *
. Dt

. ©)

Dr R [““‘” ar

re=

where T, is the temperature of the gas phase, K is the ratio of specific
heats, and / is the thermal conductivity of the gas phase. The temper-
ature gradient term OT¢,/Or*|,._g. was rewritten by using the follow-
ing model given by Sugiyama et al,,”

Im(L}) DT
v *
wB|Lp| Dt

OT¢
or*

| Re(L)(T; — T2)

r*=R* - |L~;;|2

. (10)

where Tj is the initial temperature of the liquid and gas phases, L* is
the complex number with the length dimension defined in Ref. 53,
and Re(f;) and Im(I:;) are the real and imaginary parts of I:;, respec-
tively, and w* is the typical angular frequency.

In this paper, the linear natural angular frequency of a single bub-
ble oscillation, wj, is introduced by

|31 = 20" [Ry +4G" < 205 )2 ()
’ PLoRy? PioRy?

where 7, is the effective polytropic exponent and p, is the initial effec-
tive viscosity.3 ? Equation (11) was defined by adding the term of liquid
shear modulus G* to the linear natural angular frequency of a single
bubble oscillation, as defined in Ref. 53. Table I shows the linear natu-
ral angular frequency wj; for different types of biological soft tissues. In
this study, for simplicity, we regard biological soft tissues as a viscoelas-
tic liquid. In Table I, the initial density and the initial speed of sound in
the liquid vary among different types of biological tissues, with Wells
and Liang™ reporting densities in the range of 916-1060 kg/m?
and speed of sounds in the range of 1412-1629 m/s. However, since
specific values for the density and the speed of sound of each tissue
were not given, the density and the speed of sound were calculated
here as 1000 kg/m? and 1500 m/s, respectively, for all biological tis-
sues. The values for viscosity and relaxation time were taken from
Zilonova et al.””>* and were assumed to be the same for all biological
soft tissues. Temperature was assumed to be human body temperature.

ARTICLE scitation.org/journal/phf

TABLE |. The linear natural angular frequency wg for the case of ap=1.0
%1073, R =100 um, p;y = 1000.0kg/m®, ¢y = 1500.0m/s, p;;, = 101325Pa, o*
=0.056N/m, u* =0.015Pa-s, " =1.0x 10 s, T =310.15K, /g =0.0241W/
(mK), and x = 1.4; noting that these values except for G* are used to calculate wj of
every tissue. As these tissues can be regarded as incompressible,” we used the rela-
tionship between Young’s modulus E* and shear modulus G*, G* ~ E*/3.> As the
shear modulus of the liquid-phase biological soft tissue increased, wj also increased. Of
note, Figs. 1-3 demonstrate the same calculation conditions as those in Table |, unless
otherwise indicated.

Tissue Shear modulus G* [kPa] wy, [MHz]
Without shear elasticity 0 0.197
Skin® 0.37 0.198
Fat®’ 33 0.201
Liver™ 4.3 0.202
Muscle™ 6.7 0.205
Breast cancer™’ 31 0.228

We compared six cases: five types of soft tissues detailed in Table I and
a tissue model “without shear elasticity” that corresponds to G* = 0.
Here, without shear elasticity is a case in which the density, sound
velocity, and viscosity are the same as those of other biological soft tis-
sues, but G* is set to zero. Although this is a hypothetical case that dif-
fers from the actual biological soft tissues, it was chosen for the
purpose of focusing attention on the effects of shear elasticity. We
found that wj increased as the shear modulus of the medium
increased.
The following constitutive equations close (1)-(9):

(i) The Tait equation for the liquid state is
* k2 * n
" « , Pro‘ro PL
PL=Po T (*) -1 (12)
b o n |: PLo

where #n is material constant, for example, n = 7.15 for water.
(ii) The equation for the gaseous state is

g _ i T )

Peo P T

(iii) The conservation law of mass inside the bubble is

3
* R*
p*G — (_2) . (14)
PGo R

(iv) The balance of normal stress across the bubble-liquid interface
is

20*

po - i+ P) =0 -,

s (15)

where ¢* is the surface tension.

C. Constitutive equation

We utilized two equations™ derived from the constitutive equation of
the Zener model. Although there are various models to describe visco-
elastic materials, such as the linear Maxwell model”® and the neo-
Hookean model,”” we utilized the Zener model in this study because it
is widely used in experiments and simulations using gels and
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phantoms that imitate soft tissues.”” °’ In this study, the Zener model
was used as the constitutive equation for viscoelasticity because soft
tissues are assumed to be the primary area of application of ultrasound
waves in this study,

«  .«Dgq" .. 1DgR" |
q + 4 Dt + 4 ?W‘Crr R* (16)
_L[ 4G s gy e 1 DR
3| 3RS o) T R De |
1 DGR* DGT* R*
14300 ——— |1t |, + A — %
< T R Dr )T”R R vE
. A3 . 17)
4G R . 1 DGR
== T=\%) | % wp
3 R R* Dt

where p* is the liquid viscosity, G* is the liquid shear modulus, and 4"
is the relaxation time of the liquid.

Although we represent the material derivative of g* and <, |,. as
Dgq*/Dt* and Dgt;,|. /Dt*, the material derivative of g* and 7}, |p.
as Dg/Dt* or Dy /Dt* has not been strictly determined. This causes a
difference in the advection term of the material derivative. However,
owing to the order evaluation in this study, the contribution of the
advection term can be neglected and material derivatives of g* and
T4 |- do not affect the results.

D. Multiple scale analysis

To focus on the low-frequency long wave, the scaling relations of
nondimensional ratios among the physical parameters are defined as
follows:”!

Ry o* U*
(2. 2) = (0(v8).0(v).0[ve)) = (avE.avE Vo).
Wp Crp
(18)
where € is a nondimensional wave amplitude (0 < € < 1), A, Q, and
V are the constants of O(1), R} is the radius of a typical bubble, L* is
the typical wavelength, and U is the typical wave propagation speed.

Independent variables t* and v* are nondimensionalized as
follows:

tE—l xX=— (19)

where T™ is the typical period of a propagating wave, which is related
to the wavelength L* and the wave propagation speed U* through
T* = L*/U*. The near field [i.e., the temporal and spatial scales of O
(1)] is defined as

ty = t7 X0 = X, (20)

and the far field [ie., the temporal and spatial scales of O(1/¢)] is
described as

X] = €X. (21)
Using (20) and (21) with the derivative expansion method,”* the dif-

tl = Et,
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1:1+ea1+62a2+~~-, (23)
do
R*
— =1+4€R +Ry + -, (24)
Ry
%:wm + €Uy + -, (25)
%:Euu + U+, (26)
*PLU*z =pro+epL + Epat+ e, (27)
PLo
p_*L:1+52:0L1+63pL2+"'7 (28)
PLo
T |
*rrl}z*z =710+ €11 + GZTZ + - ) (29)
Pro
S =qoteqt+Eqt+--, (30)
I %
T*
T—f:1+eTG1+eZTG2+---. (31)
0

The liquid viscosity p*, the surface tension ¢*, the liquid shear modu-
lus G*, and the relaxation time of the liquid 4* are nondimensionalized
as

= 0 = ke (32)
Lo
G*
——5==0()=0, (33)
PLoU**R;
G*
pTh 0(1) =G, (34)
Lo
A )
= O(e) = Ze. (35)

The nondimensional pressures for the gas and liquid phases in the
unperturbed states p;, and p;, are defined as

PGo = Plo =
p]tO U*Z pEO U*Z

O(l) EPG07 O(l) EpLo. (36)
Ill. DERIVATION OF KdVB EQUATION
A. Leading order of approximation

Substituting (5), (6), and (10)-(36) into (1)-(4), (7)-(9), (16),
and (17) and collecting the O(e!) terms, the following system of line-
arized equations for the first-order problem were obtained:

(i) Mass conservation law in the gas phase,
o1 OR | Oucy
81‘0 8t0 8x0

(if) Mass conservation law in the liquid phase,

=0. (37)

ferential operators are expanded as follows: Ooy Oury
0107—(1—0(0) =0. (38)
o 9. 9 9 9 9 Ot O%o
ot oty + ea_tl’ Ix  Ox Ea_xl' (22) (iii) Momentum conservation law in the gas phase,
Furthermore, the dependent variables are nondimensionalized and Ougi _ , Ou 3 IRy Ta1 -0 39
: ) B B pGo 5 — + Pao . (39)
expanded in the power series of € as follows: Oty Oty Oxg Oxo
Phys. Fluids 35, 043309 (2023); doi: 10.1063/5.0131091 35, 043309-4
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(iv) Momentum conservation law in the liquid phase,

8 Ury auGl

0,
(1—0‘04‘/31“0) — Brog—— PL1

(v) Modified Keller equation,

2

pcoTcr + |3(ye — 1)pco — —pu + 2‘;0 = 0. (41)
(vi) Energy equation for thermal conduction at the bubble-liquid
interface,
0Tg ORy
3(k—1)—=0. 42
Oty +30—1) Oty (42)

The system of linearized equations, i.e., (37)-(42) contained
six dependent variables (ie., oy, pri, uci, 41, Tgi, and Ry).

scitation.org/journal/phf

By eliminating oy, pr1, UG, Ur1, and T, the linear wave equation for
the first-order perturbation of the bubble radius R; was derived as
follows:

&R, , PR,

v
o P Oxd

=0, (43)

where the phase velocity v, is given by,

3ag(1 — o + By)kpco — B1 (1 — %) [3(% — K)pGo — AZ/Qﬂ
3B100(1 — o) .

UPE

(44)

By substituting the definitions of pgy in (36), A and Q in
(18) into (44), we formulated a typical propagation speed U* as
follows:

- ﬁl(l - O(0) [3(’})6 -

Ut — \/3050(1 — oo + B1)KPGo/ Pio

Figure 1 shows the propagation speed U* vs the initial void fraction
oo- We found that U* increases as the liquid shear elasticity increases.
Next, we introduced the following variable transformation:

K)PGo/ Plo — Ri*0?]

45
3B100(1 — %) =
[
AZ
ss = —3(k — 1), s4=3(y — K)pco — ok
o = (1 —o0)[3B20 — (1 — a0)54]7 (48)
Py = X0 — lo- (46) oo(1 — oo + fy)
oSt
S =81 — 3, S3 = — .
1— o

By setting Ry = f(¢g; x1, t1), the remainder of the dependent variables
can be rewritten in terms of R; = f as follows:

o1 =sif, ugr =sf, uu =sf, pu=-sf, Tc =ssf, (47)
with
100 | — Without G

—— Liver
—— Breast cancer

Propagation speed U™ [m/s]|

150

. . ‘ . "
0.002 0.004 0.008 0.010
Initial void ﬁactlon ag [+

FIG. 1. Propagation speed U* vs initial void fraction in the liver, breast cancer, and
the tissue model without shear elasticity. Note that “Without G*” means “Without
shear elasticity” in Figs. 1 and 2. Clearly, U* increased as the liquid shear elasticity
increased.

B. Second order of approximation

Following the procedure presented in Sec. 111 A but for the O(¢?)
terms, the following system of equations as a counterpart of O(¢) for
the second-order problem were obtained:

(90(2 8R2 au(‘,z

L3 24 T K 4
8t0 81’0 6x0 b ( 9)
60(2 8uL2 -
Otoa—to—(l —Mo)a—%—Kz, (50)
auGz 8uLz 0R2 8TG2 _
Bi—— to =P oty SPGO(?TcO+pGOTxO_K3’ (51)
a 314 0,
(1= 0+ Bun) % = Broo o+ (1= 20) B2 =Ky, (52)
X0
2
pcoTa2 + |3(7e — 1)pco — o Ry — pra = Ks, (53)
OTe R,
8t0 +3(K— l)a—to—Kﬁ, (54)

where the explicit forms of the inhomogeneous terms K;
(i=1,2,3,4,5,6) are presented in Appendix A. Equations (49)(54)
are combined into a single equation as follows:
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PR, R,
a—tg—l’p o = K(f; o, x1,11)

10K 10K 10K,
3 81’0 30(0 8f0 3ﬁ1(1 — O(o) 8x0
1 0Ky 1 &Ks
b
30(0(1 — O(o) 8x0 3o 8x0
~ (1 —o) + 5 J82K6
3By (1 — o) x5
From the solvability condition of the inhomogeneous equation in (55),
which is also the nonsecular condition for the asymptotic expansions
in (23)-(31), we have K= 0. By using (46) (48) and setting v, = 1,
the following equation is obtained:

0, 0,
2—( f+ f+l_[o
9,

dty. (55)

of +Hf f +H21 62f

ot v D¢, 9}
IRV A ) —0. (56)
oy
Finally, through a variable transformation,
t=c¢t, ¢=x—(1+¢€llp)t, (57)

the KdVB equation for nonlinear propagation in the far field can be
obtained as follows:

0 0?
f f+H21 —5 +pf +11;

>f
ot 1fa“ PR

8V3

where IT; is the nonlinear coefficient, IT,; is the dissipation coefficient
due to viscosity and acoustic radiation of the oscillating bubbles in a
compressible liquid, Iy, is the dissipation coefficient due to thermal
conduction at the bubble-liquid interface, and Il; is the dispersion
coefficient. The explicit forms of IT; (i = 0, 1,21, 22, 3) are expressed

=0, (58)

as
1-— % ;0 |: A2:| 2,[120
M= 2223y, — 2 E
0 60(0 (/e K)pGO Qz + 3OCQA2
1 —
wll =)+ (ke — 1)lstma Pcos (59)

Zﬂldg(l — O(o)

1 ky (1 —o9+ B))ks ks HA2
I, =—<Fk — = - .
1 6{ 1 oc0+ (1 — o) ao(1— o) 0pQ? 5
[oo (1 — 9) + B11pco kﬁ}, )
[’)1050(1 - 0(0)
1 A3V q
I, = _6750 {4/«1 +F +3(x — }'e)AVpGo — 4JG|, (61)
%(1 — %) + By
m, =% —%)+ph 2
27 2B 00(1 — o) (k — 1)lstwi Pcos (62)
AZ
= 63
P 6oy (63)
where the explicit forms of k; (i = 1,2,3, 4, 5,6) are written as
= 60— 5) + 20 -5, ”
k2 = —20,$;53, (65)

k= (B + /32)(52 —S3)81 — B (Sg - 5§)> (66)

ks + k4 [3(s1 — 4) + (6 — 51)s5]pco, (67)

k4 = —OC()IAC + opS1S4 — 2(1 — OC())S% — 20{05153, (68)
3Q? 2

k6:3(1<—1)(31<—4—|—2$5). (70)

These coefficients mainly depend on the initial void fraction and the
initial bubble radius.

IV. DISCUSSION
A. Effects of liquid shear elasticity

In this section, we focus on the change in the value of
I1; (i = 1,21,22,3) and discuss the effect of liquid shear elasticity on
the nonlinear, dissipation, and dispersion effects of the pressure waves.
First, to visualize the change in the coefficients IT; in terms of liquid
shear elasticity, we compared the coefficient—initial void fraction o
curves for six different liquid phases: tissue without shear elasticity,
skin, fat, liver, muscle, and breast cancer tissues. All these models have
the same material properties (shown in the caption of Table I) except
for the shear modulus G*. The shear modulus G* of the liver, muscle,
breast cancer tissue, fat, and skin are shown in Table 1.”*°*** As these
soft tissues are the target areas of pressure waves or tissues through
which the pressure waves pass while applying therapeutic methods,
such as HIFU and histotripsy, it is important to investigate their char-
acteristics of pressure wave propagation.

Figure 2 shows the relationship between the magnitude of coeffi-
cient IT; (i = 1,21,22,3) and the initial void fraction 0. The void
fraction was considered in the range of 107® to 1072. We observed
that the coefficient values of all coefficients changed in the range of a
large void fraction; however, in the range of a small void fraction, the
coefficient values were almost constant. We then focused on the effect
of liquid shear elasticity. As shown in Fig. 2, in all cases with shear elas-
ticity shown in Table I, the magnitudes of the nonlinear coefficients,
dissipation coefficients due to viscosity and acoustic radiation, and dis-
sipation coefficients due to thermal conduction at the bubble-liquid
interface are smaller, and the dispersion coefficient is larger than in the
case without shear elasticity. This indicates that the shear elasticity of
the liquid phase decreases the nonlinear and dissipation effects and
increases the dispersion effect. Moreover, Table I shows that the shear
modulus of breast cancer is larger than that of skin, and Fig. 2 shows
that the difference in coefficients between the breast cancer case and
the without shear elasticity case is greater than the difference in coeffi-
cients between the skin case and the without shear elasticity case, and
these tendencies are also observed in the other biological soft tissues.
This suggests that the coefficients change more significantly as shear
modulus of tissue is larger.

To quantitatively consider the effect of liquid shear elasticity on
the nonlinear, dissipation, and dispersion effects of the pressure wave,
we investigated the change in the coefficients II; depending on
whether the shear elasticity is considered. We compared the tissue
model without shear elasticity with the breast cancer tissue because,
among the five types of soft tissues described in Table I, the rate of
change in coefficients was the largest in the breast cancer tissue. Table
11 shows the result of comparison of the coefficients between the breast
cancer tissue and the tissue without shear elasticity.
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FIG. 2. (a) Nonlinear, (b) and (c) dissipation, and (d) dispersion coefficients vs the initial void fraction o of the liver, muscle, breast cancer tissue, fat, skin, and the tissue with-
out shear elasticity. The liquid shear elasticity decreases the nonlinear and dissipation effects and increases the dispersion effect, and this tendency becomes prominent for

the case in which the liquid shear elasticity increases.

Figure 2 and Table II suggest that liquid shear elasticity has an
effect on all the coefficients, that is, liquid shear elasticity decreases the
nonlinear and dissipation effects of pressure waves, whereas it
increases the dispersion effect.

B. Numerical solution

In this section, we numerically solved the obtained KdVB equa-
tion (58) and showed the result of temporal evolution of the pressure
waves by comparing the waveform of the liquid between the breast
cancer tissue and the tissue without shear elasticity. We utilized the
split-step Fourier method””*® to solve the equation. The detailed
numerical scheme is described in the Appendix B.

Figure 3 is the numerical solution of (58) at T = 0.0, 0.5, 1.5, and
4.0. The red and black waveforms represent the waveforms with and
without liquid shear elasticity, respectively. We set the initial waveform
as a shock wave [Fig. 3(a)]. In Fig. 3(b), each of the two waveforms
splits into pulses, suggesting that the dispersion effect is in effect.
However, no a significant difference is observed between them. In Fig.
3(c) and 3(d), some difference in attenuation is observed. In particular,
near ¢ = 0 in Fig. 3(d), a pulse-like waveform was observed in the tis-
sue with liquid shear elasticity, whereas a flattened waveform was
observed in the tissue without shear elasticity. This suggests that atten-
uation of the wave is suppressed owing to the liquid shear elasticity;

TABLE II. The ratio of variation of the coefficient owing to the consideration of shear
elasticity. Each ratio is defined as IT;y /Il (i = 1,21,22,3), IT;, is the coeffi-
cient of the tissue with shear elasticity (i.e., the breast cancer tissue), and IT;, is
the coefficient of the tissue without shear elasticity.

Coefficient Ratio [%]
I1, —9.12
Iy, —14.99
Iy, —29.02
I1; +2.54

this is consistent with the decrease in the magnitude of the dissipation
coefficients discussed in Sec. [V A.

V. CONCLUSIONS

Based on the findings of the experiments and simulations on vis-
coelastic bodies conducted in recent years, viscoelastic materials are
considered to be highly important. However, to date, no KdVB equa-
tion has been proposed that describes nonlinear pressure-wave propa-
gation in viscoelastic bodies containing bubbles. In this study, the
equation for weakly nonlinear propagation of pressure waves in visco-
elastic liquids is derived for the first time while considering the elasticity
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FIG. 3. Temporal evolution of the pressure wave for the case of og = 1.0 x 107°. The red and black curves represent the waveforms with and without liquid shear elasticity,
respectively; ¢ is the nondimensional space coordinate, p1 is the first-order perturbation of the liquid pressure, and 7 is the nondimensional time: (a) = = 0.0, (b) = = 0.5, (c)
= 1.5, and (d) = = 4.0. In particular, around the center of Fig. 3(d), a pulse-like waveform was confirmed in the tissue with liquid shear elasticity, whereas a flattened wave-

form was observed in the tissue without shear elasticity.

of the liquid, and a mathematical model describing the propagation of
pressure waves in viscoelastic liquids is presented. By calculating the
change of the nonlinear, dissipation, and dispersion effects of pressure
waves, we revealed that liquid shear elasticity decreases nonlinear and
dissipation effects and increases the dispersion effect. Moreover, we
numerically solved the obtained equation to evaluate the changes in pres-
sure wave evolution with and without shear elasticity. Based on the
results of the comparison of pressure waveforms between tissues with
shear elasticity case and without shear elasticity case, we found that liquid
shear elasticity significantly affected the propagation of pressure waves.
Herein, we have presented the nonlinear wave equation that was
designed to be applied to biological soft tissues. In the future, we aim
to extend the KdVB equation and construct a mathematical model
that can be applied to pressure wave propagation in various types of
viscoelastic materials. We will also consider the effect of the bulk mod-
ulus of the liquid. Moreover, we aim to verify the present KdVB equa-
tion and its solutions by comparing the pressure wave obtained from
the KdVB equation with that obtained from experiment verification
and direct numerical simulation of (1)—(4), (7)—(10),and (12)—(17).
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APPENDIX A: INHOMOGENEOUS TERMS

The inhomogeneous terms K; (i = 1,2,3,4,5,6) in (49)—(54
are given by

K] :(3* 1) 8f Szﬁ+[252(3751)76(5172)] af

on Cox Iy’
(A1)
L ARV AR T
K2 = —0pS1 81’1 + (1 060)53 aXI (1 O(())V S4 8([)0
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- 20(05153](87(?:07 (A2)
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APPENDIX B: NUMERICAL SCHEME

The KdVB equation that is numerically solved is as follows:

of Mo P q. 9
5t (%H‘I 8’2+H 57 =0. (B1)

Equation (B1) is separated into two parts: linear equation (B2) and
nonlinear equation (B3) as follows:

of >’f
ot &

P
+ 1 5+ 113 —yJ; =0, (B2)
¢

dpq’
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o Imar_, (B3)

First, the linear equation (B2) was analytically solved using the
spectral method, and the dependent variables finer (&, T + At) were
obtained. Next, the nonlinear equation (B3) was calculated using
the spectral method and the fourth-order Runge—Kutta method for
temporal marching with finer as the initial condition, and the
dependent variables f(&, v + At) were thereby obtained. The peri-
odic boundary condition was used.
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