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ABSTRACT

Using microbubbles coated by a thin shell as ultrasound contrast agents for ultrasound diagnosis improves image resolution. Since numerous
microbubbles are used in clinical practice, understanding the acoustic properties of liquids containing multiple microbubbles is important. However,
interactions between ultrasound and numerous coated microbubbles have not been fully investigated theoretically. Additionally, ultrasound contrast
agents with shells made of various materials have been developed. Recently, an equation of motion that considers the anisotropy of the shell was
proposed [Chabouh et al., “Spherical oscillations of encapsulated microbubbles: Effect of shell compressibility and anisotropy,” J. Acoust. Soc. Am.
149, 1240 (2021)], and the effect of shell anisotropy on the resonance of the oscillating bubble was reported. In this study, we derived a nonlinear
wave equation describing ultrasound propagation in liquids containing numerous coated microbubbles based on the method of multiple scales by
expanding Chabouh’s equation of motion for the single bubble. This was achieved by considering shell anisotropy in the volumetric average
equation for the liquid and gas phases. Shell anisotropy was observed to affect the advection, nonlinearity, attenuation, and dispersion of ultrasound.
In particular, the attenuation effects increased or decreased depending on the anisotropic shell elasticity.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0141983

I. INTRODUCTION

The resolution of ultrasound images improves considerably
when microbubbles are used as contrast agents during diagnosis.1–3 In
general, contrast bubbles are covered with a thin membrane (or shell)
of lipids4–7 and other substances.8–10 A deep understanding of micro-
bubble/ultrasound interaction from a physical perspective is the key to
solve issues in ultrasound contrast imaging and diagnosis. From a
mathematical perspective, many equations of motion for a coated bub-
ble have been proposed by considering a single bubble.11–26 The first
mathematical model for an ultrasound contrast agent (UCA) was
developed by de Jong et al.11 based on ad hoc physical properties.
Church12 developed a theoretical model by modeling the shell of a
coated bubble similar to a Kelvin–Voigt model under the assumption
that the shell is viscoelastic. Hoff et al.13 reformulated the equations of

motion such that outer particle radius was the only variable. Church12

and Hoff et al.13 proposed mathematical models from a mechanical
perspective, considering the shell to be a viscoelastic body (i.e., contin-
uum), and established the pioneering theory of the nonlinear oscilla-
tions of a UCA.

Ultrasound attenuation is important for diagnosis; specifically,
three maximum possible suppression of ultrasound attenuation is
desired. On the other hand, non-linearity of coated microbubbles gen-
erates higher harmonic components, and it helps to shut down the tis-
sue signal and then contributes to the improvement of image
resolution.27 In a clinical practice, indeed, numerous coated microbub-
bles are injected. Therefore, clarifying the propagation properties of
ultrasound in a liquid with numerous contrast bubbles is necessary.
Previous models11–23 were limited to a single contrast agent. However,
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various studies28–30 investigated the bubble–bubble interactions.
Colonius group31 showed the importance of incorporating the shift in
resonance in the linear regime with experimental evidence. Recent
progress by Sojahrood group studied the pressure dependence effects
and nonlinear large amplitude bubble oscillations32–37 in the case of
bubbly media. Experiments have been performed to investigate the
attenuation and speed of ultrasound.11,13–15,21,29,33,38–47 Another recent
progress should be also mentioned.48–61 There are also studies that use
the Helmholtz model for pressure.32,62,63 However, further investiga-
tions in the case of multiple contrast agents are still lacking. In addi-
tion, our group recently extended Church’s mathematical model12 for
a single contrast agent to multiple contrast agents64 and extended
Chabouh’s model65 considering the shell compressibility of a single
bubble to multiple microbubbles.66,67

Generally, shells comprise various materials, such as lipids,4–7

polymers,8 and proteins,9,10 distributed in naturally occurring aniso-
tropic layers that contribute to the acoustic properties of bubbles and
ultrasound propagation. Recently, Chabouh et al.68 reported that shell
anisotropy can explain the experimental buckled shape of UCAs. They
introduced a characteristic distance for elasticity deff that is equal to the
thickness d for a thin shell of an isotropic material. However, all previ-
ous models (e.g., Refs. 11–19, 29, and 69) assumed the shell to be an
isotropic material. Recently, an updated equation of motion describing
the oscillation of a single bubble with an anisotropic shell was pro-
posed by Chabouh, and the contribution of shell anisotropy to oscilla-
tions was reported.65 The purpose of this study is to extend that model
for a single contrast agent with shell anisotropy65 to multiple contrast
agents and construct a mathematical model.

The remainder of this paper is organized as follows: Sec. II intro-
duces the formulation of our model and assumptions, Sec. III presents
the derivation of the Korteweg–de Vries–Burgers (KdVB) equation
describing ultrasound propagation and the investigation of the effects
of shell anisotropy, Sec. IV presents the limitations of our model and
future perspective, and Sec. V presents the summary of our study.

II. FORMULATION OF THE PROBLEM
A. Problem statement

The focus of this study is the weak nonlinear propagation (i.e.,
finite but small amplitude) of one-dimensional and progressive pres-
sure waves radiating from a source in liquids containing coated micro-
bubbles. Although the viscoelastic shell is assumed to correspond to a
Kelvin–Voigt model in many previous studies, we assumed a purely
elastic shell (i.e., without considering the viscosity of the shell) accord-
ing to Chabouh’s model65 as a first step in previous studies. In this
study, the anisotropy of the shell65 has been newly incorporated. As
shown in Fig. 1, the material properties are assumed to differ radially
and orthoradially, i.e., we consider a transversely anisotropic material,
which is a special case of general anisotropy. Only low frequencies and
long wavelengths are focused on in this paper. For simplicity, the fol-
lowing assumptions are made:

(i) Shell anisotropy is newly considered. The thickness of the
shell is considered to be a constant d�0 .

(ii) The shell of the bubble is considered to be a purely elastic
body.

(iii) Initially, the liquid is at rest, and the bubbles are uniformly
distributed.

(iv) The oscillations of bubbles are spherically symmetric.
(v) The bubbles are filled with a non-condensable ideal gas.
(vi) Liquid compressibility is considered.
(vii) The bubbles do not coalesce, break up, appear, or disappear.
(viii) Thermal conduction67,70–73 and phase change74–76 are disre-

garded since they are not expected to have a significant
impact on ultrasound diagnosis.

(ix) Bubble–bubble interactions20,30,31,77,78 are not considered.
(x) Drag force67,79,80 acting on the bubbles is ignored.

Bubble–bubble interactions28–32 are an important effect, but they
were not considered in our study for simplicity. Wave propagation in

FIG. 1. (a) Sketch of the ultrasound propagation in liquids containing multiple coated bubbles, zoom on the shell of the microbubble made from anisotropic material. (b)
Transverse anisotropic case is considered where the radial Young modulus E�

r is different from the in-plane Young modulus E�
jj . In the case of isotropic material, the value of

E�
r is equal to E�

jj .
65
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bubbly media considering bubble–bubble interactions has been inves-
tigated in the linear regime by Commander and Prosperetti28 and
Fuster et al.31 Further, Sojahrood et al. investigated the effects of atten-
uation and sound speed of the wave on bubble–bubble interactions in
both the linear and nonlinear regimes.29,30,32

B. Basic equations

The equation of motion for a bubble coated with an anisotropic
shell65 was used,

q�L0 1� 1
c�L0

DGR�

Dt�

� �
R� D

2
GR

�

Dt�2
þ 3
2
q�L0 1� 1

3c�L0

DGR�

Dt�

� �
DGR�

Dt�

� �2

¼ 1þ 1
c�L0

DGR�

Dt�

� �
P� þ R�

0

c�L0

DG

Dt�
p�L þ P�� �

; (1)

and the balance of normal stress across the bubble–liquid interface
is as follows:

P� ¼ �4l�L
1
R�

DGR�

Dt�
� p�L �

2r�2
R� þ p�G � 2r�1

R� � d�0

� U�2q�L0Kani 1� R�
0

R�

� �
; (2)

where the superscript � denotes a dimensional quantity; t is the time, p
is the volumetric averaged pressure, P is the surface averaged liquid
pressure at an interface cL0 is the speed of sound in a pure liquid, R is
the bubble radius, q is the density, d0 is the constant shell thickness, lL
is the liquid viscosity,U is the typical propagation speed of a wave, and
r1 and r2 are the surface tensions at the internal and external bound-
aries of the shell, respectively; the subscripts G and L denote the gas
and liquid phases, respectively, and the subscript 0 denotes the bubbles
at rest in the initial uniform state. Here, the anisotropic elastic constant
Kani is a constant that is determined from the elastic constants of the
shell (e.g., E�

jj, E
�
r , �jj, and �hr), where in Fig. 1, E�

r is Young’s modulus
in the radial direction, �hr is Poisson’s ratio with the radial load, and
E�
jj and �jj are Young’s modulus and Poisson’s ratio in the orthoradial

plane, respectively.65 Since the explicit form of the constant Kani is
complex, it is presented in Appendix A.

Further, the following mass and momentum conservation equa-
tions for a bubbly liquid based on two-fluid model64,66,81,82 were used:

(i) Mass conservation equation for the gas phase:

@

@t�
aq�G
� �þ @

@x�
aq�Gu

�
G

� � ¼ 0: (3)

(ii) Mass conservation equation for the liquid phase:

@

@t�
ð1� aÞq�L
� �þ @

@x�
ð1� aÞq�Lu�L
� � ¼ 0: (4)

(iii) Momentum conservation equation for the gas phase:

@

@t�
aq�Gu

�
G

� �þ @

@x�
aq�Gu

�2
G

� �þ a
@p�G
@x�

¼ F�: (5)

(iv) Momentum conservation equation for the liquid phase:

@

@t�
ð1� aÞq�Lu�L
� �þ @

@x�
ð1� aÞq�Lu�L2
� �

þ ð1� aÞ @p
�
L

@x�
þ P� @a

@x�
¼ �F�: (6)

Here, x is the space coordinate and a is the void fraction (i.e.,
volume fraction of gas phase). Further, an interfacial momen-
tum transport F� was introduced according to the virtual mass
force model as follows:82,84

F� ¼ �b1aq
�
L

DGu�G
Dt�

� DLu�L
Dt�

� �

� b2q
�
L u�G � u�L
� �DGa

Dt�
� b3a u�G � u�L

� �DGq�L
Dt�

; (7)

where the constants b1, b2, and b3 can be set to 1/2 for spheri-
cal bubbles, and the definitions of the operators DG=Dt� and
DL=Dt� are defined as

DG

Dt�
� @

@t�
þ u�G

@

@x�
;

DL

Dt�
� @

@t�
þ u�L

@

@x�
: (8)

(v) Tait equation of state for a liquid is

p�L ¼ p�L0 þ
q�L0c

�
L0

2

n
q�L
q�L0

� �n

� 1

" #
; (9)

where n is the material constant (e.g., n ¼ 7.15 for water).
(vi) Polytropic equation of state for gases is

p�G
p�G0

¼ q�G
q�G0

� �c

; (10)

where c is the polytropic exponent.
(vii) Conservation equation for the mass inside a bubble is

q�G
q�G0

� �
¼ R�

0

R�

� �3

: (11)

C. Nondimensionalization

For nondimensional time t ¼ t�=T� and space coordinate
x ¼ x�=L� (T� and L� are typical period and wavelength, respec-
tively), using the nondimensionalized independent variables t and
x, near-field [i.e., the temporal and spatial scales of Oð1Þ] is
defined by

t0 ¼ t; x0 ¼ x; (12)

and far-field [i.e., the temporal and spatial scales ofOð1=�Þ] is by
t1 ¼ �t; x1 ¼ �x; (13)

where � ð� 1Þ is the nondimensional wave amplitude. The differ-
ential operators are then introduced based on the derivative
expansion method,83
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@

@t
¼ @

@t0
þ �

@

@t1
;

@

@x
¼ @

@x0
þ �

@

@x1
: (14)

Next, all the dependent variables are nondimensionalized and
expanded in a power series of �, as follows:

a
a0

¼ 1þ �a1 þ �2a2 þ � � � ; (15)

u�G
U� ¼ �uG1 þ �2uG2 þ � � � ; (16)

u�L
U� ¼ �uL1 þ �2uL2 þ � � � ; (17)

R�

R�
0
¼ 1þ �R1 þ �2R2 þ � � � ; (18)

q�L
q�L0

¼ 1þ �2qL1 þ � � � ; (19)

p�L
q�L0U�2 ¼ pL0 þ �pL1 þ �2pL2 þ � � � : (20)

Since this study focuses on low-frequency long waves, we impose the
following relations:64,66,82,84

U�

c�L0
� O ffiffi

�
p� �

� V
ffiffi
�

p
;

x�

x�
B
� O ffiffi

�
p� �

� X
ffiffi
�

p
;

R�
0

L�
� O ffiffi

�
p� �

� D
ffiffi
�

p
;

(21)

where V, D, and X are constants of Oð1Þ, c�L0 is the speed of sound in
a pure liquid, x� is the typical angular frequency of the waves, and x�

B
is the eigenfrequency of linear spherical symmetric oscillations in a
single bubble. In addition, all dimensional constants (e.g., E�

r ) are non-
dimensionalized and their orders are estimated as follows:

E�
r

q�L0U�2 � Oð1Þ � Er;
E�
jj

q�L0U�2 � Oð1Þ � Ejj; (22)

r�1
q�L0U�2ðR�

0 � d�0Þ
¼ r1;

r�2
q�L0U�2R�

0
¼ r2;

d�0
R�
0
¼ �d0; (23)

l�L
q�L0U�2T� ¼ �lL: (24)

III. RESULTS
A. Linear approximation

Combining the leading-order approximation results of the basic
equations, we can derive a single linear wave equation.

(i) Mass conservation equation for the gas phase:

@a1
@t0

� 3
@R1

@t0
þ @uG1

@x0
¼ 0: (25)

(ii) Mass conservation equation for the liquid phase:

a0
@a1
@t0

� ð1� a0Þ @uL1
@x0

¼ 0: (26)

(iii) Momentum conservation equation for the gas phase:

b1
@uG1
@t0

� b1
@uL1
@t0

� 3cpG0
@R1

@x0
¼ 0: (27)

(iv) Momentum conservation equation for the liquid phase:

ð1� a0 þ b1a0Þ
@uL1
@t0

� b1a0
@uG1
@t0

þ ð1� a0Þ @pL1
@x0

¼ 0: (28)

(v) Equation of motion as bubble dynamics:

R1 þ X2

D2 pL1 ¼ �r1d0: (29)

We obtain the linear wave equation for the first-order perturba-
tion of bubble radius R1 by eliminating a1, uG1, uL1, and pL1 from
(25)–(29):

@2R1

@t20
� vp

@2R1

@x20
¼ 0; (30)

with the phase velocity vp,

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a0ð1� a0 þ b1ÞcpG0 þ b1ð1� a0ÞD2=X2

3b1a0ð1� a0Þ

s
: (31)

Note that vp is the phase velocity containing Kani, i.e., the anisotropy
of the shell contributes to the phase velocity. Transforming in vp, we
obtain U� as follows:

U� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a0ð1� a0 þ b1Þcp�G0=q�L0 þ b1ð1� a0ÞR�

0
2x�

B
2

3b1a0ð1� a0Þ

s
; (32)

where x�
B is derived from the equation of motion for a single

bubble (1):

x�
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� r�2
R�
0
� 2Aani

r�1
R�
0
þ 3Aanicp�G0 þ Kaniq�L0U�2

s
; (33)

where Aani and Kani are constants that describe shell anisotropy and
have a complex explicit form (see Appendix A). Figure 2 shows the
dependence of U� on a0. We used the linear approximation resonance
frequency x�

B for a single bubble for simplicity. Remarking that studies
on resonance frequency considering bubble–bubble interactions by
Yasui et al.77 and Gu�edra et al.85 are also significant to further exten-
sion. We shall include this effect in a future study.

Here, we focus on the right-running wave, set vp ¼ 1, and intro-
duce the phase function u0:

u0 � x0 � t0: (34)

We can express a1, uG1, uL1, and pL1 as a function R1ðu0Þ by rewriting
(25)–(29) with u0 and integrating them with respect tou0:

a1 ¼ s1R1; uG1 ¼ s2R1; uL1 ¼ s3R1; pL1 ¼ s4R1;

s4 ¼ �D2

X2 ; s1 ¼ ð1� a0Þ 3b1a0 � ð1� a0Þs4½ �
a0ð1� a0 þ b1Þ

;

s2 ¼ s1 � 3; s3 ¼ � a0s1
1� a0

:

(35)
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B. Nonlinear approximation and resultant KdVB
equation

Using the same method as that in Sec. IIIA, the second-order
approximation results of the basic equations are derived as

@2R2

@t20
� @2R2

@x20
¼ 1

3
@K1

@u0
� 1
3a0

@K2

@u0
þ 1� a0 þ b1
3b1ð1� a0Þ

@K3

@u0

þ 1
3a0ð1� a0Þ

@K4

@u0
� D2

3a0X
2

@2K5

@u2
0

� KðR1;u0; t1; x1Þ: (36)

The inhomogeneous terms Ki ði¼ 1; 2; 3; 4; 5Þ are explicitly provided
in Appendix B. The solution condition for the inhomogeneous equa-
tion in (37) requires K¼ 0, i.e.,

2
@

@u0

@R1

@t1
þ@R1

@x1
þP0

@R1

@u0
�P1R1

@R1

@u0
�P2

@2R1

@u2
0
þP3

@3R1

@u3
0

 !
¼0:

(37)

Finally, based on the variable transformation,

s � �t; n � x � ð1þ �P0Þt; (38)

and the second-order approximation results, we derived the KdVB
equation considering the shell anisotropy effects, as follows:

@R1

@s
�P1R1

@R1

@n
�P2

@2R1

@n2
þP3

@3R1

@n3
¼ 0; (39)

where the constant coefficients Pi ði ¼ 0; 1; 2; 3Þ represent advec-
tion, nonlinearity, attenuation, and dispersion, respectively.
Because (39) is represented as a linear combination of the

nonlinear, attenuation, and dispersion terms, we can perform a
quantitative comparison of the magnitude of these coefficients.
The difference between isotropic and anisotropic cases is reflected
in only each coefficientPi,

P0 ¼ � 1
6a0

ð1� a0ÞV2D2

X2 � 4Aanir1d0

	 

; (40)

P2 ¼ 1
6a0

D3V

X2 þ 4lL

� �
; (41)

P3 ¼ D2

6a0
; (42)

P1 ¼ � 1
6

k1 � k2
a0

þ ð1� a0 þ b1Þk3
b1ð1� a0Þ þ k4

a0ð1� a0Þ �
2k5
a0

	 

; (43)

where the explicit forms of ki ði ¼ 0; 1; 2; 3Þ are given by

k1 ¼ 6ð2� s1Þ þ 2s2ð3� s1Þ; k2 ¼ �2a0s1s3;

k5 ¼ 3
2
cð3cþ 1ÞAanipG0 � Aanir1 � r2 þ Kani;

k̂ ¼ ðb1 þ b2Þðs2 � s3Þs1 � b1ðs22 � s23Þ;
k3 ¼ k̂ þ 3cpG0ðs1 � 3c� 1Þ;

k4 ¼ �a0k̂ þ a0s1s4 � 2ð1� a0Þs23 � 2a0s1s3:

(44)

In Sec. IIIC, we shall clarify the effect of shell anisotropy in detail by
focusing on the functional form ofPi.

C. Effect of shell anisotropy

Herein, the coefficients of advection (40), nonlinear (43) and
(44), attenuation (41), and dispersion (42) in the KdVB equation (39)
were investigated quantitatively. All the coefficients were affected by
shell anisotropy, and these impacts were positive and negative com-
pared to those in the case with isotropy, respectively.

A graph of each coefficient is presented below. For simplicity,
similar to Chabouh et al.,65 we focus on the case where the Poisson
ratio is 0.35. We consider the following three cases of E�

jj to express
shell anisotropy:65 (i) E�

r < E�
jj as anisotropic case 1, (ii) E�

r ¼ E�
jj as

isotropic case, and (iii) E�
r > E�

jj as anisotropic case 2.
In Fig. 2, we plot the wave propagation speed U� in function of

the initial void fraction a0, for three different above-mentioned cases.
Indeed, the wave propagation speed drops with the percentage of bub-
bles in the medium. On the other hand, the more rigid the medium
(anisotripic case 2, i.e., E�

r > E�
jj), the faster the wave propagates.

Figure 3 shows the advection, nonlinear, attenuation, and dispersion
coefficients (i.e., P0, P1, P2, and P3) with respect to the initial void
fraction a0. In Fig. 4, each coefficient is investigated for ultrasound
diagnosis applications with a lower a0 than that in Fig. 3. Figure 4
shows the same response for each coefficient to a0 as Fig. 3. In anisot-
ropy case 1, shell anisotropy suppresses attenuation P2 and nonline-
arity P1. As shown in Fig. 3, P1 is not significantly affected by a0.
The differences among the three cases decrease forP0 as a0 increases.
Conversely, the differences among the three cases increase for P3 as
a0 increases. In ultrasonic diagnosis, the attenuation of ultrasound is
an important acoustic characteristic as images are formed using
reflected waves. Nonlinearity generates higher harmonics of the wave,
improving image resolution. Therefore, suppressing attenuation and

FIG. 2. Wave propagation speed U� vs initial void fraction a0: X ¼ 1,ffiffi
�

p ¼ 0:15, vp ¼ 1, R�
0 ¼ 1 lm,l�L ¼ 10�3 Pa s,r�1 ¼ 0:005 N=m, r�2 ¼ 0:72

N=m, d�0 ¼ 7:5 nm, c�L0 ¼ 1:5� 103 m=s, p�L0 ¼ 101 325 Pa, c ¼ 1:4, q�L0
¼ 103 kg=m3, and �hr ¼ �r ¼ 0:35; (i) anisotropic case 1, i.e., E�

r ¼ 88:8 MPa
and E�

jj ¼ 235:32 MPa, (ii) isotropic case, i.e., E�
r ¼ 88:8 and E�

jj ¼ 88:8MPa,
and (iii) anisotropic case 2, i.e., E�

r ¼ 88:8 and E�
jj ¼ 8:88MPa. These values are

also used in Figs. 3 and 4.
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promoting nonlinearity is desirable, i.e., the attenuation coefficient
should be anisotropic case 1 and the nonlinear coefficient should be
anisotropic case 2.

D. Limitations and future perspective

The use of very short pulses for ultrasound diagnosis applications
has been previously reported.21,86,87 Then, in this study, we focus on
the weakly nonlinear (i.e., finite but small amplitude) propagation of
ultrasonic waves in liquids containing multiple coated microbubbles.
Compared to Hoff’s model for a single bubble, the range of applicable
nonlinearity is small, i.e., our mathematical model cannot be applied
to strong nonlinearity. We obtain (30) from linear approximation and
(37) from weakly nonlinear approximation. While pressure should be
described in nonlinear regimes for clinical applications, linear and
nonlinear pressure models are known to provide different
results.29,62,63

IV. CONCLUSIONS

To construct a mathematical model for ultrasound diagnosis
enhanced by microbubbles, the equation of motion for a single bub-
ble coated with a purely elastic anisotropic shell65 was extended to
the case with multiple bubbles. Shell anisotropy, which entails two
different Young’s moduli (i.e., E�

r and E�
jj), in the radial and orthora-

dial directions was considered based on Chabouh’s model.65 The
KdVB equation for ultrasound propagation in liquids containing
multiple coated bubbles was derived using the second-order approx-
imation of basic equations based on the method of multiple scales.

Consequently, shell anisotropy was observed to contribute to the
advection, nonlinear, dispersion, and attenuation of ultrasound. In
particular, the balance between two Young’s moduli (i.e., E�

r and E�
jj)

can promote and suppress attenuation and nonlinear effects.
In future studies, the current theory and results will be extended

to a more general form and applied to real UCA in a biomedical field.
The dependence of the Poisson ratio on each coefficient will be

FIG. 3. Coefficients of the KdVB equation vs high initial void fraction a0: (a) advection P0, (b) nonlinearity P1, (c) attenuation P2, and (d) dispersion P3. Here, 2.65 is the
upper limit when the Poisson ratio is 0.35 and is calculated by a constraint among elastic constants.65
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elaborated by constructing a model incorporating a constitutive law
describing general shell anisotropy and extending the case of a purely
elastic shell to one with a viscoelastic shell.
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APPENDIX A: CONSTANT FOR SHELL OF ANISOTROPY

Elastic constant Kani considering shell anisotropy is given by

FIG. 4. Coefficients of the KdVB equation vs low initial void fraction a0: (a) advection P0, (b) nonlinearity P1, (c) attenuation P2, and (d) dispersion P3. Here, 2.65 is the
upper limit when the Poisson ratio is 0.35 and is calculated by a constraint among elastic constants.65
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Kani ¼ R�
10 AaniBani þ Danið Þ

q�L0U�2 1� �jj � 2E�
jj�

2
hr=E

�
r

� �
R�b�
10 R�bþ

20 � R�
10

bþR�b�
20

� � ;
where

Aani ¼
R�
10

b�R�
20

bþ�1 1� �jjð ÞE�
r bþ þ 2�hrE�

jj
h i

� R�
10

bþR�
20

b��1 1� �jjð ÞE�
r b� þ 2�hrE�

jj
h i

R�
10

bþ�1R�
10

b� 1� �jjð ÞE�
r bþ þ 2�hrE�

jj
h i

� R�
10

b��1R�
10

bþ 1� �jjð ÞE�
r b� þ 2�hrE�

jj
h i ;

Bani ¼ R�
20

b�R�
10

bþ�1 1� �jjð ÞErbþ þ 2�hrEjj
� �� R�

20
bþR�

10
b��1 1� �jjð ÞErb� þ 2�hrEjj

� �
;

(A1)

Dani ¼ R�
20

bþR�
20

b��1 1� �jjð ÞErb� þ 2�hrEjj
� �� R�

20
b�R�

20
bþ�1 1� �jjð ÞErbþ þ 2�hrEjj

� �
; (A2)

where T� is a typical period, E�
r is the Young modulus in the radial direction, �hr is the Poisson ratio with radial load, E�

jj and �jj are the
Young modulus and the Poisson ratio in the orthoradial direction, respectively,65 and R�

10 and R�
20 are the internal and external radius of the

shell, respectively. Here, R�
10, R

�
20, and shell thickness d�0 are connected by

R�
20 ¼ R�

10 þ d�0 :

Further, b6 and k are determined as follows:

b6 ¼ �16
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8k

p

2
; k ¼

E�
jj 1� �hrð Þ
E�
r 1� �jjð Þ :

APPENDIX B: INHOMOGENEOUS TERMS

The explicit form of Ki ði ¼ 1; 2; 3; 4; 5Þ in (37) is given by

K1 ¼ � @uG1
@x1

þ @

@t1
ð3R1 � a1Þ þ 3

@R1ða1 � 2R1Þ
@t0

þ @

@x0
uG1ð3R1 � a1Þ½ �;

K2 ¼ ð1� a0Þ @uL1
@x1

� a0
@a1
@t1

� a0
@a1uL1
@x0

ð1� a0Þ @qL1
@t0

;

K3 ¼ 3cpG0
@R1

@x1
� b1

@

@t1
ðuG1 � uL1Þ � b1a1

@

@t0
ðuG1 � uL1Þ � b1 uG1

@uG1
@x0

� uL1
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@x0

� �
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� ð3cþ 1ÞR1
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