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Abstract

The two-fluid model with bubble oscillations, proposed by Egashira et al.
(2004), can explain the properties of cavitating bubbly flow and pressure
wave propagation in the bubbly flow. However, the viscous effect as well as
energy conservation leading to temperature changes inside the bubble with
bubble oscillations have not yet been considered. Therefore, this study aimed
to incorporate the viscous (bulk viscosity and drag) and thermal effects to
the previously proposed two-fluid model with bubble oscillations. Bulk vis-
cosity was considered by averaging the shear stress term in the single-phase
momentum conservation for a Newtonian fluid, and the drag was introduced
by transforming the interfacial shear stress. We derived the averaged energy
conservation for a general two-phase flow with a thermal conduction inside
bubbles and heat transfer between the two phases, and limited this equation
to that for a bubbly flow by closing the interfacial temperature gradient term
via constitutive equations for a single bubble. Furthermore, we investigated
the stability of our proposed one-dimensional model using the linear disper-
sion analysis. This analysis gave insights as follows: (i) the temperature
gradient term in energy conservation can be closed using the temperature
gradient models; (ii) the thermal conduction inside bubbles was dominant in
the thermal damping rather than the heat transfer between the two phases;
(iii) incorporating both the bulk viscosity and drag stabilized our proposed
model. Our results is important for developing mathematical models to
investigate thermal effects in bubbly flow with bubble oscillations, such as
cavitating bubbly flow and wave propagation in bubbly liquids.
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1. Introduction

Bubbly flow is highly relevant to a variety of phenomena and objects,
both natural and synthetic, such as the screws of ships, boiling systems of
nuclear power plants, volcanic eruptions, and ultrasound contrast agents.
Several researchers have proposed various model equations that simulate the
motion of bubbly flow. The one-fluid model, which consists of conservations
regarding the two phases as a mixture , is further divided into three models:
a homogeneous model, slip flow model, and drift flux model (Kataoka, 2001;
Zuber and Findlay, 1965). The two-fluid model, which involves conservation
in the gas and liquid phases, has been widely used as it accounts for the
relative velocities without restriction of the Stokes number (e.g., Wallis, 1969;
Nigmatulin, 1979; Drew, 1983; Prosperetti and Tryggvason, 2007; Ishii and
Hibiki, 2010), and and has recently been progressed (Rezende et al., 2015;
Vaidheeswaran et al., 2017; de Bertodano et al., 2016; Vaidheeswaran and
Lopez de Bertodano, 2016, 2017; Carrillo et al., 2020; Zhang, 2021; Pal and
K, 2021; Clausse et al., 2022; Nagrani et al., 2022; Deuben et al., 2022; Shi
et al., 2022; Yilgor and Shi, 2022; Habiyaremye et al., 2022).

The majority of bubbly flow models do not consider bubble oscillations
owing to an assumption that bubbles behave as solid particles(e.g. Stuh-
miller, 1977; Ishii and Hibiki, 2010; Chuang and Hibiki, 2017). In these
models, the effects of bubbles on the flow are expressed by the equation
derived form the potential flow theory around the particles (e.g. Stuhmiller,
1977; Ishii and Hibiki, 2010; Chuang and Hibiki, 2017). Therefore, properties
that consider bubble oscillations are needed. One property is the pressure
wave propagation in the bubbly flow, in which the interaction between the
pressure wave and bubble oscillations is relatively large. van Wijngaarden
(1968, 1972); Prosperetti (1991) incorporated the Rayleigh–Plesset equation
into the one-fluid model and derived the Korteweg–de Vrie–Burgers (KdVB)
equation that describes a dispersive shock wave in the bubbly flow using
the perturbation theory. Our group has derived the KdVB equations from
the two-fluid model containing the bubble oscillation model with liquid com-
pressibility (Keller and Kolodner, 1956) under various physical conditions
(Kanagawa et al., 2010; Kamei et al., 2021; Yatabe et al., 2021). The other
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bly flow. Shock pressure near the bubble surface when the bubble collapses
causes cavitation erosion (Rayleigh, 1917). Therefore, incorporating the bub-
ble oscillation model into the two-phase flow model can express the effects
of cavitation erosion. Egashira et al. (2004) proposed the two-fluid model
with Keller equation (Keller and Kolodner, 1956) that described cavitating
bubbly flow by separating the surface-averaged pressure difference at the
bubble–liquid interface from the liquid pressure instead of using only the
liquid pressure (van Wijngaarden, 1968, 1972; Prosperetti and Jones, 1984).
Egashira et al. (2004) stated that identifying the surface and bulk liquid
pressures prevented to describe the shock pressure near the bubble surface.
This model can be used to calculate the pressure waves in the bubbly flow
(Kanagawa et al., 2010; Kamei et al., 2021; Yatabe et al., 2021).

However, the original two-fluid model (Egashira et al., 2004) did not con-
sider the viscous effect, that is, the bulk viscosity and drag. Considering
the viscous effect improves the instability of the ill-posed two-fluid model
equations (Arai, 1980; Pokharna et al., 1997). Ignoring the viscous effects
is one of the reasons for leading to unbounded solutions. The other rea-
sons are, for example, the models of interfacial momentum transfer and the
identification of gas and liquid pressure (Stuhmiller, 1977; Lyczkowski et al.,
1978; Ramshaw and Trapp, 1978; Lahey et al., 1980; Ransom and Hicks,
1984; Pauchon and Banerjee, 1986; Park et al., 1998; Drew, 1983; Tanamachi
and Takahashi, 1995; Yabushita et al., 1995; Lhuillier et al., 2013; Vaid-
heeswaran and Lopez de Bertodano, 2016, 2017; Tukhvatullina and Frolov,
2018; Panicker et al., 2018; Fox et al., 2020). To provide practical solutions,
viscous effect must be considered in the bubbly flow. In addition, the origi-
nal two-fluid model did not consider temperature changes inside the bubbles.
Strong bubble oscillations can increase the temperature inside the bubbles in
cavitation flow. The temperature change inside the bubbles cannot also be
neglected for the pressure waves in the bubbly flow. Prosperetti (1991) are
the pioneers who studied the bubbly flow model with bubble oscillations by
incorporating the thermal effects. They theoretically and numerically inves-
tigated pressure wave propagation with thermal effects by incorporating the
differential equation for the gas pressure of a single bubble (see Eq. (41)) and
the energy conservation inside a single bubble (Prosperetti et al., 1988) into
the simplified one-fluid model (Caflisch et al., 1985) and showed that the ther-
mal effect caused the attenuation of the pressure wave. Furthermore, Fuster
and Montel (2015) theoretically investigated the pressure wave attenuation
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into the one-fluid model. Although the two-fluid model by Egashira et al.
(2004) can express the high pressure at the interface in the cavitation flow,
energy conservation of the two-fluid model with bubble oscillations, which
can describe the temperature change, has not yet been clearly elucidated.

Therefore, this study aimed to incorporate the viscous effects into the
momentum conservations of the original two-fluid model and derive energy
conservation to consider the temperature change inside bubbles with oscil-
lations. The two-fluid model primarily uses one of the three averaging pro-
cesses: time averaging (e.g. Ishii, 1975; Drew, 1983; Ishii and Hibiki, 2010),
volume averaging (e.g. van Deemter and van der Laan, 1961; Nigmatulin,
1979; Prosperetti and Jones, 1984), and ensemble averaging (e.g. Drew, 1983;
Joseph et al., 1990; Zhang and Prosperetti, 1994; Drew and Passman, 1998).
Through these methods, the quantities can be averaged over a relatively long
time, large control volume containing several bubbles, and large number of
realisations, respectively. In this study, we used a volume averaging to analyt-
ically transform interfacial terms in the momentum and energy conservations.
The reminder of the paper is organised as follows: the volume-averaging

technique and the process of deriving the averaged momentum conservation
are described in Sections 2.1 and 2.2. We incorporated the bulk viscosity and
drag into the averaged momentum conservations, described in Section 2.3.
Instead of introducing only the differential equation for the gas pressure
(Prosperetti et al., 1988; Prosperetti, 1991), we derived the volume-averaged
energy equation from the energy balance in the control volume and closed
the interfacial gradient term using equations for a single bubble. We used
the following assumptions for deriving averaged momentum conservations:
(i) bubbles do not coalesce, break up, become extinct, and appear; (ii) the
bubble–bubble interaction is ignored; (iii) the gas pressure inside bubbles is
uniform in the control volume; (iv) the bubble radius is uniform the control
volume; (v) the liquid phase is isothermal; (vi) the gas inside the bubbles is
an ideal gas; (vii) the effect of mass transfer is neglected. (i) and (vii) are
valid when the phase change between the gas and liquid is negligible. The
effect of the phase change on the bubbly flow modeling with bubble oscilla-
tions was discussed by Fuster and Montel (2015). (ii)–(iv) are valid when a
control volume is sufficiently smaller than a scale of macroscopic flows and
larger than a scale of bubbles. Hence, our presented two-fluid model equa-
tions can cover that a void fraction α is relatively small (α ≲ 0.01) and an
appropriate grid scale is considered in numerical situations. Although (v)
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these assumptions are valid when the gas inside bubbles is air and α is rel-
atively small. Finally, we discussed the stability of the proposed two-fluid
model equations with bubble oscillations using the linear dispersion analysis
in Section 3.

2. Two-fluid model equations with bubble oscillations

This section provides a detailed description of deriving the two-fluid
model equations with bubble oscillations. The first step introduces the
volume-averaging process, and then the volume-averaged momentum and
energy conservations are derived. The important point of deriving is the
transforming method of interfacial terms in both conservations.

2.1. Volume-averaging process

In this section, we introduce three types of volume-averaging techniques
(e.g. Drew, 1983; Prosperetti and Jones, 1984; Egashira et al., 2004) to de-
scribe the short time scale of bubble oscillations. First, the space average for
a variable ϕ(y, t) was defined at a given x as,

⟨ϕ⟩ (x, t) = 1

V

∫

Ω

g(y − x)ϕ(y, t)dV (y), (1)

where y is the local position, V is the control volume, x is the center position
of the control volume, Ω is a sufficiently large volume containing V , and
g(y−x) is a discontinuous function, which returns 1 for |y−x| ≤ radius of
V and 0 for others . Second, the space average for a variable ϕ(y, t) in the
k-th phase was defined at a given x as,

ϕk(x, t) =
1

Vk(x, t)

∫

Ω

g(y − x)Xk(y, t)ϕ(y, t)dV (y), (2)

where Vk is the volume occupied by phase k in V and Xk(y, t) is the phase
indicator function, which is defined as,

Xk(y, t) =

{
1, if y is in Vk,

0, otherwise,
(3)
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Figure 1: (a) Control volume V in a mixture of liquid and spherical gas bubbles Ω: S is
the surface of V ; SL is the liquid component of S, SG is the gaseous component of S, SI

is the surface of bubbles in V , and ni is the normal vector at S. (b) Enlarged view of
SI: nGi is the normal vector toward the outside of the bubbles, nLi is the normal vector
toward the insides of the bubbles, and superscript (k) signifies the quantity of k-th phase
at the interface SI. (c) Bubble cutting by the control volume V : ∂SG is the boundary of
SG.

where k = L denotes the liquid phase and k = G denotes the gas phase.
Third, a mass-weighted phase average for variable ϕ(y, t) was defined at a
given x as,

ϕ̂k(x, t) =
1

ρk(x, t)Vk(x, t)

∫

Ω

g(y − x)Xk(y, t)ρ(y, t)ϕ(y, t)dV (y), (4)

where ρ is the density.

2.2. Mass conservations

A volume-averaged conservation equation can be derived via the appli-
cation of Eqs. (1)–(4) to a single-phase conservation equation (Drew, 1983;
Egashira et al., 2004). The mass conservation equation in the k-th phase
becomes

∂

∂t
(αkρk) +

∂

∂xi

(αkρkûki) =

〈
ρ(ui − u†

i )
∂Xk

∂yi

〉
, (5)
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velocity, and u†
i is the velocity of the gas–liquid interface. In this study,

ui−u†
i is zero because phase changes were not considered. Hence, the volume-

averaged mass conservations in the gas and liquid are given as,

∂

∂t
(αGρG) +

∂

∂xi

(αGρGûGi) = 0, (6)

∂

∂t
(αLρL) +

∂

∂xi

(αLρLûLi) = 0. (7)

2.3. Momentum conservations

As well as the averaged mass conservations, the averaged momentum
conservation can be derived via the application of Eqs. (1)–(4) to a single-
phase conservation equation (Drew, 1983; Egashira et al., 2004) as

∂

∂t
(αkρkûki) +

∂

∂xj

(αkρkûkiûkj)

=− ∂

∂xi

(αkpk) +
∂

∂xj

[
αkµk

(
∂uki

∂yj
+

∂ukj

∂yi

)]
− ∂

∂xj

(
αkρkû′

kiu
′
kj

)

− 1

V

∫

SI

p(k)nkidS +
1

V

∫

SI

[
µ

(
∂uj

∂yi
+

∂ui

∂yj

)](k)
nkjdS, (8)

where p is the pressure, µ is the viscosity, and u′
i is the fluctuation of the

mass-weighted phase-averaged velocity. The third term on the right-hand
side of Eq. (8) represents the Reynolds stress in the k-th phase. This term
can be modelled, for example, using the Reynolds-Averaged Navier–Stokes
(Sato and Sekoguchi, 1975; Lee et al., 2017; Lubchenko et al., 2018); however,
it is not considered in the present study. The last two terms on the right-hand
side of Eq. (8) are expressed in terms of integrals of non-averaged quantities,
where SI is the total gas–liquid interface in V , nkj is the unit normal vector
at the interface SI, and the value with superscript (k) signifies the quantity
of the k-th phase at the interface (Fig. 1 (a) and (b)). These two terms
represent the gas–liquid interfacial phenomena, which were derived using the
following relation (Prosperetti and Jones, 1984; Egashira et al., 2004):

〈
ϕj(y, t)

∂Xk(y, t)

∂yi

〉
= − 1

V

∫

SI

ϕ
(k)
j (y, t)nkidS(y), (9)

where ϕj denotes an arbitrary quantity.

7



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of2.3.1. Additional terms of shear stress

The second term on the right-hand side of Eq. (8) can be approximated
as follows:

∂

∂xj

[
αkµk

(
∂uki

∂yj
+

∂ukj

∂yi

)]
≈ ∂

∂xj

[
αkµk

(
∂ûki

∂xj

+
∂ûkj

∂xi

)]
+

∂

∂xj

(αkCk),

(10)

where Ck is an additional term determined via the approximation of volume-
averaged spatial derivatives. We present the following three cases involving
additional terms:

Ck =





0 : Case 1

−µk

(
ûki

∂αk

∂xj

+ ûkj
∂αk

∂xi

)
: Case 2

−µk

ρk

(
ûki

∂ρk
∂xj

+ ûkj
∂ρk
∂xi

)
: Case 3

(11)

Case 1 used the assumptions ∂uki/∂yj ≈ ∂uki/∂xj and uki ≈ ûki. Most
studies have adopted the parameters in case 1 because the contribution of
the additional term is small when the typical dimension of V is sufficiently
larger than the bubble size (Brennen, 2005). Case 2 used the assumptions
∂uki/∂yj ≈ ∂uki/∂xj , uki ≈ ûki, and the following relation for the phase-
averaged spatial derivative (Brennen, 2005):

∂ϕki

∂yj
=

∂ϕki

∂xj

+
1

αkV

∫

SI

ϕ
(k)
i nkjdS, (12)

and u
(k)
i ≈ ûki, The last assumption implies that the boundary-layer thick-

ness is ignored and that the integral of Eq. (12) can be transformed using
the Slattery’s theorem (see Section 2.3.2). Case 3 used the assumptions

∂uki/∂yj ≈ ̂∂uki/∂yj , u
(k)
i ≈ ûki, and the mass-weighted relation of the

phase-averaged spatial derivative:

∂̂uki

∂yj
≈ ∂ûki

∂xj

− ûki

ρk

∂ρk
∂xj

. (13)
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In this section, we describe the transformation of the forth term of the
right-hand side in Eq. (8) (Egashira et al., 2004). The non-averaged liquid
pressure p(L) can be decomposed into the following three parts:

p(L)(x;y, t) = pL(x, t) + P̃ (x, t) + pf (y, t), (14)

where P̃ denotes the surface-averaged deviation that is given as follows:

P̃ (x, t) =
1

SI

∫

SI

(
p(L)(x;y, t)− pL(x, t)

)
dS(y), (15)

and pf is the deviation of p(L) from pL + P̃ .
Bubbles in the control volume can be classified into two types (Prosperetti

and Jones, 1984): bubbles that are completely contained in the control vol-
ume V and bubbles that are cut across the surface of the control volume S
(Fig. 1 (a)). Figure 1 (a) also illustrates that the surface S can be divided
into two parts: SL is the surface S comprising the liquid and SG is the surface
S comprising the gas (Prosperetti and Jones, 1984; Egashira et al., 2004).
Because the union of SI and SG forms a set of closed surfaces, we can show
the following relation for the normal stress of the bubble ni = nGi = −nLi:

∫

SI

ni dS +

∫

SG

ni dS = 0. (16)

According to the Slattery’s theorem (Slattery, 1967; Whiaker, 1969), we have

∫

SG

ni dS =
∂

∂xi

∫

VG

dV. (17)

Using Eqs. (14), (16), and (17) into Eq. (8), we obtained the interfacial
pressure term in the liquid phase as follows:

− 1

V

∫

SI

p(L)nLi dS = −
(
pL + P̃

)∂αG

∂xi

+
1

V

∫

SI

pfni dS. (18)

The second term on the right-hand side of Eq. (18) represents the total force
acting on all bubbles in V and is regarded as the virtual mass force FVM

i

acting on all bubbles in V . Several virtual mass-force models were proposed
(e.g. Drew et al., 1979; Drew, 1983; Ishii and Mishima, 1980; Kameda and

9
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liquid compressibility (Zhang and Prosperetti, 1994; Eames and Hunt, 2004;
Yano et al., 2006):

FVM
i =− β1αGρL

(
DGûGi

Dt
− DLûLi

Dt

)
− β2ρL(ûGi − ûLi)

DGαG

Dt

− β3αG(ûGi − ûLi)
DGρL
Dt

, (19)

where βi (i = 1, 2, 3) is set to 1/2 for spherical bubbles.

2.3.3. Interfacial shear stress term in the liquid

Let the integrand of the fifth term on the right-hand side of Eq. (8) be

τ
(k)
ij =

[
µ

(
∂ui

∂xj

+
∂uj

∂xi

)](k)
, (20)

and τ
(L)
ij can be decomposed into

τ
(L)
ij = τLij(x, t) + τfij(y, t), (21)

where τLij denotes the volume-averaged shear stress tensor in the liquid
phase, which is equal to the additional term (11) that is given as,

τLij ≈ µL

(
∂ûLi

∂xj

+
∂ûLj

∂xi

)
+ CL, (22)

and τfij denotes the deviation of τ
(L)
ij from τLij. Substituting Eqs. (17) and

(21) with Eq. (8), we obtained the interfacial shear stress term in the liquid
phase as follows:

1

V

∫

SI

τ
(L)
ij nLjdS = τLij

∂αG

∂xj

− 1

V

∫

SI

τfijnjdS. (23)

The second term on the right-hand side of Eq. (23) represents the total shear
force acting on all bubbles in V . This term encompasses the drag force (Ishii
and Zuber, 1979), lift force (Ẑun, 1980), and wall lubrication force (Antal
et al., 1991). Nonetheless, this study considered only the drag force, which
can be modelled as,

FDR
i = − 3

8R
CDαGρL(ûGi − ûLi) |ûGi − ûLi|, (24)

10
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models for different flow conditions (Levich, 1962; Schiller and Naumann,
1933; Ishii and Zuber, 1979; Tomiyama et al., 1998), we select no specific
drag coefficient models to ensure generality.

2.3.4. Momentum conservations for gas and liquid

The momentum balance equation at the interface, without considering
the mass transportation (Ishii and Hibiki, 2010) was given as,

−
(
−p(G)δij + τ

(G)
ij

)
nGj −

(
−p(L)δij + τ

(L)
ij

)
nLj +

2σ

R
nLi +

4µL

R

∂R

∂t
nLi = 0.

(25)

Combining Eq. (25) with SI , dividing by V , and using Eqs. (17), (18), and
(23), we obtained the following interfacial terms for the gas phase:

− 1

V

∫

SI

p(G)nI
idS +

1

V

∫

SI

τ
(G)
ij nI

jdS = pG
∂αG

∂xi

− τLij
∂αG

∂xj

+ FVM
i + FDR

i .

(26)

We regarded the interfacial shear force as the volume-averaged liquid shear
stress in both phases, and this approximation is consistent with that given in
Ishii and Hibiki (2010). By contrast, Antal et al. (1991) neglected interfacial
shear stress in the gas phase (Chuang and Hibiki, 2017).

Finally, the momentum conservations in the gas and liquid can be defined
as,

∂

∂t
(αGρGûGi) +

∂

∂xj

(αGρGûGiûGj)

=− αG
∂pG
∂xi

+
∂

∂xj

[
αGµG

(
∂ûGi

∂xj

+
∂ûGj

∂xi

)]
+

∂

∂xj

(αGCG)− τLij
∂αG

∂xj

+ FVM
i + FDR

i , (27)

and
∂

∂t
(αLρLûLi) +

∂

∂xj

(αLρLûLiûLj)

=− αL
∂pL
∂xi

+ αLµL
∂

∂xj

(
∂ûLi

∂xj

+
∂ûLj

∂xi

)
+ αL

∂CL

∂xj

− P̃
∂αG

∂xi

− FVM
i − FDR

i ,

(28)

where Ck (k = G,L), τLij, F
VM, and FDR are defined as Eqs. (11), (22), (19),

and (24), respectively.
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The single-phase energy conservation for a Newtonian fluid is given as,

∂

∂t

[
ρ

(
u2
i

2
+ e

)]
+

∂

∂yj

[
ρ

(
u2
i

2
+ e

)
uj

]

=
∂

∂yj

[
−pδijui + µ

(
∂ui

∂yj
+

∂uj

∂yi

)
ui

]
− ∂Qj

∂yj
, (29)

where e and Qj denote the internal energy and heat flux per unit mass,
respectively. The external forces were ignored. According to Fourier’s law,
the heat flux Qj can be expressed as −λ ∂T/∂yj , where λ and T are the
thermal conductivity and temperature, respectively. In this study, λ was
assumed to be constant. Based on Eqs. (1)–(4) and Eq. (9), the energy
conservation in the k-th phase becomes

∂

∂t

[
αkρk

(
û2
ki

2
+ êk

)]
+

∂

∂xj

[
αkρk

(
û2
kiukj

2
+ êkukj

)]

=− ∂

∂xi

(αkpkukj) +
∂

∂xj

[
αkµk

(
∂uki

∂xj

+
∂ukj

∂xi

)
uki

]
+

∂2

∂x2
j

(
αkλkTk

)

− 1

V

∫

SI

[pui]
(k)nkidS +

1

V

∫

SI

[
µ

(
∂ui

∂yj
+

∂uj

∂yi

)
ui

](k)
nkjdS

+ 2λk
1

V

∫

SI

[
∂T

∂yj

](k)
nkjdS −

〈
λT

∂2Xk

∂y2j

〉
. (30)

2.4.1. Transformation of interfacial terms

We assumed that the average quantities of the product of the physical
quantities in Eq. (30) can be decomposed as follows:

û2
ki ≈ ûki

2, û2
kiukj ≈ ûki

2ûkj, êkukj ≈ êkûkj, pkukj ≈ pkûkj,

µk

(
∂uki

∂yj
+

∂ukj

∂yi

)
ukj ≈ µk

(
∂ûki

∂xj

+
∂ûkj

∂xi

)
ûkj + Ckûkj. (31)
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imated as follows:

− 1

V

∫

SI

[pui]
(k)nkidS ≈− ûki

1

V

∫

SI

p(k)nkidS, (32)

1

V

∫

SI

[
µ

(
∂ui

∂yj
+

∂uj

∂yi

)
ui

](k)
nkjdS ≈ûki

1

V

∫

SI

[
µ

(
∂ui

∂yj
+

∂uj

∂yi

)](k)
nkjdS,

(33)

based on the assumption u
(k)
i (y, t) ≈ ûki(x, t).

The seventh term on the right-hand side of Eq. (30) involves the second-
order derivatives of the phase indicator function Xk. Herein, we discuss the
transformation of this term. Using Eqs. (1), (2), and Gauss’s theorem, we
obtained the generalised form of the term as follows:

〈
ϕj(y, t)

∂

∂yi

∂Xk(y, t)

∂yj

〉
=

1

V

∮

S

ϕj
∂Xk

∂yj
nidS +

1

V

∫

SI

[
∂ϕj

∂yi

](k)
nkjdS. (34)

Because the derivative of the phase indicator function ∂Xk/∂yj is equal to
the delta function δ(y − yI)nkj (yI is the position of the gas–liquid inter-
face) (Drew, 1983), the first term on the right-hand side of Eq. (34) can be
rewritten as,

1

V

∮

S

ϕj
∂Xk

∂yj
nidS =

1

V

∮

∂SG

ϕjnkjrids(y), (35)

where ∂SG is the boundary of SG and ri is the differential arc length on ∂SG

(Fig. 1 (c)). The contribution of Eq. (35) is exceedingly small compared with
the second term on the right-hand side of Eq. (34) because the bubbles are
sufficiently far apart that their interaction can be considered to be negligible.
Therefore, we approximated Eq. (34) as follows:

〈
ϕj(y, t)

∂

∂yi

∂Xk(y, t)

∂yj

〉
≈ 1

V

∫

SI

[
∂ϕj

∂yi

](k)
nkjdS. (36)

Based on the conservation equations of mass and momentum in the k-th
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αkρk
∂êk
∂t

+ αkρkûkj
∂êk
∂xj

=− αkpk
∂ûki

∂xi

+ αkµk

(
∂ûki

∂xj

+
∂ûkj

∂xi

)
∂ûki

∂xj

+ αkCk
∂ûki

∂xj

+
∂2

∂x2
j

(
αkλkTk

)

+ λk
1

V

∫

SI

[
∂T

∂yj

](k)
nkjdS. (37)

2.4.2. Temperature gradient at gas-liquid interface

Equation (37) can describe not only the bubbly flows but also the general
two-phase flows such as mist and particle flows. Closing the last term of
the right-hand side via constitutive equations for a single bubble can limit
Eq. (37) to that for bubbly flow.

First, we focus on the thermal energy equation in the gas. The mass-
weighted phase-averaged internal energy becomes êG = cV TG based on the
assumption of an ideal gas, where cV is the specific heat at a constant volume
(Ishii and Hibiki, 2010). Because the bubbles are spherical and nGj is the
normal vector in the outward direction from the bubble at the interface, we
rewrote the integrand of the last term in Eq. (37) as,

[
∂T

∂yj

](G)

nGj =
∂T

∂r

∣∣∣∣
r=R(x,t)

, (38)

where r is the polar coordinate, with the bubble center as the origin, and
R(x, t) is the uniform bubble radius within V . Therefore, the right-hand side
of Eq. (38) depends only on global spatial coordinate x. Using Eq. (38) and
the relation SI/V = 3αG/R, we obtained

λG
1

V

∫

SI

[
∂T

∂yj

](G)

nGjdS = λG
∂T

∂r

∣∣∣∣
r=R(x,t)

3αG

R
. (39)

We assume that the interfacial thermal energy (39) is split into the two parts
as

∂T

∂r

∣∣∣∣
r=R(x,t)

=
∂T

∂r

∣∣∣∣
TC

r=R(x,t)

+
∂T

∂r

∣∣∣∣
HT

r=R(x,t)

, (40)
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tion and the heat transfer, respectively.
The first term of Eq. (40) can be closed by the two alternatives. First,

the relation between the differential equation for the gas pressure as

DGpG
Dt

=
3

R

[
(κ− 1)λG

∂T

∂r

∣∣∣∣
TC

r=R

− κpG
DGR

Dt

]
, (41)

where κ is the heat capacity ratio. This relation is derived from the energy
equation for a single bubble near the interface using the assumption of uni-
form temperature distributions (Nigmatulin et al., 1981; Prosperetti et al.,
1988; Prosperetti, 1991). Second, the models of temperature gradient at the
interface, which were introduced to evaluate the temperature gradient term
of Eq. (41) using the average temperature value inside the bubbles instead of
solving the energy equation that describes temperature distributions inside
the bubbles, as

∂T

∂r

∣∣∣∣
TC

r=R

=





TI − TG√
2πD/ωB

: LSM model

TI − TG

|L̃p|
: PCB model

Re(L̃p)(TI − TG)

|L̃p|2
+

Im(L̃p)

ωB|L̃p|2
∂TG

∂t
: STM model

(42)

The LSM model (Lertnuwat et al., 2001) was derived by estimating the ther-
mal penetration length inside a bubble, the PCB model (Preston et al., 2002)
was strictly derived using the linear theory, and the STM model (Sugiyama
et al., 2005a,b) was derived by incorporating a phase difference between the
temperature gradient and the temperature inside a bubble based on the PCB
model. In Eq. (42), D is the thermal diffusivity and TI is the temperature
of the gas–liquid interface. This study regarded TI as the constant liquid
temperature TL. The angular frequency of bubble oscillations ωB and L̃p

were defined as follows (Preston et al., 2002; Sugiyama et al., 2005a):

ωB =

[
3γepG0 − 2σ/R0

ρL0R0

−
(

2µe0

ρL0R0
2

)2
]1/2

, (43)

L̃p =
R0(α

2
N − 3αN cothαN + 3)

α2
N(αN cothαN − 1)

, (44)
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γe = Re

(
ΓN

3

)
, µe0 = µL + Im

(
pG0ΓN

4ωB

)

ΓN =
3α2

Nγ

α2
N + 3(γ − 1)(αN cothαN − 1)

, αN = (1 + i)

(
γωBpG0R0

2

2(γ − 1)TG0κG

)1/2

.

(45)

The second term of Eq. (40) can be closed by the thermal energy equation
in the liquid. The averaged internal energy became (Ishii and Hibiki, 2010)

dêL =cpLdT L +
1

ρL

(
1 + βLT L

)
dpL +

pL
ρ2L

dρL −
1

ρL
dpL, (46)

where βL is the coefficient of thermal expansion. As well as Eq. (39), we
rewrote the last term in Eq. (37) for the liquid as

λL
1

V

∫

SI

[
∂T

∂yj

](L)
nLjds = −λL

∂TL

∂r

∣∣∣∣
r=R

3αG

R
. (47)

The right-hand side in Eq. (47) is equal to the temperature gradient term
in the gas (39) by using the energy balance between the two phases (Fuster
and Montel, 2015; Warnez and Johnsen, 2015)

λG
∂TG

∂r

∣∣∣∣
HT

r=R

= λL
∂TL

∂r

∣∣∣∣
r=R

. (48)

Substituting Eqs. (46),(47),(48) into Eq. (37), we obtained the thermal en-
ergy equation in the liquid as

αL(1 + βLTL)
∂pL
∂t

+ αL
pL
ρL

∂ρL
∂t

− αL
∂pL
∂t

+ αL(1 + βLTL)uLj
∂pL
∂xj

+ αL
pL
ρL

uLj
∂ρL
∂xj

− αLuLj
∂pL
∂xj

=− αLpL
∂ûLj

∂xj

+ αLµL

(
∂ûLi

∂xj

+
∂ûLj

∂xi

)
∂ûLi

∂xj

+ αLCL
∂ûLi

∂xj

+ λLTL
∂ûLi

∂xj

+ λLTL
∂2αL

∂x2
j

− λG
∂TG

∂r

∣∣∣∣
HT

r=R

3αG

R
. (49)
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tical importance if the Eckert numbers are very small, or the heat transfer
dominants the energy exchanges (Ishii and Hibiki, 2010). From this assump-
tion, Eq. (49) can be simplified as

0 = λLTL
∂2αL

∂x2
j

− λG
∂TG

∂r

∣∣∣∣
HT

r=R

3αG

R
. (50)

Finally, the energy conservation in the gas becomes

cVαGρG
∂TG

∂t
+ cVαGρGûGj

∂TG

∂xj

=− αGpG
∂ûGi

∂xi

+ αGµG

(
∂ûGi

∂xj

+
∂ûGj

∂xi

)
∂ûGi

∂xj

+ αGCG
∂ûGi

∂xj

+ λG
∂2

∂x2
j

(
αGTG

)
+ λG

(
∂T

∂r

∣∣∣∣
TC

r=R

+
∂T

∂r

∣∣∣∣
HT

r=R

)
3αG

R
, (51)

and the last term is closed by Eqs. (41) or (42), and Eq. (50).

2.5. Closure of two-fluid model equations with bubble oscillations

The conservations of the two-fluid model equations with bubble oscilla-
tions include the mass conservations in both phases (6)(7), momentum con-
servations in both phases (27)(28), and the energy conservation in the gas
(51). To close these conservations, we integrated the following constitutive
equations into the two-fluid model equations:
the void fraction constraint condition

αG + αL = 1, (52)

the mass conservation equation in a single bubble

ρG
ρG0

=

(
R0

R

)3

, (53)

the state equation in the gas phase

pG
pG0

=
ρG
ρG0

TG

TG0

, (54)
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pL +B

pL0 +B
=

(
ρL
ρL0

)n

(55)

the viscosity in the gas phase (Sutherland’s law)

µG = µG0

(
TG

TG0

) 3
2 TG0 + C

TG + C
, (56)

the radial equation of motion for an isolated bubble (Keller and Kolodner,
1956)

(
1− 1

cL0

∂R

∂t

)
R
∂2R

∂t2
+

3

2

(
1− 1

3cL0

∂R

∂t

)(
∂R

∂t

)2

=

(
1 +

1

cL0

∂R

∂t

)
P̃

ρL0
+

R

ρL0cL0

∂

∂t

(
pL + P̃

)
, (57)

and the balance of normal stresses across the gas–liquid interface

pG = pL + P̃ +
2σ

R
+

4µL

R

∂R

∂t
, (58)

where cL0 is the speed of sound in the initial unperturbed pure water, n and
B are the constants equal to 7.15 and 304.9 for water, respectively, and C
is the Sutherland coefficient, which is equal to 117K for air at 293.15K. A
subscript of 0 represents the initial value.

A feature of our two-fluid model equations is that incorporating the vis-
cosity and the energy conservation allows us to account for the damping of
bubble oscillations. Since the earlier model (Egashira et al., 2004) had not
considered both the viscosity and thermal effects, the earlier model led to an
unphysical result of permanent oscillations of bubbles. Our proposed two-
fluid model equations lead to more stable and physically valid solutions, and
this is illustrated in Fig. 5 of section 3.

3. Linear dispersion analysis

In this section, we discuss the dynamic behavior of the proposed two-fluid
model equations, which comprise Eqs. (6)(7)(27)(28)(51), and (52)–(58), us-
ing the linear dispersion analysis. The linear dispersion analysis mathemati-
cally evaluate the behavior of small perturbations from a steady state and is
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amplification rate of the practical wavenumber. Ramshaw and Trapp (1978),
Pokharna et al. (1997), de Bertodano et al. (2016), Vaidheeswaran et al.
(2016), Vaidheeswaran and Lopez de Bertodano (2016, 2017), and Clausse
et al. (2022) applied the linear dispersion analysis to the gas–liquid two-fluid
model.Another method to evaluate the mathematical property of the two-
fluid model is the well-posed analysis (e.g. Lyczkowski et al., 1978; Drew
and Passman, 1998; Panicker et al., 2018; Tukhvatullina and Frolov, 2018).
This method only focuses on the behavior of the solution with an infinitesi-
mal wavelength, as opposed to the linear dispersion analysis. The two-fluid
model for bubbly flows with bubble oscillations cannot analyze solutions with
a considerably smaller wavelength because the scale of the control volume is
much larger than the bubble radius. Therefore, we investigated the dynamic
behavior of our proposed model equations using the linear dispersion analysis
but not the well-posed analysis.

We first introduced non-dimensional small perturbations of order ϵ ≪ 1
as,

α∗
G = α∗

0(1 + ϵα∗
1),

ûG

U
= u∗

G0 + ϵu∗
G1,

ûL

U
= u∗

L0 + ϵu∗
L1,

ρG
ρL0

= ρ∗G0(1 + ϵρ∗G1),
ρL
ρL0

= 1 + ϵρ∗L1,
TG

TG0

= 1 + ϵT ∗
G1,

pG
ρL0U2

= p∗G0(1 + ϵp∗G1),
pL

ρL0U2
= p∗L0(1 + ϵp∗L1),

P̃

ρL0U2
= ϵP ∗

1 ,

R

R0

= 1 + ϵR∗
1,

µG

ρL0UL
= µ∗

G0(1 + ϵµ∗
G1), (59)

where the superscript ∗ and subscript 0 denote the non-dimensional and
initial state values, respectively, the subscript 1 denotes the perturbations
from a steady state, U is the representative speed, and L is the representa-
tive length. By using Eq. (59), the linearised present model equations are
obtained.

A∗∂v
∗

∂t∗
+B∗∂v

∗

∂x∗ +C∗∂
2v∗

∂x∗2 +D∗v∗ = 0, (60)

where t∗ = t/(L/U), x∗ = x/L, v∗ = [α∗
1, u

∗
G1, u

∗
L1, p

∗
L1, T

∗
G1, R

∗
1, S

∗
1 ]

T and
A∗,B∗,C∗,D∗ are the constant matrixes composed of initial and physical
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Figure 2: Amplification factor of our proposed model versus the dimensional wavenumber
k [1/m] for two cases: the temperature gradient term ∂T/∂r |TC

r=R in Eq. (51) was closed
by Eq. (41) or Eq. (42). The STM model (Sugiyama et al., 2005a,b) was used in this
figure. The blue and orange curves represent the cases using Eq. (41) and Eq. (42),
respectively. The initial and physical parameters are as follows: the initial void fraction
α∗
0 = 0.001; initial bubble radius R0 = 0.1 [mm]; initial gas velocity ûG0 = 2.5 [m/s];

initial liquid velocity ûL0 = 2.0 [m/s]; ρG0 = 1.206 [kg/m3]; ρL0 = 998.2 [kg/m3]; pG0 =
1.013 × 105 [Pa]; pL0 = 1.013 × 105 [Pa]; TG0 = 293.15 [K]; µG0 = 1.822 × 10−5 [Pa·s];
µL = 1.002 × 10−3 [Pa·s]; cV = 1006 [J/g·K]; λG = 0.0257 [W/m·K]; σ = 0.07275 [N/m];
and κ∗ = 1.4.

values, which are defined in Appendix A. Substituting the Fourier series ex-
pansion of the dependent variable vector v∗(x∗, t∗) =

∑
k∗ v̂

∗(k∗, t∗)eθ
∗t∗eik

∗x∗

into Eq. (60), the following generalised eigenvalue problem was obtained:

θ∗(k∗)A∗ = −ik∗B∗ + k∗2C∗ −D∗, (61)

where k∗ is a non-dimensional wavenumber, i is an imaginary unit, and θ∗ is
an eigenvalue. Re [θ∗(k∗)] signifies the growth rate of the amplitude of the k∗-
th component in v∗. Amplitudes grow for positive Re [θ∗(k∗)], attenuate for
negative Re [θ∗(k∗)], and oscillate within a certain range for a pure imaginary

eigenvalue. Amplitude increased by
[
eθ

∗(k∗)
]t∗

times, which was defined as
an amplification factor.
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Figure 3: Amplification factors of our proposed model in the case that the temperature
gradient term ∂T/∂r |TC

r=R in Eq. (51) was closed by Eq. (42). Blue, orange, and green
curves represent the LSM (Lertnuwat et al., 2001), PCB (Preston et al., 2002), and STM
models (Sugiyama et al., 2005a), respectively. The initial and physical parameters are
the same as those in Fig. 2.

3.1. Temperature gradient at the gas–liquid interface

To reveal the closure of the temperature gradient term ∂T/∂r |TC
r=R in

Eq. (51) , Fig. 2 shows the amplification factor of our proposed model equa-
tions for using Eq. (41) or Eq. (42) versus the dimensional wavenumber. The
initial and physical parameters are shown in the caption of Fig. 2. The dimen-
sional wavenumber k can be obtained from the non-dimensional wavenumber
k∗ by the relation k = k∗/(2πL). The dimensional wavenumber from 0 to
1000 (wavelength from 0.006m to ∞) was used to cover a range well beyond
that of practical numerical interest.

Figure 2 shows that the amplification factor for using Eq. (41) exceed the
unity and increased exponentially depending on the wavenumber. This result
indicates that initial small perturbations grow instantaneously and that the
solutions diverge based on the differential equation for the gas pressure (41) to
close the temperature gradient term in the energy conservation. The reason
for this instability may be because the spatiotemporal change in the pressure
inside the bubbles was evaluated by Eq. (41) and the energy conservation
(51). However, the amplification factor for using Eq. (42) represents unity or
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Figure 4: Amplification factors of our proposed model. Blue, orange, and green curves
represent the cases considering both the thermal conduction and heat transfer, only the
thermal conduction and the heat transfer, respectively. The initial and physical parame-
ters are the same as those in Fig. 2.

less and does not lead to instability because the temperature gradient term
was evaluated using only the temperature.

Figure 3 shows the amplification factor depending on the temperature
gradient models (42) versus the wavenumber. The initial and physical con-
ditions are the same as those in Fig. 2. As it is obvious from this figure,
the effects of the difference in the temperature gradient models on the model
stability are small. One of the reasons for this result may be that the linear
dispersion analysis does not include non-linear behavior. The STM model
is the most accurate model for describing non-linear oscillations of a single
bubble (Sugiyama et al., 2005b). The effect of the temperature gradient
models may be elucidated by calculating the proposed non-linear two-fluid
model equations.

The information in Figs. 2 and 3 reveals that the temperature gradient
models at the interface (42) but not the differential equation for the gas pres-
sure (41) should be used to close the temperature gradient term ∂T/∂r |TC

r=R

in the energy conservation (51).
To evaluate contributions of the thermal conduction and heat transfer,

Fig. 4 shows that the amplification factor of our proposed model equations
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r=R ̸= 0 and ∂T/∂r |HT
r=R ̸= 0 in

Eq. (51)), only the thermal conduction(i.e., ∂T/∂r |TC
r=R ̸= 0 and ∂T/∂r |HT

r=R =
0), and only the heat transfer (i.e., ∂T/∂r |TC

r=R = 0 and ∂T/∂r |HT
r=R ̸= 0)

versus the dimensional wavenumber. The blue curve is identical to the green
dashed curve in Fig. 3. This figure shows that the green curve is larger
than the others at all wavenumbers, and the difference between the blue and
orange curves is small. These results indicate that the thermal conduction
was dominant in the thermal damping of bubble oscillations in bubbly flows
rather than the heat transfer. Damping effects by the thermal conduction,
which is proportional to a difference of temperatures between the two phases,
is considered to increase in calculating our proposed nonlinear model equa-
tions with strong bubble oscillations, because the temperature in gas bubbles
becomes high.

3.2. Thermal, bulk viscous, and drag effects

We evaluated the thermal, bulk viscous, and drag effects that are newly
incorporated into the proposed model. Figure 5 shows the amplification fac-
tor of the proposed model and that of the original two-fluid model (Egashira
et al., 2004) versus the dimensional wavenumber. The initial and physical
conditions are the same as those in Fig. 2. The purple curve in Fig. 5 is
equal to the orange curve in Fig. 2 and the green dashed curve in Fig. 3. The
original two-fluid model (the black dashed curve in Fig. 5) corresponds to
the proposed model without considering the thermal, bulk viscous, and drag
effects. The blue, orange, and green curves represent the proposed model
with only the thermal effect (i.e., µG

∗ = 0, µ∗
L = 0, and CD = 0), thermal

and drag effects (i.e., µG
∗ = 0, µ∗

L = 0, and CD ̸= 0), and thermal and
viscous effects (i.e., µG

∗ ̸= 0, µ∗
L ̸= 0, and CD = 0), respectively.

The black dashed curve is almost uniform in the range of the practical
wavenumber, indicating that small perturbations in the initial state are main-
tained in the time lapse. However, the blue and orange curves slightly and
remarkably exceeded the unity, suggesting that small perturbations of high
wavenumbers grow in the time lapse. On the other hand, the green curve
became under the unity. This figure indicates that the energy conservation
and the drag force lead to the instability of the two-fluid model equations,
and the bulk viscosity make the model stable. Regarding the former, this re-
sult was opposite from that reported in Pokharna et al. (1997), which showed
that the strong instability of the two-fluid model equations without bubble
oscillations could be improved by considering the drag. Regarding the latter,
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showed that the bulk viscosity improved the ill-posed two-fluid model equa-
tions without bubble oscillations. The purple curve in Fig. 5 (a), which is
proposed model, showed that considering both the bulk viscosity and drag
caused strong dissipations. Our results suggested that the two-fluid model
equations with bubble oscillations can be strongly stabilized by incorporating
both the bulk viscosity and drag force.

4. Conclusions

We derived the averaged two-fluid model equations with bubble oscil-
lations by incorporating the viscous and thermal effects into the original
two-fluid model proposed by Egashira et al. (2004), which can describe the
cavitating bubbly flow and pressure wave propagation in the bubbly flow.
The highlights of the derivation can be summarised as follows:
(i) The volume-averaging process was used to evaluate the bubble oscillation
behavior.
(ii) The viscous effect, which contains the bulk viscosity and drag, was in-
corporated into momentum conservations in the gas and liquid. The bulk
viscosity led to the incorporation of additional terms (11) into the volume-
averaged conservations. The drag was introduced by transforming the inter-
facial shear stress term (23).
(iii) The energy conservation for two-phase flows was derived with the ther-
mal conduction in gas bubbles and the heat transfer between the two phases
(37). The interfacial temperature gradient term for the thermal conduction
was closed using the constitutive equations for a single bubble to limit the
energy conservation to that for the bubbly flow. The alternative methods
proposed to close the temperature gradient term for the thermal conduction
were the differential equation for the gas pressure (41) and the temperature
gradient models (42).

The stability analysis was conducted to investigate the dynamic character
of our proposed two-fluid model equations with bubble oscillations, and the
linear dispersion analysis was used to evaluate the behavior of small pertur-
bations from a steady state of the model equations. The main results are
summarized as follows:
(iv) Closing the temperature gradient term for the thermal conduction using
the differential equation for the gas pressure resulted in an extremely large
amplification factor, which then could cause a divergence of the solutions.
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gradient models stabilized our proposed model. Therefore, we conclude that
the temperature gradient models should be used to close the energy conser-
vation (51).
(v) The linear dispersion analysis revealed that the thermal conduction in-
side bubbles was dominant in the thermal damping of bubble oscillations in
bubbly flows rather than the heat transfer between the two phases.
(vi) The two-fluid model equations with bubble oscillations were unstable for
considering the thermal effect and the drag; however were strongly stabilized,
which considered both the bulk viscosity and the drag. This result indicates
that the incorporation of the bulk viscosity and the drag plays an important
role in stabilizing our proposed model.

Our results was important for developing mathematical models to investi-
gate thermal effects in bubbly flow with bubble oscillations, such as cavitating
bubbly flow and wave propagation in bubbly liquids. Verifying the numerical
stability of our proposed model equations in the 2D or 3D is very important
(Vaidheeswaran and Lopez de Bertodano, 2017; Panicker et al., 2018) and
will be conducted in a forthcoming paper.

Acknowledgement

This work was partially funded by the JSPS KAKENHI (T.A., Grant
number 21J20389), (T.K., Grant numbers 18K03942, 22K03898); the New
Energy and Industrial Technology Development Organisation (Grant number
JPNP20004); the Komiya Research Grant from the Turbomachinery Society
of Japan; and the JKA promotion funds from KEIRIN RACE.

Appendix A. Coefficients of linearised presented two-fluid model
equations

The matrixes A∗,B∗,C∗,D∗ in Eq. (60) are defined as,
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A∗ =




A11 0 0 0 0 A16 0
A21 0 0 A24 0 0 0
A31 A32 A33 A34 0 A36 0
A41 A42 A43 A44 0 0 0
0 0 0 0 A55 0 0
0 0 0 0 A65 0 A67

0 0 0 0 0 A76 0




, (A.1)

B∗ =




B11 B12 0 0 0 B16 0
B21 0 B23 B24 0 0
B31 B32 B33 B34 B35 B36 0
B41 B42 B43 B44 0 0 0
0 B52 0 0 B55 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




, (A.2)

C∗ =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
C31 C32 0 0 0 C36 0
C41 0 C43 0 0 C46 0
C51 0 0 0 C55 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




, (A.3)

and

D∗ =




0 0 0 0 0 0 0
0 0 0 0 0 0 0

D31 D32 D33 D34 0 D36 0
D41 D42 D43 D44 0 D46 0
D51 0 0 0 D55 D56 0
0 0 0 D64 D65 D66 D67

0 0 0 0 0 0 D77




, (A.4)

26



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofThe elements of the above coefficient matrixes are given as,

A11 = 1, A16 = −3, A21 = −α∗
0, A24 = (1− α∗

0)
p∗L0
c∗L0

2 ,

A31 = ρ∗G0u
∗
G0 + β∗

2(u
∗
G0 − u∗

L0), A32 = ρ∗G0 + β∗
1 , A33 = −β∗

1 ,

A34 = β∗
3(u

∗
G0 − u∗

L0)
p∗L0
c∗L0

2 , A36 = −3ρ∗G0u
∗
G0,

A41 = −α∗
0[u

∗
L0 + β∗

2u
∗
G0(u

∗
G0 − u∗

L0)], A42 = −β∗
1α

∗
0,

A43 = 1− α∗
0 + β∗

1α
∗
0, A44 = [(1− α∗

0)u
∗
L0 − β∗

3α
∗
0(u

∗
G0 − u∗

L0)]
p∗L0
c∗L0

2 ,

A65 = − p∗G0

∆∗c∗L0
, A67 = 1 +

4µ∗
L

∆∗c∗L0
, A76 = 1, (A.5)

B11 = u∗
G0, B12 = 1, B16 = −3u∗

G0, B21 = −α∗
0u

∗
L0, B23 = 1− α∗

0,

B24 = (1− α∗
0)
u∗
L0p

∗
L0

c2L0
, B31 = [ρ∗G0u

∗
G0 + β∗

2(u
∗
G0 − u∗

L0)]uG0,

B32 = (2ρ∗G0 + β∗
1)u

∗
G0, B33 = −β∗

1u
∗
L0, B34 = β∗

3u
∗
G0(u

∗
G0 − u∗

L0)
p∗L0
c2L0

,

B35 = p∗G0, B36 = −3(p∗G0 + ρ∗G0u
2
G0),

B41 = −α∗
0

[
u2
L0 + β∗

2u
∗
G0(u

∗
G0 − u∗

L0)
]
, B42 = −β∗

1α
∗
0u

∗
G0,

B43 = [2(1− α∗
0) + β∗

1α
∗
0]uL0,

B44 = 1− α∗
0 +

[
(1− α∗

0)u
2
L0 − β∗

3α
∗
0(u

∗
G0 − u∗

L0)
]p∗L0
c2L0

, B52 = α∗
0p

∗
G0,

B56 = α∗
0c

∗
Vρ

∗
G0u

∗
G0, (A.6)

C32 = −µ∗
G0, C43 = −(1− α∗

0)µ
∗
L, C51 = −α∗

0∆
2(λ∗

G − λ∗
L), C55 = −α∗

0∆
2λ∗

G,
(A.7)
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D31 = ±3

8

C∗
D

∆∗ (u
∗
G0 − u∗

L0)
2, D32 = ±3

4

C∗
D

∆∗ (u
∗
G0 − u∗

L0),

D33 = ∓3

4

C∗
D

∆∗ (u
∗
G0 − u∗

L0), D34 = ±3

8

C∗
D

∆∗ (u
∗
G0 − u∗

L0)
2pL0
c2L0

,

D36 = ∓3

8

C∗
D

∆∗ (u
∗
G0 − u∗

L0)
2, D41 = ∓3α∗

0

8

C∗
D

∆∗ (u
∗
G0 − u∗

L0)
2,

D42 = ∓3α∗
0

4

C∗
D

∆∗ (u
∗
G0 − u∗

L0), D43 = ±3α∗
0

4

C∗
D

∆∗ (u
∗
G0 − u∗

L0),

D44 = ∓3α∗
0

8

C∗
D

∆∗ (u
∗
G0 − u∗

L0)
2p

∗
L0

c2L0
, D46 = ±3α∗

0

8

C∗
D

∆∗ (u
∗
G0 − u∗

L0)
2,

D64 =
p∗L0
∆2

, D65 = −p∗G0

∆2
, D66 =

3p∗G0 − 2σ∗

∆2
,

D67 =
3p∗G0 − 2σ∗

∆∗c∗L0
+

4µ∗
L

∆2
, D77 = −1, (A.8)

where the operators ± and ∓ become + and − for uG0 ≥ uL0 and uG0 < uL0,
respectively.

Especially, the elements for case 1 are given as,

C31 = 0, C36 = 0, C41 = 0, C46 = 0, (A.9)

these for case 2 are given as,

C31 = −α∗
0µ

∗
G0u

∗
G0, C36 = 0, C41 = α∗

0(1− α∗
0)µ

∗
Lu

∗
L0, C46 = 0, (A.10)

these for case 1 are given as,

C31 = 0, C36 = 3α∗
0µ

∗
G0u

∗
G0, C41 = 0, C46 = −(1− α∗

0)µ
∗
Lu

∗
L0

p∗L0
c2L0

,

(A.11)

these for case A are given as,

A55 = α∗
0c

∗
Vρ

∗
G0 −

α∗
0p

∗
G0

κ∗ − 1
, A56 = −3α∗

0p
∗
G0, D51 = 0, D55 = 0, D56 = 0,

(A.12)

and these for case B are given as,

A55 = α∗
0c

∗
Vρ

∗
G0 − 3α∗

0λ
∗
G

R0 Im(L̃p)

TωB|L̃p|2
, A56 = 0, D51 = −3α∗

0λ
∗
GΛ

∗
1(T

∗
L − 1),

D55 = 3α∗
0λ

∗
GΛ

∗
1, D56 = 3α∗

0λ
∗
GΛ

∗
1(T

∗
L − 1)∗, (A.13)
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Λ1 =





R0√
2πD/ωB

: LSM model

R0

|L̃p|2
: PCB model

R0 Re(L̃p)

|L̃p|2
: STM model

(A.14)
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Figure 5: (a) Amplification factors versus the dimensional wavenumber. Purple, blue, or-
ange, and green curves represent our proposed model, without the bulk viscosity and drag,
without the bulk viscosity, and without the drag, respectively. The dashed black curve
represents the two-fluid model proposed by Egashira et al. (2004), which corresponds to
our proposed model without considering the bulk viscosity, drag, and energy conservation.
The initial and physical parameters are the same as those in Fig. 2. (b) Enlarged view of
(a) near unity of the amplification factor.
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Two-flui  moiel  wuth  blbble  oscullttuoss  wts  tstlyttuctllyt  ieruvei  byt  vollme

tvertge

Isterftcutl  term of  esergyt cosservttuos  wts  closei byt temperttlre  grtiuest

moiel

Sttbulutyt tstlytsus revetlei thtt thermtl cosilctuos ussuie blbble wts iomustst

Vuscosutyt tsi irtg pltyt ts umporttst role us sttbulutyt of olr ieruvei two-flui

moiel
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