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ABSTRACT

This study investigated the weakly nonlinear propagation of pressure waves in compressible, flowing water with spherical microbubbles,
considering various forces. Previous theoretical studies on nonlinear pressure waves in bubbly flows did not consider the forces acting on the
bubbles, although the validity of ignoring these forces has not been demonstrated. We focused on every possible force such as drag, gravity,
buoyancy, and Bjerknes (acoustic radiation) forces acting on bubbles and studied their effects on pressure waves in a one-dimensional setting.
Using a singular perturbation method, the Korteweg–de Vries–Burgers equation describing wave propagation was derived. The following results
were obtained: (i) Bjerknes force on the bubbles enhanced the nonlinearity, dissipation, and dispersion of the waves; (ii) Drag, gravity, and
buoyancy forces acting on the bubbles increased wave dissipation; (iii) Thermal conduction had the most substantial dissipation effect, followed
by acoustic radiation, drag, buoyancy, and gravity. We confirmed that the dissipation due to forces on gas bubbles was quantitatively minor.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0187533

I. INTRODUCTION

A pressure wave in a bubbly flow evolves into a shock wave1–3 or
stable wave [sometimes referred to as (acoustic) soliton]; these waves
exhibit extremely different properties. A shock wave and an acoustic
soliton evolve based on the competition between nonlinearity and dissi-
pation and that between nonlinearity and dispersion, respectively. To
predict the evolution waveform, the relative strengths of three proper-
ties, i.e., nonlinearity, dissipation, and dispersion, must be clarified.
Many studies have been conducted on pressure waves in bubbly flows
by experiments4–11 or numerical simulations.12–26 However, three prop-
erties mentioned above are difficult to obtain quantitatively by experi-
ments or numerical analysis alone; nonlinear wave equations based on
theoretical analysis27,28 is an effective method for clarifying these prop-
erties. Moreover, the advantage of theoretical analysis is that the factors
of wave attenuation can be considered separately and evaluated quanti-
tatively. The weakly nonlinear (i.e., finite but small amplitude)29 propa-
gation of pressure waves in bubble flows is described by nonlinear wave
equations,30,31 among which the Korteweg–de Vries–Burgers (KdVB)
equation32–35 for low-frequency long waves is popular. In particular, it
is shown that the waveform obtained from the KdVB equation agrees
with the experimental outcome.36 As the KdVB equation is expressed

as a linear combination of nonlinear, dissipation, and dispersion terms,
estimating the functions and values of these three terms leads to the elu-
cidation of the evolution waveform.

Various forces act on the gas bubbles, such as drag,37–43 lift,44–46

gravity,47,48 buoyancy,48,49 virtual mass force,50 and Bjerknes (acoustic
radiation) force.51–58 However, the relationship between the forces act-
ing on bubbles and waves in bubbly flows has not been clarified.
Previous theoretical studies32–36 on nonlinear pressure waves in bubbly
flows did not incorporate forces acting on the bubble, although the
validity of ignoring these forces has not been demonstrated. This may
be because of the preconception that the forces (non-oscillations) do
not affect the waves (oscillations). Recently, our previous studies59–63

introduced the drag force into the KdVB equation and showed that
the drag force increased wave dissipation. However, the effects of grav-
ity, buoyancy, and Bjerknes forces on waves have not been discussed.
In particular, the primary Bjerknes force is the acoustic radiation pres-
sure that is always applied to oscillation bubbles in the propagation of
ultrasonic waves.64–69 Therefore, this cannot be ignored when dealing
with wave theory. Consequently, this study aimed to elucidate the
effects of various forces, such as gravity, buoyancy, and Bjerknes forces
on pressure waves in bubbly flows by deriving the KdVB equation.
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The remainder of this paper is configured as follows. In Sec. II, we
introduce the basic equations of the two-fluid model, including drag,
gravity, buoyancy, and Bjerknes forces. In Sec. III, we derive the KdVB
equation and show that the gravity and buoyancy forces, such as the drag
force, increase the dissipation of the waves, whereas the Bjerknes force
increases the nonlinearity, dissipation, and dispersion of the waves. We
clarified that the dissipation effect of thermal conduction is the largest, fol-
lowed by those of acoustic radiation. drag, buoyancy, and gravity, based on
numerical analysis. Finally, Sec. IV concludes the paper. Because this study
clarifies that the attenuation of waves owing to the forces acting on gas
bubbles is quantitatively small, this study is the first demonstration of the
validity of ignoring forces for pressure wave propagation in bubbly flows.

II. PROBLEM FORMULATION
A. Problem statement

We conduct a theoretical investigation of the weakly nonlinear
(i.e., finite but small amplitude) propagation of plane (one-dimensional)
progressive pressure waves in flowing compressible water uniformly
containing numerous small spherical gas bubbles under various forces,
as shown in Fig. 1; i.e., drag, gravity, buoyancy, and Bjerknes (acoustic
radiation) forces [see (7)–(10) below] are incorporated.

On the other hand, we shall simply the problem based on the fol-
lowing assumptions: (i) The primary Bjerknes force is accounted for,
while the secondary Bjerknes force70–74 is excluded from consider-
ation; (ii) To simplify the model, direct interactions between bubbles,
gas-phase viscosity, Reynolds stress, and phase change and mass trans-
port across the bubble–liquid interface are neglected; (iii) The motion
of bubbles is assumed to be spherically symmetric; (iv) Bubbles remain
stable, without coalescing, breaking, becoming extinct, or forming
anew; (v) The liquid temperature is constant; (vi) In the initial state,
both gas and liquid phases flow at constant velocities.

B. Basic equations

To introduce various forces into the interfacial momentum trans-
port, we apply the conservation equations of mass and momentum for
the gas and liquid phases based on a two-fluid model75,76 as follows:

@

@t�
ðaq�GÞ þ

@

@x�
ðaq�Gu�GÞ ¼ 0; (1)

@

@t�
ð1� aÞq�L
� �þ @

@x�
ð1� aÞq�Lu�L
� � ¼ 0; (2)

@

@t�
ðaq�Gu�GÞ þ

@

@x�
ðaq�Gu�G2Þ þ a

@p�G
@x�

þ 2l�L
@u�L
@x�

@a
@x�

¼ F�
vm þ F�

dr þ F�
bje þ F�

buo þ F�
gr;G; (3)

@

@t�
ð1� aÞq�Lu�L
� �þ @

@x�
ð1� aÞq�Lu�L2
� �þ ð1� aÞ @p

�
L

@x�
þ P� @a

@x�

� 2l�Lð1� aÞ @
2u�L

@x�2
¼ �F�

vm � F�
dr � F�

bje � F�
buo þ F�

gr;L; (4)

where t� is the time, x� is the space coordinate normal to the wavefront,
a is the void fraction (0 < a < 1), l� is the viscosity, q� is the density,
u� is the velocity, p� is the pressure, and P� is the liquid pressure aver-
aged over the bubble–liquid interface.76 The superscript � denotes a
dimensional quantity, and the subscripts G and L denote the volume-
averaged variables in the gas and liquid phases, respectively.

As interfacial momentum transport terms, the following model
of virtual mass force50 is introduced:

F�
vm ¼ �b1aq

�
L

DGu�G
Dt�

� DLu�L
Dt�

� �
� b2q

�
Lðu�G � u�LÞ

DGa
Dt�

� b3aðu�G � u�LÞ
DGq�L
Dt�

; (5)

where b1, b2, and b3 are constants that can be set as 1/2 for a spherical bub-
ble. The Lagrange derivatives DG=Dt� andDL=Dt� are defined as follows:

DG

Dt�
¼ @

@t�
þ u�G

@

@x�
;

DL

Dt�
¼ @

@t�
þ u�L

@

@x�
: (6)

Furthermore, we introduce a model for the drag force term F�
dr for

spherical bubbles,59

F�
dr ¼ � 3

8R� aCDq
�
Lðu�G � u�LÞju�G � u�Lj; (7)

where R� is a representative bubble radius and CD is the drag coeffi-
cient for a single spherical bubble. We also introduce the gravity, buoy-
ancy, and (primary) Bjerknes forces,48,49

F�
gr;G ¼ �aq�Gg

�; F�
gr;L ¼ �ð1� aÞq�Lg�; (8)

F�
buo ¼ aq�Lg

�; (9)

F�
bje ¼ �Ba

@p�L
@x�

; (10)

where g� is the acceleration of gravity and B is a constant. Note that
gravity acting on each phase is considered. We will focus on the presence
of B to verify the effect of the Bjerknes force, i.e., B¼ 0 and B¼ 1 corre-
spond to the cases of without and with the Bjerknes force, respectively.

We employ the equation of motion for the bubbles, formulated as
a linear combination of their volumetric oscillations77 and translation
movements.78–80 This approach integrates the dynamics of bubble
oscillation and translation to comprehensively describe their motion:

1� 1
c�L0

DGR�

Dt�

� �
R�D

2
GR

�

Dt�2
þ 3
2

1� 1
3c�L0

DGR�

Dt�

� �
DGR�

Dt�

� �2

¼ 1þ 1
c�L0

DGR�

Dt�

� �
P�

q�L0
þ R�

q�L0c
�
L0

DG

Dt�
ðp�LþP�Þþ ðu�G �u�LÞ2

4
; (11)

FIG. 1. Schematic illustration of one-dimensional propagation of pressure waves in
bubbly flows; drag, gravity, buoyancy, and acoustic radiation (primary Bjerknes)
forces acting on each bubble. The direction of these forces is an example.
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where c�L0 is the initial speed of sound in pure water.
In this study, the energy equation81 for thermal conduction at the

bubble–liquid interface is introduced to account for the thermal effects
within the bubble:

DGp�G
Dt�

¼ 3
R� ðj� 1Þk�G

@T�
G

@r�

���
r�¼R�

� jp�G
DGR�

Dt�

� �
; (12)

where T�
G is the gas temperature, j is the ratio of specific heats, r� is the

radial distance from the center of the bubble, and k�G is the thermal con-
ductivity of the gas inside the bubble. Prosperetti81 did not use a
temperature-gradient model. However, certain models for the
temperature-gradient as the first term on the right-hand side of (12) were
proposed. This study uses the model proposed by Sugiyama et al.,82

@T�
G

@r�

���
r�¼R�

¼ Reð eL�pÞðT�
G0 � T�

GÞ
j eL�p j2 þ Imð eL�pÞ

x�
Bj eL�p j2 DGT�

G

Dt�
; (13)

where Re and Im denote the real and imaginary parts, respectively.
The physical quantities in the initial state are denoted by the subscript
0 and are constants. Certain symbols are defined as follows:82

x�
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ceðp�L0 þ 2r�=R�

0Þ � 2r�=R�
0

q�L0R
�
0
2

� 2l�e0
q�L0R

�
0
2

� �2
s

; (14)

ce ¼ Re
CN

3

� �
; (15)

l�e0 ¼ l�L þ Im
p�G0CN

4x�
B

� �
; (16)

CN ¼ 3a2Nj
a2N þ 3ðj� 1ÞðaN coth aN � 1Þ ; (17)

aN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx�

Bp
�
G0R

�
0
2

2ðj� 1ÞT�
G0k

�
G

s
ð1þ iÞ; (18)

eL�p ¼ R�
0ða2N � 3aN coth aN þ 3Þ
a2NðaN coth aN � 1Þ ; (19)

where x�
B is the eigenfrequency of a single bubble, ce is the effective

polytropic exponent, l�e0 is the initial effective viscosity, r
� is the sur-

face tension, i denotes an imaginary unit, and CN, aN, and eL�p are com-
plex numbers.

To close the set of (1)–(4), (11), and (12), the equation of state for
an ideal gas, the Tait equation of state for liquid, the mass conservation
law of gas inside the bubbles, and the balance of normal stresses across
the bubble–liquid interface, are introduced as follows:

p�G
p�G0

¼ q�G
q�G0

T�
G

T�
G0

; (20)

p�L ¼ p�L0 þ
q�L0c

�
L0

2

n
q�L
q�L0

� �n

� 1

" #
; (21)

q�G
q�G0

¼ R�
0

R�

� �3

; (22)

p�G � ðp�L þ P�Þ ¼ 2r�

R� þ 4l�L
R�

DGR�

Dt�
; (23)

where n is a material constant (e.g., n¼ 7.15 for water).

C. Analysis on multiple scales

Using the method of multiple scales,31 we introduce four scales as
extended independent variables. This approach is based on the
assumption of a finite but small nondimensional wave amplitude,
denoted as � ð�1Þ:

t0 ¼ t; t1 ¼ �t; x0 ¼ x; x1 ¼ �x; (24)

where the nondimensional independent variables are defined by t ¼
t�=T� and x ¼ x�=L�; T� is a typical period and L� is a typical wave-
length. Here, the subscripts 0 and 1 correspond to the near and far
fields,31 e.g., t0 is the nondimensional time for the near field. Note that
the difference between the constant is denoted by subscript 0 and near
field by 0.

The dependent variables are then nondimensionalized and
expanded in the power series of �, as follows:

R�=R�
0 ¼ 1þ �R1 þ �2R2 þ Oð�3Þ; (25)

u�G=U
� ¼ uG0 þ �uG1 þ �2uG2 þ Oð�3Þ; (26)

u�L=U
� ¼ uL0 þ �uL1 þ �2uL2 þ Oð�3Þ; (27)

a=a0 ¼ 1þ �a1 þ �2a2 þ Oð�3Þ; (28)

q�L=q
�
L0 ¼ 1þ �2qL1 þ Oð�3Þ; (29)

p�L=ðq�L0U�2Þ ¼ pL0 þ �pL1 þ �2pL2 þ Oð�3Þ; (30)

T�
G=T

�
G0 ¼ 1þ �TG1 þ �2TG2 þ Oð�3Þ; (31)

where U�ð� L�=T�Þ is the typical propagation speed, and the initial
nondimensional pressures pG0 and pL0 are defined as pG0 � p�G0=
ðq�L0U�2Þ � Oð1Þ and pL0 � p�L0=ðq�L0U�2Þ � Oð1Þ. Further, the ratio
of the initial densities of the gas and the liquid phases is sufficiently
small.

By using nondimensional ratios based on �, the low-frequency long
wave is described by

U�

c�L0
� O

ffiffi
�

p
 �
� V

ffiffi
�

p
; (32)

R�
0

L�
� O

ffiffi
�

p
 �
� D

ffiffi
�

p
; (33)

x�

x�
B
� 1

T�x�
B
� O

ffiffi
�

p
 �
� X

ffiffi
�

p
; (34)

where V, D, and X are the constants of O(1). Equations (32)–(34) cor-
respond to the present acoustic properties of bubbly flows; i.e., the
speed of sound within these flows is significantly lower compared to
that in pure water, the initial bubble radius is markedly smaller than
the typical wavelength observed in such environments, and the inci-
dent frequency of waves within bubbly flows is substantially lower
than the eigenfrequency of individual bubbles.

We determine the sizes of the nondimensional numbers for the
thermal effect:61,63

3ðj� 1Þk�G
p�G0x�R�

0

Reð eL�pÞT�
G0

j eL�p j2 ¼ fSTM1�;

3ðj� 1Þk�G
p�G0x�R�

0

x�Imð eL�pÞT�
G0

x�
Bj eL�p j2 ¼ fSTM2�

2:

(35)

The nondimensionalization of the acceleration owing to gravity g� is
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T�g�

U� ¼ g�; (36)

where g is a constant of O(1). The nondimensionalization of the liquid
viscosity l�L is defined by

l�L
q�L0U�L�

� Oð�2Þ � lL�
2; (37)

where lL is a constant of O(1). The drag coefficient CD is defined by

CD � Al�L
ju�G � u�Ljq�L2R� ; (38)

where A is a constant (e.g., A¼ 16), and CD depends on the Reynolds
number Re (CD ¼ A=Re).83

III. RESULTS
A. Linear propagation at near field

By substituting (24)–(38) into (1)–(4), (11), and (12), we obtain a set
of linear equations using (20)–(23) from the leading-order approximation:

Da1
Dt0

� 3
DR1

Dt0
þ @uG1

@x0
¼ 0; (39)

a0
Da1
Dt0

� ð1� a0Þ @uL1
@x0

¼ 0; (40)

b1
DuG1
Dt0

� DuL1
Dt0

� �
� 3pG0

@R1

@x0
þ pG0

@TG1

@x0
þ B

@pL1
@x0

¼ 0; (41)

ð1� a0ÞDuL1Dt0
� a0b1

DuG1
Dt0

� DuL1
Dt0

� �
� a0u0

Da1
Dt0

þ u0ð1� a0Þ @uL1
@x0

þ ð1� a0Þ @pL1
@x0

� a0B
@pL1
@x0

¼ 0; (42)

3ðce � 1ÞpG0 � D2

X2

� �
R1 þ pG0TG1 � pL1 ¼ 0; (43)

DTG1

Dt0
þ 3ðj� 1ÞDR1

Dt0
¼ 0: (44)

Although gravitational and buoyancy forces do not appear here, the
effect of the Bjerknes force (F�

bje ¼ �Ba@p�L=@x
�) is described by the

last term on the left side of (41) and (42).
Combining (39)–(44) results in a linear wave equation for the

first-order variation in the bubble radius R1,

D2R1

Dt20
� v2p

@2R1

@x20
¼ 0; (45)

where vp is the phase velocity expressed as

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0jð1� a0 þ b1Þ � ðb1 þ a0BÞð1� a0Þðce � jÞ

a0b1ð1� a0Þ pG0 þ b1 þ a0B
3a0b1

D2

X2

s
: (46)

The linear Lagrange derivative D=Dt0 is defined as

D
Dt0

¼ @

@t0
þ u0

@

@x0
: (47)

For simplicity, the initial velocities of both phases are assumed to be the same (uG0 ¼ uL0 � u0). However, the perturbations of the velocities are
not the same (uG1 6¼ uL1). Setting vp ¼ 1 yields the explicit form of U� as

U� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0jð1� a0 þ b1Þ � ðb1 þ a0BÞð1� a0Þðce � jÞ

a0b1ð1� a0Þ
p�G0
q�L0

þ b1 þ a0B
3a0b1

R�
0
2x�

B
2

s
: (48)

Value of the typical propagation speed U� is increased by considering
the Bjerknes force as shown in Table I.

By focusing on the right-running wave (i.e., by introducing the
moving coordinates u0 ¼ x0 � vpt0), a1, uG1, uL1, pL1, and TG1 are
expressed in terms of R1.

a1 ¼ s1R1; uG1 ¼ s2R1; uL1 ¼ s3R1; pL1 ¼ s4R1; TG1 ¼ s5R1 (49)

with

s1¼ ð1�a0Þ
a0ð1�a0þb1Þ

3a0b1�
ð1�a0�a0BÞs4

v2p

" #
; s2¼ vpðs1�3Þ;

s3¼�vp
a0

1�a0
s1; s4¼ 3pG0ðce�jÞ�D2

X2 ; s5¼�3ðj�1Þ:
(50)

TABLE I. Value of the typical propagation speed U�.

R�
0 a0 U�jB¼0 [m/s] (U�jB¼1 � U�jB¼0)/U

�jB¼0

5mm 0.0001 (0.01%) 1:2� 103 0.010
0.001 (0.1%) 3:8� 102 0.10
0.01 (1%) 1:2� 102 0.97

500 lm 0.0001 (0.01%) 1:2� 103 0.010
0.001 (0.1%) 3:8� 102 0.10
0.01 (1%) 1:2� 102 0.97

50 lm 0.0001 (0.01%) 1:2� 103 0.010
0.001 (0.1%) 3:8� 102 0.10
0.01 (1%) 1:2� 102 0.97
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Note that s1, s2, and s3 change due to the effects of the Bjerknes force,
whereas s4 and s5 do not change.

B. Nonlinear propagation at far field

As in the case of Oð�Þ, the following set of inhomogeneous equa-
tions for Oð�2Þ is derived:

Da2
Dt0

� 3
DR2

Dt0
þ @uG2

@x0
¼ K1; (51)

a0
Da2
Dt0

� ð1� a0Þ @uL2
@x0

¼ K2; (52)

b1
DuG2
Dt0

� DuL2
Dt0

� �
� 3pG0

@R2

@x0
þ pG0

@TG2

@x0
þ B

@pL2
@x0

¼ K3; (53)

ð1� a0ÞDuL2Dt0
� a0b1

DuG2
Dt0

� DuL2
Dt0

� �
� a0u0

Da2
Dt0

þ u0ð1� a0Þ @uL2
@x0

þ ð1� a0Þ @pL2
@x0

� a0B
@pL2
@x0

¼ K4; (54)

3ðce � 1ÞpG0 � D2

X2

� �
R2 þ pG0TG2 � pL2 ¼ K5; (55)

DTG2

Dt0
þ 3ðj� 1ÞDR2

Dt0
¼ K6; (56)

where the inhomogeneous terms Ki (1 � i � 6) are explicitly pre-
sented in the Appendix. Consequently, (51)–(56) are combined into a
single inhomogeneous equation,

D2R2

Dt20
� v2p

@2R2

@x20
¼ Kðf ;t1;x1;u0Þ; (57)

where f ¼ f ðt1;x1;u0Þ is the first order perturbation of the nondimen-
sional bubble radius R1 andK is given by

K ¼� 1
3
DK1

Dt0
þ 1
3a0

DK2

Dt0
þ u0
3a0ð1� a0Þ

@K2

@x0
þ 1� a0 þ b1
3ð1� a0Þb1

@K3

@x0

þ 1
3a0ð1� a0Þ

@K4

@x0
þ b1 þ a0B

3a0b1

@2K5

@x20

� pG0 a0ð1� a0Þ þ b1 þ a0Bð1� a0Þ½ �
3a0b1ð1� a0Þ

ð
@2K6

@x02
dt0: (58)

Based on the solvability condition for (57), K¼ 0 is required.31 From
(24), the original independent variables x and t are restored

@f
@t

þ ðu0 þ vpÞ @f
@x

þ � P0
@f
@x

þP1f
@f
@x

þP2
@2f
@x2

þP3
@3f
@x3

þP4f

� �
¼ 0: (59)

Finally, we obtain the KdVB equation

@f
@s

þP1f
@f
@n

þP2
@2f

@n2
þP3

@3f

@n3
þP4f ¼ 0; (60)

FIG. 2. The effect of Bjerknes forces on each coefficient: (a) Absolute value of nonlinearity jP1j, (b) dissipation owing to liquid compressibility jP2j (see also Table II), (c) dis-
persion P3 (see also Table III), and (d) dissipation P4 as a function of a0 for the case of R�

0 ¼ 500 lm,
ffiffi
�

p ¼ 0:15, p�L0 ¼ 101 325 Pa,
q�L0 ¼ 1000 kg=m3, r� ¼ 0:0728 N=m, c�L0 ¼ 1500m=s, l�L ¼ 10�3Pa 	 s, u0 ¼ 1, and vp ¼ 1.
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using a variable transform

s ¼ �t; n ¼ x � ðu0 þ vp þ �P0Þt; (61)

where the constant coefficients are expressed as

P0 ¼ 1� a0
6a0

V2vp 3pG0ðce � jÞ � D2

X2

� �
; (62)

P1 ¼ 1
6

k1 þ u0 � ð1� a0Þvp
a0ð1� a0Þvp k2 þ 1� a0 þ b1

ð1� a0Þb1vp
k3 þ k4

a0ð1� a0Þvp

(

þb1 þ a0B
a0b1vp

k5 þ pG0 a0ð1� a0Þ þ b1 þ a0Bð1� a0Þ½ �
a0b1ð1� a0Þv2p

k6

)
< 0;

(63)

k1 ¼ 6vpð2� s1Þ þ 2s2ð3� s1Þ;
k2 ¼ �2a0s1s3;

k̂ ¼ ðb1 þ b2Þs1ðs2 � s3Þvp � b1ðs22 � s23Þ � Bs1s4;

k3 ¼ pG0s1ð3� s5Þ þ 6pG0ðs5 � 2Þ þ k̂;

k4 ¼ �a0k̂ þ a0s1s4 � 2ð1� a0Þs23 � 2a0s1s3ðvp � u0Þ;

k5 ¼ �6pG0ð3j� ce � 1Þ � 2D2

X2 � 1
2
ðs2 � s3Þ2;

k6 ¼ �3vpð3j2 � 5jþ 2Þ;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

(64)

P2 ¼ b1 þ a0B
6a0b1

VD 3pG0ðce � jÞ � D2

X2

� �
< 0; (65)

P3 ¼ b1 þ a0B
6a0b1

D2vp > 0; (66)

P4 ¼ P4buo þP4gr þP4dr þP4th > 0; (67)

P4buo ¼ s1g
6b1vp

> 0; (68)

P4gr ¼ s1g
6ð1� a0Þvp > 0; (69)

P4dr ¼ AlL
32vpb1D

2 ðs3 � s2Þ > 0; (70)

P4th ¼ pG0 a0ð1� a0Þ þ b1 þ a0Bð1� a0Þ½ �
2a0b1ð1� a0Þv2p

ðj� 1ÞfSTM1 > 0; (71)

where P0 is the advection coefficient, P1 is the nonlinear coefficient,
P2 and P4 are the dissipation coefficients, and P3 is the dispersion
coefficient. Furthermore,P2,P4buo,P4gr,P4dr, andP4th are the dissi-
pation coefficients owing to acoustic radiation (i.e., liquid compress-
ibility), buoyancy, gravity, drag, and thermal conduction, respectively.

TABLE II. Detailed value of the dissipation coefficient jP2j in Fig. 2.

R�
0 a0 jP2jjB¼0 (jP2jjB¼1 � jP2jjB¼0)/jP2jjB¼0

5mm 0.0001 (0.01%) 4:6� 10�2 6:0� 10�6

0.001 (0.1%) 4:5� 10�2 6:0� 10�4

0.01 (1%) 4:4� 10�2 5:7� 10�2

500 lm 0.0001 (0.01%) 4:5� 10�2 6:0� 10�6

0.001 (0.1%) 4:5� 10�2 6:0� 10�4

0.01 (1%) 4:4� 10�2 5:7� 10�2

50 lm 0.0001 (0.01%) 4:3� 10�2 6:0� 10�6

0.001 (0.1%) 4:3� 10�2 6:0� 10�4

0.01 (1%) 4:2� 10�2 5:8� 10�2

TABLE III. Detailed value of the dispersion coefficient P3 in Fig. 2.

R�
0 a0 P3jB¼0 (P3jB¼1 � P3jB¼0)/P3jB¼0

5mm 0.0001 (0.01%) 4:9� 10�1 6:0� 10�6

0.001 (0.1%) 4:9� 10�1 6:0� 10�4

0.01 (1%) 4:8� 10�1 5:7� 10�2

500 lm 0.0001 (0.01%) 4:8� 10�1 6:0� 10�6

0.001 (0.1%) 4:8� 10�1 6:0� 10�4

0.01 (1%) 4:7� 10�1 5:7� 10�2

50 lm 0.0001 (0.01%) 4:4� 10�1 6:0� 10�6

0.001 (0.1%) 4:4� 10�1 6:0� 10�4

0.01 (1%) 4:3� 10�1 5:8� 10�2

FIG. 3. Comparison of the dissipation coefficients: (a) The red and black curves represent the coefficient owing to thermal conduction and the sum of drag, buoyancy, and grav-
ity; (b) the black, green, and blue curves represent the coefficient owing to drag, buoyancy, and gravity, respectively (see also Table IV). The condition is the same as that in
Fig. 2.
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In this way, the present theory could divide the total attenuation of
waves into independent attenuation components due to various forces.

C. Discussion

The relationship between the Bjerknes force and coefficients is
shown in Fig. 2 and Tables II and III. The absolute values of nonlinear,
dissipation, and dispersion coefficients increased owing to the Bjerknes
force. In particular, the effect of the Bjerknes force onP4 is significant.
A comparison of the dissipation coefficientsP4 is shown in Fig. 3 and
Table IV. The dissipation effect of thermal conduction was the largest,
followed by those of drag, buoyancy, and gravity. It should be noted
that, as this result depends on the temperature-gradient model,82 the
influence of thermal conduction on the waves may be overestimated.

The dissipation term owing to acoustic radiation (i.e.,
P2@

2f =@n2) has a different mechanism from that owing to drag, grav-
ity, buoyancy, and thermal conduction (i.e., P4f ) with respect to the
unknown variable. We then conducted a numerical analysis using a
spectral method based on the split-step Fourier method used in previ-
ous studies59,63,84 to compare each dissipation effect. Our previous
study63 considered three dissipation effects and indicated that the dissi-
pation effect of the thermal conduction was the largest, followed by
those of acoustic radiation and drag force obtained from the numerical
analysis. Figure 4 illustrates the temporal evolution of the numerical
solutions to the KdVB equation (60). The black, blue, and red curves
represent waveforms with only acoustic radiation, with drag, gravity,
and buoyancy forces and with only thermal conduction, respectively.
The initial waveform of the solution is assumed to be a cosine wave.
The dissipation effect of thermal conduction was the largest, followed
by those of acoustic radiation, drag, buoyancy, and gravity. This order
was effective in the range from R�

0 ¼ 50lm to 1mm. As shown in
Table IV, the larger the initial bubble radius R�

0 the smaller the damp-
ing effect of dragP4dr. At R�

0 ¼ 5mm, the damping effect of drag was
smaller than that of gravity. At R�

0 ¼ 10 lm, the damping effect of
drag was larger than that of acoustic radiation.

IV. CONCLUSIONS

Many previous theoretical studies (e.g., Refs. 32–36) have not
clarified the relationship between the forces acting on bubbles and
waves in bubbly flows. Although the validity of ignoring forces acting
on the bubble has not been demonstrated, previous theoretical studies
on nonlinear pressure waves in bubbly flows did not incorporate these
forces. In this study, we theoretically examined the weakly nonlinear
propagation of plane (one-dimensional) pressure progressive waves in
water flows uniformly containing many spherical bubbles, particularly
focusing on the effects of gravity, buoyancy, and (primary) Bjerknes
forces acting on bubbles. Using the singular perturbation method
(multiple scales analysis), the KdVB equation describing weakly

TABLE IV. Detailed value of comparison of drag, buoyancy, and gravity in Fig. 3.

R�
0 a0 P4dr P4buo P4gr

5mm 0.0001 (0.01%) 7:4� 10�5 5:9� 10�4 2:9� 10�4

0.001 (0.1%) 1:0� 10�4 1:9� 10�3 9:3� 10�4

0.01 (1%) 4:0� 10�4 5:5� 10�3 2:8� 10�3

1mm 0.0001 (0.01%) 8:1� 10�4 1:2� 10�4 5:9� 10�5

0.001 (0.1%) 9:6� 10�4 3:7� 10�4 1:8� 10�4

0.01 (1%) 2:4� 10�3 1:1� 10�3 5:5� 10�4

500 lm 0.0001 (0.01%) 2:3� 10�3 5:9� 10�5 2:9� 10�5

0.001 (0.1%) 2:6� 10�3 1:8� 10�4 9:2� 10�5

0.01 (1%) 5:5� 10�3 5:4� 10�4 2:8� 10�4

50 lm 0.0001 (0.01%) 7:1� 10�2 5:7� 10�6 2:8� 10�6

0.001 (0.1%) 7:4� 10�2 1:8� 10�5 8:9� 10�6

0.01 (1%) 1:0� 10�1 5:3� 10�5 2:7� 10�5

10 lm 0.0001 (0.01%) 7:1� 10�1 1:0� 10�6 5:2� 10�7

0.001 (0.1%) 7:3� 10�1 3:2� 10�6 1:6� 10�6

0.01 (1%) 8:5� 10�1 9:6� 10�6 4:9� 10�6

FIG. 4. Example of the numerical solution of (60) for a0 ¼ 0:001 and R�
0 ¼ 500 lm. Horizontal axis is the nondimensional space coordinate n. The vertical axis is the first

order perturbation of the nondimensional bubble radius f. The period is (a) 0, (b) 20, (c) 100, (d) 200, and (e) 300. The black, blue, and red curves represent the waveforms
with only the acoustic radiation, with the drag, gravity, and buoyancy force, and with only the thermal conduction, respectively. The condition is the same as that in Fig. 2. Other
conditions are grid steps 1024, the duration of the numerical integration of time 0.001, and the size of computational domain 8p.
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nonlinear propagation of long waves with a low frequency was derived.
The following findings were obtained:

(i) The Bjerknes force acting on the bubbles contributed to the
nonlinearity, dissipation, and dispersion of waves and
increased the three effects.

(ii) The drag, gravity, and buoyancy forces acting on the bubbles
contributed to dissipation and increased the value of the dissi-
pation coefficients.

(iii) In the range from R�
0 ¼ 50 lm to 1mm, the dissipation effect

decreased in the order: thermal conduction, acoustic radiation,
drag, buoyancy, and gravity.

This study revealed that the attenuation of waves owing to the forces
acting on gas bubbles is quantitatively small. This is the first study to
demonstrate the validity of ignoring forces for pressure wave propaga-
tion in bubbly flows.

A lift could not be introduced here because this study considered
only the one-dimensional case. The effect of forces such as lift44–46 and
buoyancy force on waves will be investigated in future research in the
framework of multidimensional problem.
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APPENDIX: INHOMOGENEOUS TERMS

The inhomogeneous terms Ki (1 � i � 6) in (51)–(56) are
given by

K1 ¼ � @uG1
@x1

þ D
Dt1

ð3R1 � a1Þ þ 3
D
Dt0

R1ða1 � 2R1Þ½ �

þ @

@x0
uG1ð3R1 � a1Þ½ �; (A1)

K2 ¼ ð1� a0Þ @uL1
@x1

� a0
Da1
Dt1

� a0
@

@x0
ða1uL1Þ þ ð1� a0ÞDqL1Dt0

;

(A2)

K3 ¼ pG0
@

@x1
ð3R1 � TG1Þ þ pG0a1

@

@x0
ð3R1 � TG1Þ

þ 3pG0
@

@x0
R1ðTG1 � 2R1Þ½ � þ KF; (A3)

K4 ¼ D
Dt1

u0a0a1 � ð1� a0ÞuL1½ � � ð1� a0Þ @

@x1
ðpL1 þ u0uL1Þ

þ a0
D
Dt0

ða1uL1Þ þ u0a0
@

@x0
ða1uL1Þ � ð1� a0Þ @u

2
L1

@x0

þ a0a1
@pL1
@x0

� a0KF � ð1� a0Þu0 DqL1Dt0

� a0 3ðce � 1ÞpG0 � D2

X2

� �
R1 þ pG0TG1 � pL1

� 
@a1
@x0

þ ga0a1;

(A4)

K5 ¼ D2 D
2R1

Dt20
� VD

DpL1
Dt0

þ 3pG0R1TG1 � 3ð2� ceÞpG0 þ
D2

X2

� �
R2
1

� 1
4
ðuG1 � uL1Þ2; (A5)

K6 ¼ �3
D
Dt0

ðj� 1ÞTG1R1 þ 1
2
ðj� 1Þð3j� 4ÞR2

1

� �
� fSTM1TG1;

(A6)

where

D
Dt1

¼ @

@t1
þ u0

@

@x1
; (A7)

KF ¼� b1
D
Dt1

ðuG1 � uL1Þ � b1a1
D
Dt0

ðuG1 � uL1Þ

� b1 uG1
@uG1
@x0

� uL1
@uL1
@x0

� �
� b2ðuG1 � uL1ÞDa1Dt0

� 3AlL
16D2 ðuG1 � uL1Þ þ a1g � B

@pL1
@x1

þ a1
@pL1
@x0

� �
: (A8)
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