論文

査読有り 国際誌
2020年11月

Formation of carbon-added anatase-rich TiO2 layers on titanium and their antibacterial properties in visible light

Dental Materials
  • Takatoshi Ueda
  • ,
  • Naoki Sato
  • ,
  • Ryusuke Koizumi
  • ,
  • Kyosuke Ueda
  • ,
  • Koyu Ito
  • ,
  • Kouetsu Ogasawara
  • ,
  • Takayuki Narushima

37
2
開始ページ
e37-e46
終了ページ
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1016/j.dental.2020.10.009
出版者・発行元
Elsevier BV

OBJECTIVE: To avoid risk of infections associated with dental implants, thermal oxidation processes for practical dental Ti alloys were studied for both high bonding strength and antibacterial properties in visible light. METHODS: Two-step thermal oxidation, comprising carburization (first step of treatment: in Ar-1%CO gas) and subsequent oxidation (second step of treatment: in air), was conducted on commercially pure (CP) Ti, Ti-6Al-4V (Ti64), and Ti-6Al-7Nb (Ti67) alloys to form TiO2 layers. Their bonding strengths and antibacterial properties against Escherichia coli (E. coli) in visible light (λ ≥ 400 nm) were evaluated. RESULTS: TiO2 layers formed on each metal were composed of anatase and/or rutile. Anatase fraction and carbon concentration in the layers decreased with increasing temperature in the second step of treatment. Antibacterial properties of the TiO2 layers were dependent on the temperature in the second step of treatment. An approximate antibacterial activity value of 2 (killing ∼99% bacteria) was obtained when the temperatures in the second step of treatment were 673 and 773 K for CP Ti, 773 K for Ti64, and 773 and 873 K for Ti67. It was found that the TiO2 layer must contain carbon and be anatase-rich to exhibit excellent antibacterial properties. Bonding strength between the substrate and TiO2 layers formed at 773 K in the second step of treatment exceeded 80 MPa and was independent of substrate type. SIGNIFICANCE: TiO2 layers, possessing both high bonding strength and excellent antibacterial properties, were successfully formed on practical dental Ti alloys via two-step thermal oxidation.

リンク情報
DOI
https://doi.org/10.1016/j.dental.2020.10.009
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/33198964
ID情報
  • DOI : 10.1016/j.dental.2020.10.009
  • ISSN : 0109-5641
  • PubMed ID : 33198964

エクスポート
BibTeX RIS