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Abstract-This article, by regarding fixed-point binary  of z(9) fori = 1,2, - - -, n. For example, when
numbers as truth values, defines a new multivalued logic
system in Boolean class such that the set of logic formulas xz = 0.0000 0000 0000 1111},
forms a Boolean algebra. This article also shows some typi- = 0.0002288818359375, (2)
cal examples demonstrating that, on the proposed logic sys-
tem, after learning we can handle inferences readily because we have

of Boolean effect.
-z = 0.1111 1111 1111 0000y,

Index Terms-Boolean multivalued logic system, fuzzy = 0.9997711181640625 . (3)
logic, inference, truth value.

Theconjunctionz A y of logic formulasz = 0.2(Mz(2) ...
=™y andy = 0.yMy@ ...4™) has the truth valu®.z")
22 ... 2(") that comprises the Boolean binary conjunction

Multivalued logic systems usually are defined in non- ) , )

Boolean class. In contrast, this article, by regarding fixed-point 20 = g Ayl (4)
binary numbers as truth values, defines a new multivalued logic
system in Boolean class such that the set of logic formulas forn%
a Boolean algebra, cf. Il

I. INTRODUCTION

z® andy® fori = 1,2, - --,n. For example, when

. - . z = 0.0000 0000 0000 1111y,

This article also shows some typical examples demonstrat-
ing that, on the proposed logic system, after learning we can = 0.0002288818359375 (5)
handle inferences readily because of Boolean effect, cf. lll.

The proposed logic system corresponds to a bitwise-
processable realization of complementary fuzzy logic system, y = 0.1001 1001 1001 1001,
cf.IV. = 0.5999908447265625 , (6)

[Il. BOOLEAN MULTIVALUED LOGIC SYSTEM we have

This section defines newly a multivalued logic system, and z Ay = 0.0000 0000 0000 1001},

verifies that the set of logic formulas forms a Boolean algebra. — 0.0001373291015625 7)

(Note that usual Boolean logic systems are not multivalued.)

A Definition Similarly, thedisjunctionz V y has the truth valu@.z")
' 22 ... (" that comprises the Boolean binary disjunction
Each atom has atruth value that is an arbitrary binary ‘ ‘ A
number 0.z(Nz®) ... 2y (zMWefo0,1}, 2P e{0,1}, -, 20 = g0 vyl (8)
(" €{0,1}) in fixed-point notation, where is a constant pos-

itive integer calleddimension Logic formulasare results of fori=1,2,---,n. ) ) )
applying the following logic operations to atoms and to logic Although the above logic operations are enough to specify
formulas themselves. one Boolean logic system, we furthermore introduce two logic

The negation—z of a logic formulaz = 0.z(Mz® ... operations for efficient handling of inferences. Timgplication
: H PO 1)...(2 n _
("), has the truth value.z(" 2(?) ... ("), that comprises the * — ¥ from a logic formulaz = 0.2z . 2V, to an
Boolean binary negation other logic formulay = 0.y(My® ...4(), has the truth value
0.2(02() ... 2("), that comprises the Boolean binary implica-
() — (0 1) tion
z = T . . .
@) 20 = (0 @ (9)
from z() to y@ fori = 1,2, ---,n. Similarly, theequivalence
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between:(” andy® fori =1,2,---,n. Further, since
Based on the above definition of logic operations, a
logic formula has a certain binary number Mz ... ("), zA-z = 0.00---0p = 0 (17)
(zMe{0,1}, P e{0,1}, - - -, 2™ €{0,1}) in fixed-point no-
tation. Computers can describe such number withdit se-  gng

qguence
’Dx(l)”‘tx(Q)H‘ 1]'%(”)\\ (11) zV-x =011---1, = 1, (18)

that represents the fraction part. The truth values describedfit an arbitrary logic formular and itscomplement-z, the

this format are), A, 2A, 3A, ---,1 — 2A, 1 — A that are2®  whole set of logic formulas forms @mplemented latticeith

points extracted fronj0, 1) with interval A = 2=". For ex- identity elements and1,,.

ample, A is 0.0000152587890625 whenn = 16. Although Since Boolean binary conjunction and disjunction satisfy

truth values cannot achive exactlythe maximuml — A ap- distributive laws, also multivalued conjunctionand disjunc-
proachesl by increasingn. In this sense, we denote— A  tion Vv satisfy distributive laws Thus the whole set of logic
by1,,e.q. formulas forms alistributive lattice

116 = 0.9999847412109375 . (12) Since the whole set of logic formulas is both a comple-
(Note that, whem — 1, the range of truth values is ngo, 1}, mented Iz_;\tnce and a distributive lattice, it for_mBaoIean alge-
. ) . ra. In this sense, we call the proposed logic systeBoalean
but{0,0.5}. Thus the proposed multivalued logic system is noli) . .

. . . : ultivalued logic system
a straightforward extension of the Boolean binary logic systemT
In addition to the above five logic operations, for efficient

handling of Bayesian theories (cf.[1]), we introduce an arith- IIl. INEERENCES
metic operation calledonditional The conditional from a logic

formulaz to another logic formulg is This section shows some typical examples demonstrating

T Ay that, on the proposed logic system, after learning we can handle
ylz = - —. (13) inferences (cf.[2]) readily because of Boolean effect.

See Fig. 1 for the flow of learning and inferences.

As a noticeable property, since

rA(xAyYy) =Ny (14) Atoms without
their truth values
and ¢
zA(x—y) = zA(-zVy) Collecting knowledges
= (e AN—x)V(zAy
_ ( Vi ) 15 Logic formulas with
= TAY, (15) { their truth values
we have Learning
@Ay)le = (—y)le = yl=. (16)
This suggests that the proposed multivalued logic system has a ffr‘]to.mf ";’r'lth |
rich vocabulary that can reflect delicate nuances in natural lan- y their truth values
guages and, simultaneously, can keep a mathematical consis- Inferences
tency. (any number of times)

B. Boolean Properties

Since each of Boolean binary conjunction and disjunction Fig. 1. Flow of learning and inferences.

satisfies a commutative law, also each of multivalued conjunc-
tion A and disjunctionv defined in the preceding subsection
satisfies @ommutative lawSince each of Boolean binary con-
junction and disjunction satisfies an associative law, also each of
multivalued conjunctiom and disjunctionv satisfies arasso- In this article, we define &nowledger ~ r as a constraint
ciative law Further, since Boolean binary conjunction and dissuch that: the left hand sideis a logic formula; the right hand
junction satisfy absorption laws, also multivalued conjunctiogider is a desired truth value ifo, 1]; and, both sides are con-
A and disjunctionv satisfyabsorption laws Thus the whole set nected by %" meaning that the logic formula should take the

of logic formulas forms dattice with multivalued conjunction desired truth value.

A and disjunction/ regarded respectively as “meet” and “join”  For example, we consider the following set of eleven knowl-
in terms of describing the lattice. edges consisting of seven atorfacon, pigeon penguin bird,

A. Knowledges
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fly, goodreflexesride bicycle ation of gaps concerning all knowledges (19)—(29):

bird | falcon ~ 1 (19) falcon = 0.1000 0011 1110 1111,  (31)
fly| falcon ~ 0.95 (20) pigeon = 0.1000 0011 1111 1111,,  (32)
bird | pigeon ~ 1 (21) penguin = 0.0100 0010 1000 1000}, , (33)
fly| pigeon ~ 0.95 (22) bird = 0.1100 0011 1111 0000,  (34)
goodreflexesfly ~ 0.8, (23) fly = 0.1001 1100 0000 0000,,  (35)
b{rd | penguin ~ 1 (24) goodreflexes = 0.1010 0000 1110 0011}, , (36)
fly| penguin ~ 0 (25) ride bicycle = 0.0011 1001 0001 0111y, (37)
falconA ride bicycle ~ 0, (26) thatis,
falcon ~ 0.5, (27) falcon = 0.5153656005859375 (38)
pigeon ~ 0.5, (28) pigeon = 0.5156097412109375, (39)
penguin ~ 0.25. (29) penguin = 0.2598876953125, (40)
bird = 0.765380859375, 41
Semantic interpretation of (19)—(29) is as follows. Gy — 0.600375 (42)
Knowledge (19) means that if observed one is a falcon, it is y =290 ! (42)
absolutely € 1) a bird. Also knowledges (21) and (24) have goodreflexes = 0.6284637451171875, (43)
similar meanings. ride bicycle = 0.2230072021484375 (44)

Knowledge (20) means that if observed one is a falcon, it . : .
: o in decimal. In this case, the calculated truth values of logic for-
almost & 0.95) flies — an injured falcon may not fly. Also

knowledge (22) has a similar meaning. mulas (19)—(29) are as follows, where the slant numerals denote

. . . the desired truth values:
Knowledge (25) means that if observed one is a penguin, R

never & 0) flies. bird | falcon = 0.9995574951171875
Knowledge (23) means that if observed one flies, it probably = 1—0.0004425048828125, (45)

(= %2] hasr?cl’("d “Tﬂgxes' teseribable efficiontly with fly| falcon = 0.970184326171875
(0] nowledges are descripaple efrcien e
tgh Knowlecges scrl clenty wi — 0.95+ 0.020184326171875, (46)

conditional, they do not necessarily consist of the conditional,

and the following is such an example. Knowledge (26) means bird | pigeon= 0.9995574951171875
that there is no=£ 0) one which is a falcon and, simultaneously, = 1-—0.0004425048828125, (47)
rides a bicycle. Note that this formalization differs from fly | pigeon= 0.9697265625
ride bicycle| falcon ~ 0, (30) = 0.95+0.0197265625, (48)
goodreflexeg fly = 0.8205108642578125
but (26) and (30) in effect are equivalent unldakcon = 0 = 0.8+ 0.0205108642578125, (49)
(cf. (16)). bird | penguin= 0.9995269775390625

Knowledge (27) simply means that observed one may (
= 1—0.0004730224 50

0.5) be a falcon or not. (Note that truth values are not necessar- ) 0.0004730224609375,  (50)

ily empirical probabilities.) Also knowledge (28) has a similar fly| penguin=0 = 0+ 0, (51)

meaning. On the other hand, knowledge (29) means that ob- falconA ride bicycle= 0.0040130615234375

serving a penguin is unusuat (0.25). = 0+ 0.0040130615234375,  (52)

falcon = 0.5153656005859375

. . = 0.5+ 0.0153656005859375, (53)

Temporarily supposing a set of truth values of atoms, we )
can calculate the truth value of an arbitrary logic formula, and pigeon= 0.5156097412109375
hence can calculate the truth value .offor each knowledge = 0.5+ 0.0156097412109375, (54)
x =~ r. The gap is the absolute vallte — r| of the subtrac- penguin= 0.2598876953125
tion of tr_le desired truth valuefrom the _calcula_ted_ truth value — 0.25+ 0.0098876953125.  (55)
of z, which should be as small as possililearningis the pro-
cess of searching for the truth values of atoms so as to minimiZée deviation of gaps i8.0128328134040519 and the maxi-
the gaps concerning all knowledges. Itis a kind of mathematicadum in gaps i$.0205108642578125 for (49).
programming problem, to which algorithms of linear program- .
ming [3] and other methods are applicable. C. Inductive Inferences

The following shows the truth values of atoms obtained by After learning, that is, optimizing the truth values of
a trial-and-error method that tries to minimize locally the deviatoms (31)—(37), we can calculate the truth value of an arbitrary

B. Learning
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logic formula. Inferencesare processes of simply calculating
truth values of logic formulas after the learning. (Note that in-
ferences on many logic systems need complex processes, e.g.
Prolog.) This flow shown in Fig. 1 is common to the inductive
inferences and the deductive inferences.
The followings are some examples of inductive inferences.
From (31)—(34),

falconV pigeonv penguin
0.1000 0011 11101111y, Vv 0.1000 0011 1111 1111y,
v 0.0100 0010 1000 1000y,
0.1100 0011 1111 1111y,

(56)
hence

(falconV pigeonv penguir) | bird
0.1100 0011 1111 1111, ]0.1100 0011 1111 0000y,
0.1100 0011 1111 1111, A 0.1100 0011 1111 0000y,

0.1100 0011 1111 0000y

~0.1100 0011 1111 0000, ) 57)
~0.1100 0011 1111 0000, '

which means that a bird is absolutely one of falcon, pigeon, and

penguin. (Note that falcon, pigeon, and penguin are given as

samples of birds in knowledges (19)—(29).)
From (34) and (35),

fly | bird
0.1001 1100 0000 0000y, | 0.1100 0011 1111 0000,
0.1100 0011 1111 0000, A 0.1001 1100 0000 0000,

0.1100 0011 1111 0000y,
0.1000 0000 0000 0000y

D

From (34) and (37),

ride bicycle| bird

= 0.0011 1001 0001 0111} ]0.1100 0011 1111 0000y,

0.1100 0011 1111 0000, A 0.0011 1001 0001 0111y,

0.1100 0011 1111 0000,
. 1 1
0.0000 0001 0001 0000y — 0.0054--- .

0.1100 0011 1111 0000y

(62)

which means that birds hardly ride bicycles.
From (36) and (37),

ride bicycle| goodreflexes
0.0011 1001 0001 01114, ]0.1010 0000 1110 00114,
0.1010 0000 1110 0011, A 0.0011 1001 0001 0111y,

0.1010 0000 1110 0011y,
0.0010 0000 0000 0011,

0.1010 0000 1110 0011y,

= 0.1989- -, (63)

which means that having good reflexes probably does not ensure
riding a bicycle.

. Complementary Law as a Deductive Inference

Any of the laws, the theorems, and other properties obtained
on a traditional Boolean binary logic system are valid also on
the proposed logic system as implied by its bitwise processing
in logic operations.

A complementary law is

-r =1, —x

(64)

= 37100 0011 1111 0000, ~ 0.6532- - -, (58)  for an arbitrary logic formula: = 0.2(Vz® ... z(™y,, which
. o . is obtained from-z(9) = 1 — z() for everyi = 1,2, - -, n.
which means that birds, if anything, fly. For example, when (31)~(37), we have
Let “@” mean theexclusive-owoperation defined as
—falcon
roy =(zoy) = @Ay VizAy)  (59)
= =0.1000 0011 1110 1111y
for arbitrary logic formulas: andy. From (34) and (35), = 0.0111 1100 0001 0000, = 0.484619140625
. = 0.9999847412109375 — 0.5153656005859375
bird fly = 0.1100 0011 1111 0000y,
= 1;4 — falcon (65)
@ 0.1001 1100 0000 0000y,
= 0.0101 1111 1111 0000y, , (60) that verifies (64).
hence E. Chain Rule as a Deductive Inference
(bird & fly) | bird A chain rule is
= 0.0101 1111 1111 0000y |0.1100 0011 1111 0000}
0.1100 0011 1111 00003, A 0.0101 1111 1111 0000, @ =y Aly—2) = (@—2=1.  (66)

0.1100 0011 1111 0000,

0.0100 0011 1111 0000y
= — 0.3467-- -,
0.1100 0011 1111 0000y, 0346

(61)

Y@ ..

for arbitrary logic formulag: = 0.2z ... (™ = 0.y
-y, andz = 0.2(12() ... ("), on a Boolean multi-

valued logic system, which suggests

which means that being birds and flying is, if anything, not dif-
ferent in birds.
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Indeed, we have the following far=1,2,-- -, n.

SOk 00001111

y® 00110011

PA) 01010101
S OIOR 11110011 (68)

Yy — 20 11011101

(2@ =y A (YD -20)[1 1010001

2 — (@) 11110101

The last two lines prove

(ﬁ(i) N y(i)) A (y(i) N Z(i)) < 20— 2@ (69)

fori =1,2,---,n, hence (67), no matter what y, andz are.
For example, when (31)—(37), since

(falcon— fly) A (fly — goodreflexes
0.1110 0000 0001 0000y

= 0.875244140625 (70)
and
falcon — goodreflexes = 0.1111 1100 1111 0011,
= 0.9880828857421875,  (71)
we have
(falcon— fly) A (fly — goodreflexe$
< falcon— goodreflexes (72)

that verifies (67).

F. Bayesian Tautology as a Deductive Inference

A tautology modeled on a Bayesian network, which we call

aBayesian tautologin this article, is

((z =) Ay = D)V (2= ~9) A (g = 2)
o (@—2)

Ly

(73)

for arbitrary logic formulag: = 0.2z ... (™) 4 = 0.4
y@ .y andz = 0.0 ..., thats,

(x—=y)A(y—2)V((xz— -y Ay —2)

(74)

Indeed, we have the following far=1,2,- - -, n.

BNOLE
y®
()

SOk

20 5 =y

@ s 50
T K2

_=_ =0 O =IO OoOo
e e ==
—R O, R EFROIORO
— _) R R RO~ O
O O OO IO O
— O R R = R [(= O
O OO L OO|O K~
R O Rk OOk

L)

(75)
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The last three lines prove

((z(i) N y(i)) A (y(i) N Z(i)))
V(@ = =y D) A (my D = 20))

_ ) L0

(76)

fori =1,2,---,n, hence (74), no matter what y, andz are.
For example, when (31)—(37), since

((falcon— fly) A (fly — goodreflexe$)

V ((falcon— —fly) A (=fly — goodreflexe$)
0.1111 1100 1111 0011y
0.9880828857421875

(77)
and

falcon — goodreflexes = 0.1111 1100 1111 0011y,

= 0.9880828857421875, (78)
we have
((falcon— fly) A (fly — goodreflexe$)
V ((falcon— —fly) A (—fly — goodreflexes)
= falcon— goodreflexes (79)

that verifies (74).

The only difference between the Boolean binary logic sys-
tem and the proposed logic system is that the former can take
two truth values and the latter can tak® truth values. But
this difference is crucial since being multivalued widens appli-
cations of Boolean logic systems essentially.

IV. EXPANSION TO FUZZY

A typical multivalued logic system extended from Kleene's
three-valued logic system [4] is defined-as =1—z,z Ay =
min(z,y), andz V y = max(z,y) for logic formulasz andy
having truth values irf0, 1], on which the set of logic formu-
las forms no Boolean algebra. Fuzzy logic systems usually are
based on such multivalued logic systems in non-Boolean class.

A fuzzy logic system means an arbitrary logic system de-
fined with terms offuzzy subset&f. [5], [6]), where a fuzzy
subset is denoted bfa;:t1, as:ta, - -, ay:t,} for members
ai,as,- -, a, and membership values, to, - - -, t,,. We can de-
fine a new fuzzy logic system by regarding Boolean multivalued
logic formulas as members and their truth values as membership
values, which we call 8oolean fuzzy logic system

This fuzzy logic system in contrast with usual fuzzy
logic systems inherits all the properties obtained on tradi-
tional Boolean binary logic systems, which corresponds to a
bitwise-processable realization of complementary fuzzy logic
system [7], [8].

V. CONCLUSION

This article, by regarding fixed-point binary numbers as
truth values, defined a new multivalued logic system in Boolean



class such that the set of logic formulas forms a Boolean alge-
bra and that, after learning, we can handle inferences readily
because of Boolean effect.

A bottleneck is that the learning needs a large computational
complexity if the number of atoms or that of knowledges is
large.
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