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Abstract–This article, by regarding fixed-point binary
numbers as truth values, defines a new multivalued logic
system in Boolean class such that the set of logic formulas
forms a Boolean algebra. This article also shows some typi-
cal examples demonstrating that, on the proposed logic sys-
tem, after learning we can handle inferences readily because
of Boolean effect.

Index Terms–Boolean multivalued logic system, fuzzy
logic, inference, truth value.

I. INTRODUCTION

Multivalued logic systems usually are defined in non-
Boolean class. In contrast, this article, by regarding fixed-point
binary numbers as truth values, defines a new multivalued logic
system in Boolean class such that the set of logic formulas forms
a Boolean algebra, cf. II.

This article also shows some typical examples demonstrat-
ing that, on the proposed logic system, after learning we can
handle inferences readily because of Boolean effect, cf. III.

The proposed logic system corresponds to a bitwise-
processable realization of complementary fuzzy logic system,
cf. IV.

II. BOOLEAN MULTIVALUED LOGIC SYSTEM

This section defines newly a multivalued logic system, and
verifies that the set of logic formulas forms a Boolean algebra.
(Note that usual Boolean logic systems are not multivalued.)

A. Definition

Each atom has a truth value that is an arbitrary binary
number 0.x(1)x(2) · · ·x(n)

b (x(1)∈{0, 1}, x(2)∈{0, 1}, · · · ,
x(n)∈{0, 1}) in fixed-point notation, wheren is a constant pos-
itive integer calleddimension. Logic formulasare results of
applying the following logic operations to atoms and to logic
formulas themselves.

The negation¬x of a logic formulax = 0.x(1)x(2) · · ·
x(n)

b has the truth value0.z(1)z(2) · · · z(n)
b that comprises the

Boolean binary negation

z(i) = ¬x(i) (1)
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of x(i) for i = 1, 2, · · ·, n. For example, when

x = 0.0000 0000 0000 1111b

= 0.0002288818359375 , (2)

we have

¬x = 0.1111 1111 1111 0000b

= 0.9997711181640625 . (3)

Theconjunctionx ∧ y of logic formulasx = 0.x(1)x(2) · · ·
x(n)

b and y = 0.y(1)y(2) · · · y(n)
b has the truth value0.z(1)

z(2) · · · z(n)
b that comprises the Boolean binary conjunction

z(i) = x(i) ∧ y(i) (4)

of x(i) andy(i) for i = 1, 2, · · ·, n. For example, when

x = 0.0000 0000 0000 1111b

= 0.0002288818359375 (5)

and

y = 0.1001 1001 1001 1001b

= 0.5999908447265625 , (6)

we have

x ∧ y = 0.0000 0000 0000 1001b

= 0.0001373291015625 . (7)

Similarly, thedisjunctionx ∨ y has the truth value0.z(1)

z(2) · · · z(n)
b that comprises the Boolean binary disjunction

z(i) = x(i) ∨ y(i) (8)

for i = 1, 2, · · ·, n.
Although the above logic operations are enough to specify

one Boolean logic system, we furthermore introduce two logic
operations for efficient handling of inferences. Theimplication
x → y from a logic formulax = 0.x(1)x(2) · · ·x(n)

b to an-
other logic formulay = 0.y(1)y(2) · · · y(n)

b has the truth value
0.z(1)z(2) · · · z(n)

b that comprises the Boolean binary implica-
tion

z(i) = x(i) → y(i) (9)

from x(i) to y(i) for i = 1, 2, · · ·, n. Similarly, theequivalence
x ↔ y has the truth value0.z(1)z(2) · · · z(n)

b that comprises the
Boolean binary equivalence

z(i) = x(i) ↔ y(i) (10)
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betweenx(i) andy(i) for i = 1, 2, · · ·, n.
Based on the above definition of logic operations, a

logic formula has a certain binary number0.x(1)x(2) · · ·x(n)
b

(x(1)∈{0, 1}, x(2)∈{0, 1}, · · · , x(n)∈{0, 1}) in fixed-point no-
tation. Computers can describe such number with ann-bit se-
quence

　x(1)　　x(2)　 · · · 　x(n)　 (11)

that represents the fraction part. The truth values described in
this format are0, ∆, 2∆, 3∆, · · · , 1 − 2∆, 1 − ∆ that are2n

points extracted from[0, 1) with interval ∆ = 2−n. For ex-
ample,∆ is 0.0000152587890625 when n = 16. Although
truth values cannot achive exactly1, the maximum1 − ∆ ap-
proaches1 by increasingn. In this sense, we denote1 − ∆
by 1n , e.g.

116 = 0.9999847412109375 . (12)

(Note that, whenn = 1, the range of truth values is not{0, 1},
but{0, 0.5}. Thus the proposed multivalued logic system is not
a straightforward extension of the Boolean binary logic system.)

In addition to the above five logic operations, for efficient
handling of Bayesian theories (cf. [1]), we introduce an arith-
metic operation calledconditional. The conditional from a logic
formulax to another logic formulay is

y |x =
x ∧ y

x
. (13)

As a noticeable property, since

x ∧ (x ∧ y) = x ∧ y (14)

and

x ∧ (x → y) = x ∧ (¬x ∨ y)
= (x ∧ ¬x) ∨ (x ∧ y)
= x ∧ y , (15)

we have
(x ∧ y) |x = (x → y) |x = y |x . (16)

This suggests that the proposed multivalued logic system has a
rich vocabulary that can reflect delicate nuances in natural lan-
guages and, simultaneously, can keep a mathematical consis-
tency.

B. Boolean Properties

Since each of Boolean binary conjunction and disjunction
satisfies a commutative law, also each of multivalued conjunc-
tion ∧ and disjunction∨ defined in the preceding subsection
satisfies acommutative law. Since each of Boolean binary con-
junction and disjunction satisfies an associative law, also each of
multivalued conjunction∧ and disjunction∨ satisfies anasso-
ciative law. Further, since Boolean binary conjunction and dis-
junction satisfy absorption laws, also multivalued conjunction
∧ and disjunction∨ satisfyabsorption laws. Thus the whole set
of logic formulas forms alattice with multivalued conjunction
∧ and disjunction∨ regarded respectively as “meet” and “join”
in terms of describing the lattice.

Further, since

x ∧ ¬x = 0.00 · · · 0b = 0 (17)

and

x ∨ ¬x = 0.11 · · · 1b = 1n (18)

for an arbitrary logic formulax and itscomplement¬x, the
whole set of logic formulas forms acomplemented latticewith
identity elements0 and1n.

Since Boolean binary conjunction and disjunction satisfy
distributive laws, also multivalued conjunction∧ and disjunc-
tion ∨ satisfy distributive laws. Thus the whole set of logic
formulas forms adistributive lattice.

Since the whole set of logic formulas is both a comple-
mented lattice and a distributive lattice, it forms aBoolean alge-
bra. In this sense, we call the proposed logic system aBoolean
multivalued logic system.

III. INFERENCES

This section shows some typical examples demonstrating
that, on the proposed logic system, after learning we can handle
inferences (cf. [2]) readily because of Boolean effect.

See Fig. 1 for the flow of learning and inferences.

Atoms without
their truth values

?

Collecting knowledges

?

Logic formulas with
their truth values

Learning

?

Atoms with
their truth values

Inferences
(any number of times)

Fig. 1. Flow of learning and inferences.

A. Knowledges

In this article, we define aknowledgex ≈ r as a constraint
such that: the left hand sidex is a logic formula; the right hand
sider is a desired truth value in[0, 1]; and, both sides are con-
nected by “≈” meaning that the logic formulax should take the
desired truth valuer.

For example, we consider the following set of eleven knowl-
edges consisting of seven atoms,falcon, pigeon, penguin, bird,
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fly, goodreflexes, ride bicycle:

bird | falcon ≈ 1 , (19)

fly | falcon ≈ 0.95 , (20)

bird |pigeon ≈ 1 , (21)

fly |pigeon ≈ 0.95 , (22)

goodreflexes| fly ≈ 0.8 , (23)

bird |penguin ≈ 1 , (24)

fly |penguin ≈ 0 , (25)

falcon∧ ride bicycle ≈ 0 , (26)

falcon ≈ 0.5 , (27)

pigeon ≈ 0.5 , (28)

penguin ≈ 0.25 . (29)

Semantic interpretation of (19)–(29) is as follows.
Knowledge (19) means that if observed one is a falcon, it is

absolutely (= 1) a bird. Also knowledges (21) and (24) have
similar meanings.

Knowledge (20) means that if observed one is a falcon, it
almost (= 0.95) flies — an injured falcon may not fly. Also
knowledge (22) has a similar meaning.

Knowledge (25) means that if observed one is a penguin, it
never (= 0) flies.

Knowledge (23) means that if observed one flies, it probably
(= 0.8) has good reflexes.

Although knowledges are describable efficiently with the
conditional, they do not necessarily consist of the conditional,
and the following is such an example. Knowledge (26) means
that there is no (= 0) one which is a falcon and, simultaneously,
rides a bicycle. Note that this formalization differs from

ride bicycle| falcon ≈ 0 , (30)

but (26) and (30) in effect are equivalent unlessfalcon = 0
(cf. (16) ).

Knowledge (27) simply means that observed one may (=
0.5) be a falcon or not. (Note that truth values are not necessar-
ily empirical probabilities.) Also knowledge (28) has a similar
meaning. On the other hand, knowledge (29) means that ob-
serving a penguin is unusual (= 0.25).

B. Learning

Temporarily supposing a set of truth values of atoms, we
can calculate the truth value of an arbitrary logic formula, and
hence can calculate the truth value ofx for each knowledge
x ≈ r. The gap is the absolute value|x − r| of the subtrac-
tion of the desired truth valuer from the calculated truth value
of x, which should be as small as possible.Learningis the pro-
cess of searching for the truth values of atoms so as to minimize
the gaps concerning all knowledges. It is a kind of mathematical
programming problem, to which algorithms of linear program-
ming [3] and other methods are applicable.

The following shows the truth values of atoms obtained by
a trial-and-error method that tries to minimize locally the devi-

ation of gaps concerning all knowledges (19)–(29):

falcon = 0.1000 0011 1110 1111b , (31)

pigeon = 0.1000 0011 1111 1111b , (32)

penguin = 0.0100 0010 1000 1000b , (33)

bird = 0.1100 0011 1111 0000b , (34)

fly = 0.1001 1100 0000 0000b , (35)

goodreflexes = 0.1010 0000 1110 0011b , (36)

ride bicycle = 0.0011 1001 0001 0111b , (37)

that is,

falcon = 0.5153656005859375 , (38)

pigeon = 0.5156097412109375 , (39)

penguin = 0.2598876953125 , (40)

bird = 0.765380859375 , (41)

fly = 0.609375 , (42)

goodreflexes = 0.6284637451171875 , (43)

ride bicycle = 0.2230072021484375 (44)

in decimal. In this case, the calculated truth values of logic for-
mulas (19)–(29) are as follows, where the slant numerals denote
the desired truth values:

bird | falcon = 0.9995574951171875
= 1− 0.0004425048828125, (45)

fly | falcon = 0.970184326171875
= 0.95+ 0.020184326171875, (46)

bird |pigeon= 0.9995574951171875
= 1− 0.0004425048828125, (47)

fly |pigeon= 0.9697265625
= 0.95+ 0.0197265625, (48)

goodreflexes| fly = 0.8205108642578125
= 0.8+ 0.0205108642578125, (49)

bird |penguin= 0.9995269775390625
= 1− 0.0004730224609375, (50)

fly |penguin= 0 = 0± 0, (51)

falcon∧ ride bicycle= 0.0040130615234375
= 0 + 0.0040130615234375, (52)

falcon = 0.5153656005859375
= 0.5+ 0.0153656005859375, (53)

pigeon= 0.5156097412109375
= 0.5+ 0.0156097412109375, (54)

penguin= 0.2598876953125
= 0.25+ 0.0098876953125 . (55)

The deviation of gaps is0.0128328134040519 and the maxi-
mum in gaps is0.0205108642578125 for (49).

C. Inductive Inferences

After learning, that is, optimizing the truth values of
atoms (31)–(37), we can calculate the truth value of an arbitrary
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logic formula. Inferencesare processes of simply calculating
truth values of logic formulas after the learning. (Note that in-
ferences on many logic systems need complex processes, e.g.
Prolog.) This flow shown in Fig. 1 is common to the inductive
inferences and the deductive inferences.

The followings are some examples of inductive inferences.
From (31)–(34),

falcon∨ pigeon∨ penguin

= 0.1000 0011 1110 1111b ∨ 0.1000 0011 1111 1111b

∨ 0.0100 0010 1000 1000b

= 0.1100 0011 1111 1111b , (56)

hence

( falcon∨ pigeon∨ penguin) |bird

= 0.1100 0011 1111 1111b | 0.1100 0011 1111 0000b

=
0.1100 0011 1111 1111b ∧ 0.1100 0011 1111 0000b

0.1100 0011 1111 0000b

=
0.1100 0011 1111 0000b

0.1100 0011 1111 0000b
= 1 , (57)

which means that a bird is absolutely one of falcon, pigeon, and
penguin. (Note that falcon, pigeon, and penguin are given as
samples of birds in knowledges (19)–(29).)

From (34) and (35),

fly |bird

= 0.1001 1100 0000 0000b | 0.1100 0011 1111 0000b

=
0.1100 0011 1111 0000b ∧ 0.1001 1100 0000 0000b

0.1100 0011 1111 0000b

=
0.1000 0000 0000 0000b

0.1100 0011 1111 0000b
= 0.6532 · · · , (58)

which means that birds, if anything, fly.
Let “⊕” mean theexclusive-oroperation defined as

x ⊕ y = ¬(x ↔ y) = (x ∧ ¬y) ∨ (¬x ∧ y) (59)

for arbitrary logic formulasx andy. From (34) and (35),

bird ⊕ fly = 0.1100 0011 1111 0000b

⊕ 0.1001 1100 0000 0000b

= 0.0101 1111 1111 0000b , (60)

hence

(bird ⊕ fly) |bird

= 0.0101 1111 1111 0000b | 0.1100 0011 1111 0000b

=
0.1100 0011 1111 0000b ∧ 0.0101 1111 1111 0000b

0.1100 0011 1111 0000b

=
0.0100 0011 1111 0000b

0.1100 0011 1111 0000b
= 0.3467 · · · , (61)

which means that being birds and flying is, if anything, not dif-
ferent in birds.

From (34) and (37),

ride bicycle|bird

= 0.0011 1001 0001 0111b | 0.1100 0011 1111 0000b

=
0.1100 0011 1111 0000b ∧ 0.0011 1001 0001 0111b

0.1100 0011 1111 0000b

=
0.0000 0001 0001 0000b

0.1100 0011 1111 0000b
= 0.0054 · · · , (62)

which means that birds hardly ride bicycles.
From (36) and (37),

ride bicycle|goodreflexes

= 0.0011 1001 0001 0111b | 0.1010 0000 1110 0011b

=
0.1010 0000 1110 0011b ∧ 0.0011 1001 0001 0111b

0.1010 0000 1110 0011b

=
0.0010 0000 0000 0011b

0.1010 0000 1110 0011b
= 0.1989 · · · , (63)

which means that having good reflexes probably does not ensure
riding a bicycle.

D. Complementary Law as a Deductive Inference

Any of the laws, the theorems, and other properties obtained
on a traditional Boolean binary logic system are valid also on
the proposed logic system as implied by its bitwise processing
in logic operations.

A complementary law is

¬x = 1n − x (64)

for an arbitrary logic formulax = 0.x(1)x(2) · · ·x(n)
b, which

is obtained from¬x(i) = 1 − x(i) for everyi = 1, 2, · · ·, n.
For example, when (31)–(37), we have

¬ falcon

= ¬ 0.1000 0011 1110 1111b

= 0.0111 1100 0001 0000b = 0.484619140625
= 0.9999847412109375 − 0.5153656005859375
= 116 − falcon (65)

that verifies (64).

E. Chain Rule as a Deductive Inference

A chain rule is

(x → y) ∧ (y → z) → (x → z) = 1n (66)

for arbitrary logic formulasx = 0.x(1)x(2) · · ·x(n)
b, y = 0.y(1)

y(2) · · · y(n)
b, andz = 0.z(1)z(2) · · · z(n)

b on a Boolean multi-
valued logic system, which suggests

(x → y) ∧ (y → z) ≤ x → z . (67)

 60



Indeed, we have the following fori = 1, 2, · · ·, n.

　x(i)　 0 0 0 0 1 1 1 1
y(i) 0 0 1 1 0 0 1 1
z(i) 0 1 0 1 0 1 0 1

　x(i) → y(i)　 1 1 1 1 0 0 1 1
y(i) → z(i) 1 1 0 1 1 1 0 1

(x(i) → y(i)) ∧ (y(i) → z(i)) 1 1 0 1 0 0 0 1
x(i) → z(i) 1 1 1 1 0 1 0 1

(68)

The last two lines prove

(x(i) → y(i)) ∧ (y(i) → z(i)) ≤ x(i) → z(i) (69)

for i = 1, 2, · · ·, n, hence (67), no matter whatx, y, andz are.
For example, when (31)–(37), since

( falcon→ fly) ∧ ( fly → goodreflexes)
= 0.1110 0000 0001 0000b

= 0.875244140625 (70)

and

falcon→ goodreflexes = 0.1111 1100 1111 0011b

= 0.9880828857421875 , (71)

we have

( falcon→ fly) ∧ ( fly → goodreflexes)
≤ falcon→ goodreflexes (72)

that verifies (67).

F. Bayesian Tautology as a Deductive Inference

A tautology modeled on a Bayesian network, which we call
aBayesian tautologyin this article, is

((x → y) ∧ (y → z)) ∨ ((x → ¬y) ∧ (¬y → z))
↔ (x → z)

= 1n (73)

for arbitrary logic formulasx = 0.x(1)x(2) · · ·x(n)
b, y = 0.y(1)

y(2) · · · y(n)
b, andz = 0.z(1)z(2) · · · z(n)

b, that is,

((x → y) ∧ (y → z)) ∨ ((x → ¬y) ∧ (¬y → z))
= x → z . (74)

Indeed, we have the following fori = 1, 2, · · ·, n.

　x(i)　 0 0 0 0 1 1 1 1
y(i) 0 0 1 1 0 0 1 1
z(i) 0 1 0 1 0 1 0 1

　¬y(i)　 1 1 0 0 1 1 0 0
x(i) → ¬y(i) 1 1 1 1 1 1 0 0
¬y(i) → z(i) 0 1 1 1 0 1 1 1

(x(i) → ¬y(i)) ∧ (¬y(i) → z(i)) 0 1 1 1 0 1 0 0
(x(i) → y(i)) ∧ (y(i) → z(i)) 1 1 0 1 0 0 0 1

x(i) → z(i) 1 1 1 1 0 1 0 1
(75)

The last three lines prove

((x(i) → y(i)) ∧ (y(i) → z(i)))
∨ ((x(i) → ¬y(i)) ∧ (¬y(i) → z(i)))

= x(i) → z(i) (76)

for i = 1, 2, · · ·, n, hence (74), no matter whatx, y, andz are.
For example, when (31)–(37), since

(( falcon→ fly) ∧ ( fly → goodreflexes))
∨ (( falcon→ ¬fly) ∧ (¬fly → goodreflexes))

= 0.1111 1100 1111 0011b

= 0.9880828857421875 (77)

and

falcon→ goodreflexes = 0.1111 1100 1111 0011b

= 0.9880828857421875 , (78)

we have

(( falcon→ fly) ∧ ( fly → goodreflexes))
∨ (( falcon→ ¬fly) ∧ (¬fly → goodreflexes))

= falcon→ goodreflexes (79)

that verifies (74).
The only difference between the Boolean binary logic sys-

tem and the proposed logic system is that the former can take
two truth values and the latter can take2n truth values. But
this difference is crucial since being multivalued widens appli-
cations of Boolean logic systems essentially.

IV. EXPANSION TO FUZZY

A typical multivalued logic system extended from Kleene’s
three-valued logic system [4] is defined as¬x = 1−x, x∧ y =
min(x, y), andx ∨ y = max(x, y) for logic formulasx andy
having truth values in[0, 1], on which the set of logic formu-
las forms no Boolean algebra. Fuzzy logic systems usually are
based on such multivalued logic systems in non-Boolean class.

A fuzzy logic system means an arbitrary logic system de-
fined with terms offuzzy subsets(cf. [5], [6]), where a fuzzy
subset is denoted by{a1: t1, a2: t2, · · ·, an: tn} for members
a1, a2, · · ·, an and membership valuest1, t2, · · ·, tn. We can de-
fine a new fuzzy logic system by regarding Boolean multivalued
logic formulas as members and their truth values as membership
values, which we call aBoolean fuzzy logic system.

This fuzzy logic system in contrast with usual fuzzy
logic systems inherits all the properties obtained on tradi-
tional Boolean binary logic systems, which corresponds to a
bitwise-processable realization of complementary fuzzy logic
system [7], [8].

V. CONCLUSION

This article, by regarding fixed-point binary numbers as
truth values, defined a new multivalued logic system in Boolean
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class such that the set of logic formulas forms a Boolean alge-
bra and that, after learning, we can handle inferences readily
because of Boolean effect.

A bottleneck is that the learning needs a large computational
complexity if the number of atoms or that of knowledges is
large.
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