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Abstract: Embryo implantation in the uterus is an essential process for successful pregnancy in
mammals. In general, the endocrine system induces sufficient embryo receptivity in the endometrium,
where adhesion-promoting molecules increase and adhesion-inhibitory molecules decrease. Although
the precise mechanisms remain unknown, it is widely accepted that maternal–embryo communications,
including embryonic signals, improve the receptive ability of the sex steroid hormone-primed
endometrium. The embryo may utilize repulsive forces produced by an Eph–ephrin system for its
timely attachment to and subsequent invasion through the endometrial epithelial layer. Importantly,
the embryonic signals are considered to act on maternal immune cells to induce immune tolerance.
They also elicit local inflammation that promotes endometrial differentiation and maternal tissue
remodeling during embryo implantation and placentation. Additional clarification of the immune
control mechanisms by embryonic signals, such as human chorionic gonadotropin, pre-implantation
factor, zona pellucida degradation products, and laeverin, will aid in the further development of
immunotherapy to minimize implantation failure in the future.
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1. Main Factors Regulating Endometrial Receptivity for Embryo Implantation

1.1. Endocrine System and Embryo Signals

In mammals, embryo implantation in the uterus is an essential process in successful pregnancy.
In general, the endocrine system regulates endometrial differentiation such that the embryo can
be implanted. The initial endometrial differentiation is induced by estrogen. Then, progesterone
stimulates this estrogen-primed endometrium to differentiate further to make it more suitable for
embryo implantation [1,2]. Estrogen is mainly secreted from growing follicles and progesterone is
produced by the corpus luteum, a newly formed endocrine organ originating from the ovulated
follicle. This sequential endocrine stimulation is closely coordinated with the estrus cycle, creating the
endometrial receptive phase, referred to as an implantation window [3–6].

It is widely believed that such an implantation window, which spans from a few days after
ovulation to several days prior to menstruation, also exists in women [7]. The human implantation
window is estimated to correspond to cycle days 20 to 24 of the menstrual cycle [8]. However,
there has been no study to directly confirm this window. Therefore, we developed an attachment assay
using a human choriocarcinoma cell line, BeWo cells, and human primary endometrial epithelial cell
culture to examine whether human endometrial receptivity changes during the menstrual cycle [9].
In this assay, high attachment rates were observed in endometrial culture derived from the mid-luteal
phase. Of note, except for the mid-luteal phase, the attachment rates were low, suggesting that
human endometrial receptivity changes during the menstrual cycle [10]. As BeWo cells easily
attached to endometrial stromal cells or human endometrial carcinoma-derived Ishikawa cells,
we suggest that certain adhesion-inhibitory factors are present on the endometrial epithelial cell layer.
Consequently, we hypothesized that in the receptive phase, adhesion-promoting molecules increase,
whereas adhesion-inhibitory molecules decrease. In addition, structural changes of epithelial cells,
the so-called uterodome, were reported to be induced on the cell surface of luminal epithelial cells,
which are suggested to be involved in embryo attachment to the endometrial epithelial layer [11,12].

Concomitant with hormonal preparation, direct cross-talk between the embryo and maternal
endometrium is considered necessary to achieve subsequent successful embryo implantation [13,14].
The blastocyst will implant only when this molecular cross-talk is established [15,16]. Although the
precise mechanisms remain unknown, it was proposed that human chorionic gonadotropin (hCG) is one
of the important embryonic signals that increases the receptive ability of the sex steroid hormone-primed
endometrium [17,18]. In nonhuman primates, hCG directly induced the expression of α-smooth muscle
actin (SMA) in baboon endometrial stromal cells and glycodelin in the glandular epithelium, suggesting
that the primate blastocyst signal alters the uterine environment prior to implantation [19]. In humans,
the intrauterine administration of hCG using an intrauterine microdialysis system was reported to inhibit
the expression of differentiation parameters: insulin-like growth factor binding protein-1 (IGFBP-1)
and prolactin, while increasing the expression of implantation-related factors; leukemia inhibitory
factor (LIF) and macrophage colony stimulating factor (M-CSF), and a neoangiogenetic factor: vascular
endothelial growth factor (VEGF), in the mid-luteal human endometrium, suggesting that hCG
regulates endometrial differentiation and vascularization [20,21]. Recently, hyperglycosylated hCG,
an hCG isotype with larger N- and O-linked oligosaccharides, was suggested to play an important role
in embryo implantation [22,23].

In addition to soluble factors, microRNAs secreted from human blastocysts were proposed to be
new embryonic signals that regulate adhesive properties of endometrial epithelial cells. miR-661 from
nonimplanted human blastocysts was taken up by primary human endometrial epithelial cells and it
reduced the attachment of trophoblast cell line spheroids to these epithelial cells [24]. Later, the role
of other noncoding RNAs in maternal–embryo communication through extracellular vesicles was
observed, demonstrating the noncontact transfer of embryonic RNA transcripts to the endometrium
and the altered expression of endogenous transcripts by endometrial cells [25]. A recent study also
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proposed that an embryo-secreted long noncoding RNA, phosphatase and tensin homolog pseudogene
1 (PTENP1), is involved in the endometrial adhesive properties [26].

1.2. Adhesion-Promoting and -Inhibiting Molecules

For human embryo implantation, several adhesion-promoting molecules, such as trophinin [27–29],
L-selectin ligand [30–33], integrinαVβIII [34–37], and CD44 [38–40], were demonstrated to be expressed
on human endometrial epithelial cells during the receptive phase. The expression of integrin βIII was
found to be promoted by the embryonic interleukin (IL)-1 system, supporting the presence of cross-talk
between blastocysts and the endometrial epithelium during embryonic implantation [41]. Recently,
integrin αVβ3 and αVβ5 were reported to be necessary for the leukemia inhibitory factor-mediated
adhesion of trophoblast cells to endometrial cells [36], whereas cell-surface CD44-hyaluronate binding
was proposed to be employed by embryos during initial docking to endometrial epithelial cells [40].
This molecule is also involved in trophoblast invasion [42]. Consistent with the above report,
we reported the possibility that versican, a large chondroitin sulfate proteoglycan that binds to
hyaluronan and forms large extracellular matrix (ECM) aggregates, promotes human embryo
attachment to endometrial epithelial cells [43]. In the bovine uterus, we also proposed that the
interaction between vascular cell adhesion molecule 1 (VCAM1) in endometrial luminal cells and
integrinα4 expressed on the conceptus functions in conceptus adhesion to the uterine endometrium [44].

As a regulatory cell surface protein of adhesion-promoting molecules, we previously reported
that CD9, which regulates integrin function, is specifically expressed on the endometrial luminal and
glandular epithelial cells [45]. CD9 and CD98 were subsequently demonstrated to function in embryo
implantation [46–48]. CD9 is also involved in trophoblast invasion [49–51].

On the other hand, large glycoproteins, such as MUC1, that inhibit the physiological cell-to-cell
interaction were expressed on murine and human luminal epithelial layers [52,53]. Later, the expression
of MUC1 was found to be downregulated by human blastocysts using in vitro experiments,
suggesting that MUC1 acts as an adhesion-inhibiting molecule that is locally removed by human
blastocysts during the adhesion phase [54]. Another large glycoprotein, MUC16, was also found to be
expressed on human endometrial epithelial cells, demonstrating that its expression is reduced on the
cell surface of epithelial cells comprising the uterodome [55].

The above findings suggest that the expression of adhesion-promoting molecules increases,
whereas that of adhesion-inhibiting molecules decreases according to embryonic signals during
an implantation window.

1.3. Repulsive Molecules

A sufficient period is necessary for the cross-talk between embryo and mother in order to regulate
embryo attachment to the endometrium with accurate timing and placement [56]. For example,
implantation sites are regulated equidistantly in response to the number of implanting embryos, as
observed in the pregnant murine uterus (Figure 1). However, it is difficult to explain the precise
mechanisms leading to equidistance of implantation sites only by the balance of expression profiles
between adhesion-promoting and adhesion-inhibiting molecules. Previously, Chen et al. excellently
described the possible mechanisms determining the sites of embryo implantation, proposing factors
such as the uterine recognition of embryos, fine-tuned uterine peristaltic movements, time-controlled
uterine fluid reabsorption and uterine luminal closure, and embryo orientation [57]. To achieve the
above sequential events, we should focus on alternative mechanisms that prevent embryos from
immediately attaching to an inappropriate site of the endometrium.
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supplementation [61]. When estrogen is administered, dormant blastocysts become activated and 
initiate implantation in the progesterone-primed uterus. During this blastocyst–uterine crosstalk 
before implantation, the endometrium undergoes further differentiation, secreting LIF. Notably, 
heparin-binding epidermal growth factor-like signaling was found to be induced in the activated 
blastocysts [62]. 

To investigate the mechanism to prevent premature embryo attachment, we hypothesized the 
involvement of repulsive forces. As repulsive force-inducing molecules, we observed that human 
maternal endometrial epithelial cells express ephrin A1 and human blastocysts express Eph A1, 
leading to the proposal that the Eph–ephrin system is involved in the initial interaction between 
human blastocysts (Eph A1) and the endometrium (ephrin A1) [63]. Ephrin A is a ligand for Eph A, 
and both molecules are located on the cell surface [64,65]. The ligand–receptor binding induces 
bidirectional signals affecting both cells, alters the functions of adhesion molecules [66], and promotes 
cell-to-cell adhesion, inducing arterio-venous anastomosis [67,68]. Of note, it also produces repulsive 
forces between the cells to induce axonal guidance [69]. 

Based on this background, we examined the time-course of mRNA expression of Eph/ephrin A 
in murine embryos. All subtypes of ephrin A were expressed on blastocysts. Importantly, around the 
hatching period, ephrin A expression transiently decreased and then increased again before 
attachment. Immunostaining revealed that ephrin A1 and A3 were expressed on the cell surface of 
the trophectoderm of blastocysts. Moreover, ephrin A3 expression on the blastocysts was weak on 
the opposite side of the inner cell mass, suggesting that the Eph–ephrin system acts as a regulator of 
the apposition site [70]. 

Figure 1. Equidistance of implantation sites in the murine uterus. In the pregnant murine uterus,
the implantation sites are regulated equidistantly in response to numbers of implanting embryos.

From hatching to attachment, the bovine embryo floats in the uterine cavity for 4–5 days and becomes
elongated prior to attachment [58–60]. This period may be an essential stage for embryo–maternal cross-talk.
However, there is little information concerning molecules that assure sufficient distances between the
embryo and endometrium before attachment. In mice, ovariectomy before pre-implantation on day 4 of
pregnancy induces delayed implantation under progesterone supplementation [61]. When estrogen is
administered, dormant blastocysts become activated and initiate implantation in the progesterone-primed
uterus. During this blastocyst–uterine crosstalk before implantation, the endometrium undergoes further
differentiation, secreting LIF. Notably, heparin-binding epidermal growth factor-like signaling was found to
be induced in the activated blastocysts [62].

To investigate the mechanism to prevent premature embryo attachment, we hypothesized the
involvement of repulsive forces. As repulsive force-inducing molecules, we observed that human
maternal endometrial epithelial cells express ephrin A1 and human blastocysts express Eph A1,
leading to the proposal that the Eph–ephrin system is involved in the initial interaction between human
blastocysts (Eph A1) and the endometrium (ephrin A1) [63]. Ephrin A is a ligand for Eph A, and both
molecules are located on the cell surface [64,65]. The ligand–receptor binding induces bidirectional
signals affecting both cells, alters the functions of adhesion molecules [66], and promotes cell-to-cell
adhesion, inducing arterio-venous anastomosis [67,68]. Of note, it also produces repulsive forces
between the cells to induce axonal guidance [69].

Based on this background, we examined the time-course of mRNA expression of Eph/ephrin A in
murine embryos. All subtypes of ephrin A were expressed on blastocysts. Importantly, around the
hatching period, ephrin A expression transiently decreased and then increased again before attachment.
Immunostaining revealed that ephrin A1 and A3 were expressed on the cell surface of the trophectoderm
of blastocysts. Moreover, ephrin A3 expression on the blastocysts was weak on the opposite side of the
inner cell mass, suggesting that the Eph–ephrin system acts as a regulator of the apposition site [70].

On the other hand, Eph A1, which is a receptor of ephrin A, was expressed on the murine
endometrial luminal epithelial cells before embryo attachment. After attachment, EphA1 expression
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markedly decreased at the implantation site, whereas its expression on the luminal epithelial cells was
maintained at nonimplanted sites [70]. Although embryo attachment was inhibited on Eph A1-coated
dishes, when floating blastocysts were transferred to the control dishes, they gradually attached and
spread on the dishes, suggesting that the Eph A signal induces repulsive forces [70]. Considering these
findings, we propose that the Eph–ephrin system functions in creating a sufficient period for cross-talk
between the embryo and mother, providing embryos with an opportunity to attach to appropriate sites
by repeating attachment and detachment in a timely manner (Figure 2). Consistent with the above
suggestion, the Eph–Ephrin A system was also reported to regulate the contact between blastocysts
and endometrium during embryo implantation in swine [71,72], and low expression of Eph–ephrin A1
was later demonstrated to be related to an increase in the number of embryos during implantation [73].
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Figure 2. Possible mechanisms to create an adequate period of cross-talk between the embryo
and mother before attachment by repulsive forces. (A) During human embryo implantation,
several adhesion-promoting molecules, such as trophinin, L-selectin ligand, and integrin αVβIII,
are expressed on endometrial epithelial cells during the receptive phase. In contrast, large glycoproteins,
such as MUC1, that inhibit the physiological cell-to-cell interaction are expressed on the murine
and human luminal epithelial layer. (B) During the implantation window, the expression of
adhesion-promoting molecules increases, whereas that of adhesion-inhibiting molecules decreases
in cooperation with embryonic signals, leading to cell-to-cell interaction between the embryo and
endometrial epithelial cells. This enables the embryo to receive Eph signals from endometrial epithelial
cells through ephrin ligands on its surface, leading to repulsive forces between the embryo and
endometrium. (C–E) By repulsive forces through the Eph–ephrin system, the embryo separates from
the endometrium (white two-way arrow), repeating attachment and detachment. (F) Finally, the embryo
attaches to appropriate sites with suitable timing.

2. Invasion Process of Human Embryos after Attachment to Endometrial Epithelial Cells

2.1. Activation of the Trophectoderm after Attachment and Acquisition of Invasive Properties

After attachment, the human embryo initiates intraepithelial invasion. Activation of the
trophectoderm is considered to be an essential process for subsequent embryo invasion through
intraepithelial spaces toward the endometrial stroma [27]. The trophectoderm layer at the endometrial
site continues to be activated during the migrating process of human embryos on day 7.5 after ovulation.
However, the precise mechanisms leading to this activation remain unknown. As candidates for
activation-inducing molecules, Sugihara reported that trophinin is expressed at the interacting
site between the embryo and endometrium and proposed that trophinin-mediated cell adhesion
functions as a molecular switch for trophectoderm activation in human embryo implantation through
trophinin-dependent tyrosine phosphorylation [27].
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As other candidates, we reported that activated leukocyte cell adhesion molecule (ALCAM)
is expressed on both human blastocysts and endometrial epithelial cells [74]. ALCAM is
a transmembrane molecule that belongs to the immunoglobulin superfamily and mediates cell-to-cell
adhesion by ALCAM–ALCAM homophilic interactions or ALCAM–CD6 heterophilic interactions [75].
By oligomerization, conjugated ALCAM molecules further form a cluster, increasing their adhesive
ability [76]. Furthermore, ALCAM–ALCAM interaction induces the differentiation of stem cells.
In immune cells, CD9 directly associates with ALCAM, regulating homophilic (ALCAM–ALCAM)
and heterophilic (ALCAM–CD6) interactions, increasing ALCAM-mediated cell adhesion and T-cell
migration, activation, and proliferation [77]. ALCAM was detected on the cell surface of human
endometrial glandular and luminal epithelial cells by immunohistochemical staining and flow
cytometry, whereas ALCAM expression on the human embryo was detected in the blastocyst
stage by immunostaining, suggesting that ALCAM–ALCAM interaction is associated with human
embryo attachment to the endometrium [74]. However, several proposed cell-adhesion molecules,
including ALCAM, were not detected by DNA microarray analysis of human trophectoderm biopsy
samples [78]. This should be clarified using current single-cell transcriptome analyzing systems.

2.2. Opening of Tight Junctions in the Endometrial Epithelial Layer

After attachment, the activated embryo initiates intraepithelial invasion in the next step and
invades the maternal endometrial stromal tissues as a mass, opening the epithelial cell layer. During this
process, the intercellular connection of the endometrial epithelial layer becomes reduced, maintaining
the connection between the embryo-attached epithelial cells and basement membrane.

In general, the epithelial layer is tightly conjugated as a barrier. Notably, immune cells migrate
through the epithelial layer from the basolateral to apical membrane [79,80]. Adhesion molecules,
such as CD11b/CD18 and CD47, were reported to be necessary for sequential opening of the
epithelial layer [81,82]. Dendritic cells were reported to open a lateral connection of epithelial
cells, recruiting bacterial antigens from the mucosal epithelium to lymphoid tissues [83]. Although
the precise mechanisms are still unclear, dendritic cells were also reported to express tight-junction
proteins such as occludin, claudin 1, and zonula occludens 1 [83].

During human embryo invasion, the activated trophectoderm migrates to the intercellular spaces of
epithelial cells with reduced tight junctions. Through this process of trophoblast invasion, the connection
between epithelial cells and the basement membrane must be maintained. Proteases degrade the
epithelial structures to weaken the tight junctions among epithelial cells. However, they also reduce
attachment to the basement membrane, causing detachment of the epithelial cell layer that maintains
embryo attachment. In contrast to the immune system, epithelial–mesenchymal transition (EMT) was
reported to be involved in opening of the epithelial layer [84–87]. However, EMT simultaneously
reduces the connection of epithelial cells to the basement membrane, undermining the anchoring
foundation of the implanting embryo. Consequently, EMT is not suitable for subsequent human
trophoblast invasion.

After the embryo has firmly attached to the endometrium via several adhesion molecules, luminal
epithelial cells receive continuous signaling from the attached embryo. The epidermal growth factor
(EGF)-receptor system was proposed to induce the reduction of tight junctions of luminal epithelial
cells by reducing the local calcium concentration at the trophoblast–endometrial interface [88]. As other
candidates, we paid attention to the Eph–ephrin A system again because after the embryo has tightly
adhered to epithelial cells, Eph–ephrin signals from the embryo can be continuously transduced to the
endometrium [89]. The Eph–ephrin system was reported to induce reduction of the tight junction of
epithelial cells via claudin 4, 5, and zonula occludens-1 [90,91]. The Eph–ephrin system was also found
to promote cell attachment to the extracellular matrix [92]. Thus, we considered that this system reduces
the endometrial epithelial barrier without destroying the connection between the embryo-attached
epithelial cells and basement membrane [89] (Figure 3). On immunohistochemical study, Eph A1 and
4 were expressed on the luminal and glandular epithelium. Eph A2 was expressed on the pinopode-like
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sites of luminal epithelial cells [89]. Ephrin A1 induces phosphorylation in EphA2 and A4 in Ishikawa
cells, a human endometrial carcinoma-derived cell line. Biological assays also revealed that the Eph
A–ephrin A interaction induces cell attachment and intercellular dissociation in Ishikawa cells [93].
Ephrin A1-induced cell attachment was associated with the phosphorylation of focal adhesion kinase
even in the presence of EDTA, suggesting the involvement of certain Ca ion-independent molecules.
In contrast, EphA1-stimulation did not induce attachment of Ishikawa cells.
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Figure 3. Possible mechanisms of human embryo invasion after attachment to endometrial epithelial
cells. (A) After the embryo has firmly attached to the endometrium via several adhesion molecules,
luminal epithelial cells receive continuous ephrin A signaling from the attached embryo (#1). (B) The
Eph–ephrin system induces reduction of the tight junction of epithelial cells (#2), opening the epithelial
cell layer (yellow two-way arrow). This system also promotes cell attachment to the extracellular matrix
(#3) without destroying the connection between the embryo-attached epithelial cells and the basement
membrane (BM). (C) This system may promote migration of the activated trophectoderm (#4) into the
intercellular spaces of epithelial cells with reduced tight junctions.

In the porcine uterus, the expression of Eph A1, A2, A4, and A7 was strongly detected in
endometrial epithelial cells during early pregnancy. Ephrin A1 stimulated the proliferation of
endometrial luminal epithelial cells via the activation of phosphoinositide 3-kinase (PI3K) and
mitogen-activated protein kinase (MAPK) signaling proteins, suggesting that ephrin A1 is involved in
the interactions between porcine blastocysts and endometrial luminal epithelial cells by activating
PI3K and MAPK signal transduction pathways [94].

Notably, we observed that both EPH A1 and ephrin A4 signals promoted the invasion of a human
choriocarcinoma-derived cell line, JEG-3 cells, without affecting cell proliferation [95]. It was also
proposed that Eph A2 promotes the invasion and proliferation of the human extravillous trophoblast
(EVT) through the ephrin-A1 ligand [96].

Based on these findings, we propose that the ephrin A signal induces intercellular dissociation
and adhesion to the basement membrane in endometrial epithelial cells as embryo signals and suggest
that this signal facilitates subsequent trophoblast invasion (Figure 3).

3. Positive Role of the Immune System in Embryo Implantation and Placentation

3.1. Regulation of Endometrial Receptivity and Embryo Invasion by Embryonic Signals

It is widely accepted that cytokine networks function in the establishment of endometrial receptivity,
suggesting that the immune system plays an important role in embryo–maternal cross-talk [97–100].
In mice, seminal fluid was demonstrated to affect immune cells to induce endometrial differentiation
and promote embryo implantation by activating inflammation and inducing immunological changes
in the female reproductive tract, which facilitate endometrial receptivity [101,102]. The significance of
this mechanism in women is an important subject to improve the outcome of in vitro fertilization and
embryo transfer (IVF-ET) therapy [103].

On the other hand, we found that the intravenous administration of splenocytes from early
pregnancy induced successful implantation in pseudo-pregnant day 2 recipient mice by promoting
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endometrial differentiation, which is suitable for embryo implantation [104]. In the delayed implantation
model, the administration of splenocytes induced LIF expression in the uterus and subsequent embryo
implantation [105]. In contrast to pregnant mice, splenocytes from pseudo-pregnant mice had no
significant effects. As pseudo-pregnant recipient mice had been sensitized with the seminal fluid of
vasectomized male mice [106], we considered that developing embryos in the Fallopian tube and uterus
affect the maternal immune function to prepare suitable uterine conditions for implantation [107] and
proposed the presence of the dual control of endometrial differentiation before embryo attachment via
the endocrine and immune systems by embryonic signals [108–110].

The next question is how the maternal immune system recognizes the presence of a developing
embryo before implantation and distinguishes the developing embryo from nonfertilized eggs and/or
other organisms in the female genital tract [107]. To achieve this, the developing embryo should
convey species- and embryo-specific signals, i.e., embryonic signals, to the maternal immune system.
Early pregnancy factors that inhibit T-cell-induced rosette formation were reported to be detected
just after fertilization [111]. Later, several substances, such as platelet activating factor, thioredoxin,
and chaperonin 10, were proposed as early pregnancy factors [112–114]. It was also reported that
the embryo-derived pre-implantation factor (PIF), a novel embryo-specific 18-kDa peptide that is
specifically expressed on the fetus and placenta [115], was secreted at the two-cell stage and was able
to be detected in the maternal sera prior to implantation [116]. Its many biological roles are under
investigation [115,117,118].

Importantly, early pregnancy factor (EPF) is not species- or embryo-specific, whereas PIF is not
species-specific to the maternal immune system. Consequently, as a new candidate for the embryonic
signal before implantation, we paid attention to the zona pellucida (ZP) because it functions in the
species- and oocyte-specific binding of spermatozoa [119]. As developing embryos actively degrade ZP,
which is an abundant store of species- and oocyte-specific glycoproteins, from fertilization to hatching,
we proposed that degradation products of ZP, including their sugar moieties, are utilized as intrinsic
embryonic signals, which transmit information about the presence of the developing embryo to the
maternal immune system in the reproductive tract [107].

As described above, hCG, a species- and embryo-specific glycoprotein, was proposed to directly
affect the endometrial function as an embryonic signal after hatching [17–21,23]. Notably, this leading
embryonic signal is also considered to induce an endometrial immune environment that accepts
allograft implantation of the embryo, inducing fetal immune tolerance [120–122]. Approximately
half a century ago, urinary hCG was demonstrated to suppress immune reactions, leading to the
proposal of an essential role of hCG in the induction of immune tolerance to the fetus [123]. However,
the following studies demonstrated that highly purified hCG did not have immunosuppressive
effects [124]. Since then, the effects of hCG on immune cells remained controversial for a long time.
Based on this background, we reported that recombinant hCG binds and activates CD14-positive
monocytes to promote IL-8 production partially through the nuclear factor-kappa B (NF-κB) pathway
at relatively high concentrations of more than 10 IU/mL. This hCG-induced IL-8 production was
inhibited by the exogenous excess of D-mannose, suggesting that hCG regulates the peripheral blood
mononuclear cell (PBMC) function through sugar chain receptors [125]. Later, it was demonstrated
that a high concentration of hCG regulates uterine NK cell proliferation via mannose receptors
rather than by luteinizing hormone (LH)/hCG receptors [126]. The carbohydrate chains of urinary
hCG are largely cleaved before urine production [127]. Accordingly, the possible involvement of
a carbohydrate-mediated primitive mechanism in the maternal response by the immune system may
explain the previous discrepancy in the immunosuppressive effects on immune cells between urinary
crude hCG and highly purified hCG and the reason why such a high concentration of hCG is necessary
to maintain normal pregnancy [125].

In contrast to the above lectin–glycan interaction, hCG induces regulatory T-cells to migrate
to the trophoblast through LH/hCG receptors that are expressed on regulatory T-cells [120].
Subsequent studies suggested the essential role of hCG in pregnancy-induced immune tolerance
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and embryo implantation, regulating the establishment of an adequate embryo–endometrial
relationship [121,128]. In addition, CD19+CD24(high+)CD27+ regulatory B-cells were demonstrated
to produce IL-10 by hCG stimulation via LH/hCG receptors [129]. This type of regulatory B-cell was
proposed to mediate the positive effects of hCG on the immune environment during pregnancy [130,131].

In invasion assays using the murine embryo and BeWo cells, peripheral blood mononuclear cells
(PBMCs) derived from women in early pregnancy promoted the murine trophectoderm and BeWo
cell invasion more than those obtained from nonpregnant women. Importantly, when PBMCs from
nonpregnant women were incubated with hCG, hCG-treated PBMCs promoted invasion more than
nontreated PBMCs by soluble chemoattractive factors derived from PBMCs, suggesting that hCG
alters PBMC functions to facilitate embryo implantation [132,133]. Later, similar effects of hCG on
PBMCs to promote trophoblast invasion were reported using JAR cells, a cell line established from
a human choriocarcinoma, inducing increases in matrix metalloproteinase (MMP)-2, MMP-9, and VEGF,
and decreases in tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 expression [134].

Based on these findings, we propose that hCG stimulates maternal immune cells at the implantation
site through lectin–glycan interaction, which in turn, promotes embryo attachment and invasion based
on cooperation between the endocrine and immune systems [110].

3.2. Regulation of Extravillous Trophoblast (EVT) Invasion by Embryonic Signals

During human placental formation, the cytotrophoblast differentiates into EVT in the anchoring
villi and invades the endometrial stromal tissues as a single cell, reconstructing maternal spiral arteries.
The reduction of arterial contractility caused by arterial reconstruction facilitates adequate maternal
blood flow into the intervillous spaces [135]. Failure of this process will lead to an insufficient blood
supply and cause placental dysfunction and preeclampsia in the late stage of pregnancy [136].

As a representative embryonic signal during human trophoblast invasion, hCG was initially reported
to directly reduce trophoblast invasion by inhibiting the enzyme activity of urokinase-plasminogen
activator [137]. However, subsequent studies demonstrated that hCG increased the invasion and migration
of JEG-3 cells, a trophoblastic cell line derived from choriocarcinoma [138]. hCG was also reported to
increase cell migration of an EVT cell line, HTR-8 SVneo cells, through an insulin-like growth factor-II
axis [139]. Later, hyperglycosylated hCG secreted by the invasive EVT, but not hCG produced by the
syncytiotrophoblast, was found to promote trophoblast invasion [140]. It was also reported that hCG,
hCGβ, and their hyperglycosylated forms stimulate the invasion of JEG-3 cells through an independent
pathway involving the classical LH/hCG-receptor [141]. As described above, hCG-stimulated immune cells
were demonstrated to promote trophoblast invasion by secreting chemoattractants through a paracrine
mechanism [132–134]. Of note, human endometrial stromal cells were reported to increase the invasion of
HTR-8/SVneo cells under hCG stimulation, suggesting paracrine effects of hCG on trophoblast invasion
through endometrial stromal cells and local immune cells [115].

As a novel embryonic signal candidate, we identified a new cell surface aminopeptidase, initially
named ‘laeverin’, which belongs to the M1 peptidase family [142], and was later termed ‘aminopeptidase
Q’ [143]. Members of the M1 family of aminopeptidases share a common peptide-binding site
(GXMEN) and peptidase activity motif (HEXXHX18E). Primate laeverin has a unique peptide-binding
motif (HXMEN) where the first glycine (Gly) residue is substituted with histidine (His) [143],
inducing significant changes in substrate specificity toward natural peptide hormones [144]. Laeverin is
specifically expressed on EVT in the placenta from early and term pregnancy. In primary villous explant
cultures, laeverin expression was induced on the cell surface of the outgrowing EVT, and secretion
of soluble laeverin was detected in the culture media. The invasion of EVT isolated from primary
culture was suppressed by the reduction of laeverin mRNA expression, whereas the soluble form
of recombinant laeverin promoted EVT invasion, suggesting a regulatory role of laeverin in EVT
invasion [145]. Similar to HLA-G, the expression of laeverin is specifically limited to EVT [142].
The co-expression of HLA-G and laeverin suggests specific roles of laeverin in the regulation of immune
tolerance, which should be clarified in the future.
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4. Topics of Clinical Application of Immune Therapy

At present, implantation failure is one of the most important clinical problems in IVF treatment.
It should be noted that IVF therapy skips a large part of the maternal immune recognition process
when the developing embryo is present in the female genital tract. Consequently, to achieve successful
implantation, the precise assessment and accurate control of an active state of maternal immune
tolerance mediated by regulatory T-cells is considered to be necessary [146]. Recently, personalization of
immune treatment was recommended based on uterine immune profiles such as low immune activation
or immune overactivation [147]. Currently, use of the new immunosuppressive agents tacrolimus and
cyclosporine, which minimize immune rejection of transplanted organs, has been proposed as useful
for infertile patients with immune overactivation [148,149]. When infertile patients with overactive
immune conditions were carefully selected, tacrolimus was reported to improve the pregnancy
outcome [149–151]. To support this approach, a common mTOR (mammalian target of rapamycin)
inhibitor, sirolimus, which effectively prevents allograft rejection, was recently demonstrated to
improve clinical pregnancy and live birth rates after repeated IVF therapy failures by reducing the
Th17/Treg cell ratio [152].

In contrast to immunosuppressive therapy, we previously developed a novel therapy using autologous
PBMCs. Briefly, PBMCs are isolated from patients and incubated with hCG, an embryonic signal, in
order to sensitize them. The activated PBMCs are administered into the uterine cavity to induce adequate
endometrial differentiation three days before blastocyst transfer. This treatment effectively improved
the pregnancy and implantation rates in patients with four or more repeated IVF therapy failures [153].
The intrauterine administration of corticotropin-releasing hormone (CRH)-treated autologous PBMCs was
also demonstrated to improve clinical pregnancy rates of patients with repeated implantation failure [154].
Currently, the effectiveness of PBMC therapy has been positively reported [155–158].

Embryonic signals elicit two different effects: induction of immune tolerance and adequate
local inflammation; the former protects against immune rejection, whereas the latter contributes
to endometrial differentiation and maternal tissue remodeling during embryo implantation and
placentation [108–110] (Figure 4). At present, there are few effective therapies to induce adequate
endometrial differentiation and receptivity for infertile patients who poorly respond to endocrine
stimulation. In this regard, the intrauterine administration of embryonic signal-activated PBMCs is
one of the promising approaches to induce favorable endometrial differentiation and inflammatory
reactions together with a favorable immune environment for embryo implantation [108] (Figure 4).
It should also be noted that PBMCs can change the function or structure of endometrial surface
molecules by secreting proteases. Since PBMCs have been suggested to move from the uterine
cavity toward endometrial stromal tissue, they may create several pathways for subsequent embryo
attachment and invasion.
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Figure 4. Strategy of immune therapy using embryonic signals. Embryonic signals from the genital
tract act on both endocrine (red arrows) and immune (blue arrows) systems to induce endometrial
differentiation and immune tolerance. To assist the endocrine system, hormone replacement therapy
was recommended to promote endometrial receptivity (red triple lines), whereas to minimize immune
rejection, immunosuppressive agents were administered to elicit immune tolerance (blue triple line).
On the other hand, to induce sufficient endometrial differentiation and receptivity in infertile patients
who poorly respond to endocrine stimulation (black dotted line), intrauterine administration of
embryonic signal-activated peripheral blood mononuclear cells (PBMCs) is one of the promising
approaches that may induce favorable endometrial differentiation and inflammatory reactions together
with a favorable immune environment for embryo implantation (black triple lines).

5. Conclusions

In conclusion, we propose the involvement of repulsive molecules, the Eph–ephrin system,
in endometrial receptivity for embryo implantation, together with adhesion-promoting and
adhesion-inhibiting molecules. This Eph–ephrin system may contribute to opening tight junctions
among endometrial epithelial cells to induce embryo invasion toward endometrial stroma tissues,
suggesting that Eph–ephrin molecules are new candidates for embryonic signals that induce suitable
local inflammation for embryo invasion. Embryonic signals also elicit two different effects from the
immune system: induction of immune tolerance that protects against immune rejection, and sufficient
local inflammation that functions in endometrial differentiation and remodeling during embryo
implantation and placentation. Further clarification of the precise roles and possible clinical usage of
embryonic signal candidates, such as PIF, ZP degradation products, or laeverin, will help improve
immunotherapy to minimize implantation failure in the future.
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Abbreviations

ALCAM activated leukocyte cell adhesion molecule
BM basement membrane
ECM extracellular matrix
EMT epithelial–mesenchymal transition
EVT extravillous trophoblast
hCG human chorionic gonadotropin
IGFBP-1 insulin-like growth factor binding protein-1
IL interleukin
IVF-ET in vitro fertilization and embryo transfer
LIF leukemia inhibitory factor
M-CSF macrophage colony stimulating factor
MMP matrix metalloproteinase
mTOR mammalian target of rapamycin
PBMC peripheral blood mononuclear cell
PIF pre-implantation factor
PTENP1 phosphatase and tensin homolog pseudogene 1
TIMP tissue inhibitor of metalloproteinase
VCAM1 vascular cell adhesion molecule 1
VEGF vascular endothelial growth factor
ZP zona pellucida
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