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Abstract: Research Highlights: To ensure sustainable forest regeneration, it is important to clarify
whether new recruits or advanced regenerants are more likely to be stripped. Therefore, the effects
of bark stripping on saplings in subalpine forests with abundant saplings should be analyzed by
regeneration mode, but there have been no such studies until now. Background and Objectives:
I investigated the effects of bark stripping by Cervus nippon on saplings in a subalpine
coniferous forest in central Japan to (1) reveal differences in bark stripping between new recruits
and advanced regenerants and (2) clarify the factors affecting survivorship. Materials and Methods:
A 50 m × 140 m (0.7 ha) plot was set in the old-growth subalpine coniferous forest. All trees in the
plot that were ≥2 m in height were tagged, identified to species, measured diameter at breast height
and recorded bark stripping by deer. These trees and new recruits were counted and measured in 2005,
2007, 2012, and 2017. I compared saplings recruited in 2007, 2012, and 2017 (“new recruits”) with
existing saplings of the same size (“advanced regenerants”). Results: The density of new recruits of
Abies mariesii and Tsuga diversifolia increased, whereas that of Abies veitchii decreased. The proportion
of stripped saplings was greater in new recruits than in advanced regenerants, significantly so
in A. veitchii, which also had the highest maximum bark stripping ratio. Factors affecting the
survivorships applied by the regression tree analysis were the maximum stripping ratio of stems for
the two Abies species and the initial size for the T. diversifolia. Conclusions: Bark stripping by deer was
more intensive on new recruits than on advanced regenerants in a subalpine forest, and regeneration
in canopy gaps might fail because of intensive bark stripping in areas overabundant in deer.
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1. Introduction

In Japan, hunting for sika deer (Cervus nippon) was banned before 1950s, because deer abundance
was declined due to overexploitation [1,2]. Sika deer abundance was sharply increasing from 1970s
and possibly explanation of the population growth was decline of snow by global warming to reduce
fawn mortality, decline of number of hunters and abandonment of agricultural field by depopulation
in countryside [1]. As a result, sika deer overabundant caused severe damage in agricultural,
forestry and natural ecosystems in Japan.

Overabundant deer cause serious issues for forest ecosystems by limiting the regeneration of
natural forests [3–5], damaging planted trees [6–10], and consequently altering the species composition,
stand structure, and ecosystem functions of forests [11,12]. These issues are caused mainly by foraging
behaviors: stripping of bark from saplings and trees [13–15] and browsing on those and understory
vegetation [16–18]. Bark stripping greatly damages saplings and trees by destroying xylem water
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conductivity [19] and increasing fungal infection [13]. In some areas overabundant in deer, such as
central Japan, deer affect saplings and trees much more by bark stripping than by browsing [8,14,15,20].

Subalpine forests regenerate in part through the formation of small gaps in the canopy, which
other trees then fill (e.g., [21–23]). Regeneration in subalpine coniferous forests is characterized by
small spatial scales (mean gap size in Japan is about 40 m2, [21]) and by rich advanced regeneration
beneath canopy trees [22,24].

Studies of bark stripping by deer revealed that the size dependency of preferred species depends
on deer abundance [2,25–27]. Some studies showed that smaller saplings and trees were commonly
stripped [7,9,10,28]. Thus, in a forest with abundant saplings, saplings would be stripped more than
large trees. In subalpine coniferous forests, new recruits and advanced regenerants of the same size,
but with different ecological functions, occur together. New recruits appear in good light conditions
allow them to grow steadily until they achieve canopy closure. Advanced regenerants have already
grown beneath the canopy and wait for gaps to be created, and then grow after canopy gap creation
to become canopy trees [21]. Thus, saplings of both generation modes are important in sustaining
forest dynamics. To ensure sustainable forest regeneration, it is important to clarify whether new
recruits or advanced regenerants are more likely to be stripped. Therefore, the effects of bark stripping
on saplings in subalpine forests with abundant saplings should be analyzed by regeneration mode,
but there have been no such studies until now.

Deer are attracted to rich forage sites with better light [29]. Therefore, browsing and bark stripping
would be more common in gaps than under the closed canopy. Several studies have reported the
relationship between canopy condition and deer browsing in relation to gap size partitioning and fencing
effects [30–35], but few studies have considered bark stripping [5,25]. Survivorship of stripped trees is
affected by interactions of stripped area, competition, and tree size [13]. Thus, studies of bark stripping
in a subalpine forest with abundant saplings should include such factors and regeneration mode.

Here, I investigated the effects of bark stripping by deer on saplings in a subalpine coniferous
forest in central Japan and answer the following questions: (1) are there any differences in bark
stripping between new recruits and advanced regenerants and (2) what factors affecting survivorship?

2. Materials and Methods

2.1. Study Site

The study was conducted in a subalpine zone on the northern slope of Mt. Fuji, central Japan
(2100 m above sea level [a.s.l.]; 35◦22′ N, 138◦41′ E). At the nearest meteorological station
(Kawaguchiko; 860 m a.s.l.) the mean annual precipitation was approximately 1600 mm and the mean
annual temperature was 10.6 ◦C. Snow cover at the site was usually 50 cm from December to April.

Most of the area was covered by old-growth forests, typically dominated by Abies mariesii,
Abies veitchii, and Tsuga diversifolia [24,36]. Some sections of the forest were disturbed by a road built
around 50 years ago, whereas other parts retained their old-growth state [37]. The understory of
subalpine coniferous forests in Japan is classified as herb, dwarf bamboo, or moss type [24]; the study
forest is the moss type. The estimated density of sika deer, which strip bark in this area, increased
sharply from 1.4/km2 in 2005 to 55.1/km2 in 2012 [38]. In the study area, coniferous tree species had been
stripped but not heavily browsed by sika deer [8,15,20], in contrast to other regions (e.g., [17,31,39,40]).
The study site is described in detail by Nagaike [15,37].

Seasonal migration of sika deer in the study area is unclear, but that would be towards safer
area avoiding hunting and culling and warm and less snowy area in winter [41,42]. Jiang et al. [8]
showed that the seasonal peak of bark stripping in A. veitchii plantations in 1500 m a.s.l. at Mt. Fuji was
March–April because sika deer needs more nutrition and easily digested food due to increased nutrient
demands. Forest floor in the study stand (2100 m a.s.l.) in March–April is covered by snow, but sika
deer often observed on the snow by camera trapping in Yamanashi prefecture and could approach to
the saplings of coniferous trees. Thus, sika deer might bark stripped from late spring to early summer.
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2.2. Field Study

In 1999, a 50 m × 140 m (0.7 ha) plot was set in the old-growth subalpine coniferous forest.
The canopy layer was composed of only three evergreen coniferous tree species: A. mariesii, A. veitchii,
and T. diversifolia [37]. The plot was divided into 280 cells of 5 m × 5 m. In 1999, all trees in the cells that
were ≥2 m in height were tagged and identified to species. Their diameter at breast height (DBH; 1.3 m)
was measured. These trees and new recruits were counted and measured in the summer in 2005, 2007,
2012, and 2017. I compared saplings recruited in 2007, 2012, and 2017 (“new recruits”) with existing
saplings of the same size (“advanced regenerants”), because bark stripping has size dependency
(see Results). The three species have high shade tolerant ability and both regeneration mode.

The degree of bark stripping visible on each tree was recorded in 2007, 2012, and 2017 as the
proportion of the tree circumference that had been stripped at a given height, in increments of 10%.
This proportion is referred to as the bark stripping ratio (SR). A 100% SR indicated that deer had
stripped all of the bark from the circumference.

2.3. Analysis

I analyzed two periods (2007–2012 and 2012–2017). Because most trees suffered repeated
stripping [15,43], I determined the maximum bark stripping ratio (MSR) of each tree during each
period. Survivorship ratio was calculated as the ratio of the number of the end of the census period to
the number of stems alive at the beginning of the study in each study period. To analyze the effects
of canopy condition and tree competition (i.e., shading and crowding) on focal saplings, I used the
total cumulative basal area, as an index of canopy condition and competition, in the cell where a focal
saplings located, as a competition index (CI). The reason why I chose the total cumulative basal area as
CI was described in detail in Nagaike [15].

The CI was compared between new recruits and advanced regenerants by using the asymptotic
Wilcoxon signed-rank test. The ratio of the number of stripped saplings to the total number of focal
saplings and the survivorship ratio of the focal saplings of each species were compared between
regeneration modes by using the exact Wilcoxon signed-rank test.

To identify factors affecting the survivorship of the focal saplings (i.e., the size of the focal saplings,
regeneration mode, MSR, and CI), I used recursive partitioning and regression tree analysis [44].
This analysis uses a binary recursive partitioning approach to split the data set into subsets based
on explanatory variables chosen to minimize the deviance in the response variables in each of
the resulting subsets. The survivorship of each focal sapling in each study period is the response
variable. As explanatory variables I used the DBH in the earlier year (i.e., 2007 for 2007–2012 and 2012
for 2012–2017), the CI in the later year (i.e., 2012 for 2007–2012 and 2017 for 2012–2017), the MSR,
and regeneration mode. Since allowing the regression tree to grow unpruned will result in an overfitted
model as noise is fitted along with data [45], I used a complexity parameter for pruning splits
in each analysis.

All statistical analyses were performed in R [46], and the regression tree analysis was performed
in the “rpart” package [44].

3. Results

3.1. Stand Structure

Bark stripping was biased to smaller size classes of saplings of each species (Figure 1). The numbers
of trees of each species in smaller classes decreased sharply over time, particularly in A. veitchii,
although some A. veitchii trees reached larger size classes. The density of new recruits of A. mariesii
and T. diversifolia increased from 2007 to 2017, but that of A. veitchii decreased (Table 1).
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Table 1. Size and density of new recruits. 

  DBH (cm) Density (/ha) 
Species  Min Median Max 

Abies mariesii 2007 1.3 2.2 3.7 12.9 
 2012 1.6 2.4 3.2 28.6 
 2017 1.5 2.7 6.0 50.0 

Abies veitchii 2007 0.4 2.1 4.1 22.9 
 2012 1.3 2.3 3.2 14.3 
 2017 1.4 2.7 5.7 12.9 

Tsuga diversifolia 2007 0.1 1.2 5.5 18.6 
 2012 0.7 1.7 3.4 25.7 
 2017 1.1 1.7 5.3 30.0 

Figure 1. Diameter at breast height distribution of the three conifer species.
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Table 1. Size and density of new recruits.

DBH (cm) Density (/ha)
Species Min Median Max

Abies mariesii 2007 1.3 2.2 3.7 12.9
2012 1.6 2.4 3.2 28.6
2017 1.5 2.7 6.0 50.0

Abies veitchii 2007 0.4 2.1 4.1 22.9
2012 1.3 2.3 3.2 14.3
2017 1.4 2.7 5.7 12.9

Tsuga diversifolia 2007 0.1 1.2 5.5 18.6
2012 0.7 1.7 3.4 25.7
2017 1.1 1.7 5.3 30.0

The cumulative basal area of new recruits was smaller than that of advanced regenerants,
indicating that the new recruits were located beneath sparse canopy with less competition and better
light (Table 2).

Table 2. Comparisons of cumulative basal area in each cell where saplings grew, as a competition
index (CI).

New Recruits Advanced
Regenerants

Asymptotic Wilcoxon
Signed-Rank Test

Mean SD Density Mean SD Density
Species (m2/ha) (/ha) (m2/ha) (/ha)

Abies mariesii 2007–2012 50.3 45.6 12.9 57.3 39.8 241.4 p < 0.001
2012–2017 51.8 41.5 28.6 61.8 33.9 97.1 p < 0.001

Abies veitchii 2007–2012 36.4 28.3 22.9 61.2 33.1 224.3 p < 0.001
2012–2017 64.9 27.5 14.3 64.9 35.3 64.3 p < 0.001

Tsuga diversifolia 2007–2012 52.5 31.8 18.6 58.3 34.0 485.7 p < 0.001
2012–2017 51.9 34.6 25.7 61.0 35.3 204.3 p < 0.001

3.2. Bark Stripping

In 2017, the proportion of stripped saplings was greater in new recruits than in advanced
regenerants, significantly so in A. veitchii (Figure 2). In A. mariesii, it was higher in advanced
regenerants in 2012 but in new recruits in 2017 (Figure 2). In T. diversifolia, it was significantly higher
in new recruits in 2012. MSR was significantly larger in new recruits and was highest, at 47.1%,
in A. veitchii in 2007–2012 (Table 3).
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Table 3. Comparisons of maximum bark stripping ratio between new recruits and advanced
regenerants (%).

New
Recruits

Advanced
Regenerants

Exact Wilcoxon
Signed-Rank Test

Species Mean SD Mean SD

Abies mariesii 2007–2012 33.3 43.3 21.8 35.4 p < 0.001
2012–2017 16.8 31.6 22.8 33.7 p < 0.001

Abies veitchii 2007–2012 47.1 32.0 33.9 38.1 p < 0.001
2012–2017 43.3 25.5 24.9 31.4 p < 0.001

Tsuga diversifolia 2007–2012 13.3 29.6 9.2 22.1 p < 0.001
2012–2017 30.0 39.4 10.0 23.6 p < 0.001

MSR was larger in A. veitchii than in A. mariesii and T. diversifolia. Survivorship did not differ
significantly between new recruits and advanced regenerants (Figure 3). Separating the first node of
the regression tree analysis of the two Abies species in both study periods at their MSR (Figure 4a,b)
and that of T. diversifolia at initial size revealed the factors affecting the survivorship of saplings of each
species (Figure 4c). The CI was not selected in the models.
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of the three conifer species. At the first node, the first line gives the most influential factor affecting the
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data into homogeneous clusters at each node, according to whether they meet the criterion (death to
the left and survive to the right). MSR—maximum bark stripping ratio; BA—basal area; D—diameter
at breast height; Reg—regeneration mode. (a) Abies mariesii, (b) Abies vetichii, (c) Tsuga diversifolia..

4. Discussion

4.1. Effects of Regeneration Mode on Bark Stripping

New recruits can reach the canopy because of good light and low competition in gaps [21],
but gaps can attract ungulate herbivores because of the rich forage [29]. Thus, gaps have positive
effects on resources essential for tree growth but negative effects on survival through competition
and browsing [30]. Here, new recruits were stripped more than advanced regenerants (Figure 2;
Table 3), although saplings of suitable size for bark stripping were more abundant among advanced
regenerants (Figure 1; Table 1). Walters et al. [32] showed that shrub-herb vegetation increased with
canopy gap size and decreased deer browsing on tree seedlings by being more attractive for foraging.
Here, since the understory vegetation was sparse even in better light conditions because of the
moss-type understory [24], bark stripping of saplings would be concentrated on new recruits.

Migration of sika deer was affected with not only food sources but also human interactions.
For example, in hunting season (November–March), sika deer has avoided hunting area even in suitable
foraging sites (e.g., pastures) and moved to safer sites even with poor forage (e.g., forested areas
prohibited the hunting) [41]. Main forage of sika deer was usually grass and forbs [1]. In the study
forest, those plants were originally scare, thus deer would eat bark of subalpine trees from late spring
to early summer.

New recruits were stripped more than advanced regenerants (Figure 2), although survivorship
did not differ significantly (Figure 3) and the regeneration mode was not a significant factor in the
regression tree analysis (Figure 4). MSR in part determined the survivorship of saplings of both
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Abies species: saplings were likely to die if MSR was >75% in A. mariesii in both study periods; >90%
in A. veitchii in 2007–2012 and >65% in 2012–2017 (here); and >80% in A. veitchii [15]. In A. veitchii,
MSR was lower in 2007–2012 than in 2012–2017, indicating that fewer saplings might have been
sensitive to mortality due to bark stripping in 2007–2012. Thus, the intensity of bark stripping of
individual stems is important for their survivorship, regardless of regeneration mode.

4.2. Species Preference for Bark Stripping

Factors affecting the survival of saplings differed between species: deer effects for Abies species
but initial size for T. diversifolia, reflecting susceptibility to competition effects (Figure 4). This difference
could alter the future species composition if deer effects were to continue. Survivorship of T. diversifolia
saplings was affected by stem size (Figure 4): smaller saplings were more likely die; the explanation
is that fewer T. diversifolia trees were stripped than Abies trees [15] and MSR is higher in Abies
species (Table 3). Species preference for bark stripping [47,48] is explained mainly by bark chemical
and nutrient contents [8,49–52], bark physical properties [51,53], and stem morphology [39]. Why the
Abies species were preferred to T. diversifolia is not clear, but other studies in central Japan showed the
same result [14,20].

The number of new recruits of A. veitchii decreased over time (Table 1) because of greater bark
stripping of this species (Figure 2; Table 3). This result indicates that bark stripping by sika deer could
reduce the survivorship and growth of new recruits (Table 2) and limit regeneration in this forest,
particularly by A. veitchii. Stand structure and species composition have been changing, particularly
through the reduction of tree recruitment [10,33,54]. The number of canopy trees was stable in the
study period (Figure 1) because of the absence of major disturbance (e.g., windthrow), but that of
saplings decreased sharply, particularly A. veitchii. If canopy decline were to occur in the future [31],
a lack of saplings, particularly new recruits, would compromise stand structure and alter species
composition in the forest.

5. Conclusions

The sharply increasing number of bark stripped trees [15] would be reflected by the increasing
number of sika deer. The dramatic increase of deer density could lead to food shortage and might
change their food habit from forbs and grass to tree bark. Species preferred by deer for bark stripping
and browsing may fail to regenerate, and consequently canopy species composition might change
through the decline of such species [18,31,54]. New recruits—saplings that respond to improvements
in light in the understory—are important to forest dynamics. This study showed stronger effects
of bark stripping on those than on advanced regenerants. Therefore, studies of forest dynamics
in areas where deer are overabundant must focus on the effects of deer among multiple agents of
disturbance [31,55]. In forests where deer are overabundant, fencing or attaching tree guards could be
necessary to ensure regeneration.
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