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Degrees of freedom of atoms in a rigid molecule for local temperature calculation in
molecular dynamics simulation
Hiroki Matsubara, Donatas Surblys and Taku Ohara

Institute of Fluid Science, Tohoku University, Sendai, Japan

ABSTRACT
In molecular dynamics simulation, it is quite common to calculate a precise temperature profile with an
atomic or sub-angstrom resolution. While this calculation typically requires the degrees of freedom (DOF)
of individual atoms, those in a molecule subject to geometric constraints is undefined in general.
Conventionally, the approximation of subtracting from the atom DOF by 1/2 per one distance
constraint has been used, but this approximation is valid for spatially homogeneous systems only. In
the present study, on the basis of statistical mechanics, we derived more general expressions for the
DOF of atoms in fully or partially rigid molecules. The expressions ensure that in an equilibrium state,
all constrained atoms have the same temperature as the equilibrium temperature of the whole system
and are also applicable to inhomogeneous systems.
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1. Introduction

In molecular dynamics (MD) simulations [1], it is quite com-
mon to calculate temperature profiles, i.e. the spatial distri-
bution of local temperature. Such temperature profiles are not
only the theoretical predictions of temperature distributions
in real materials and phenomena [2,3], but also utilised in var-
ious ways. In non-equilibriumMD simulations of heat conduc-
tion, the gradient and jump in temperature profiles are used to
derive thermodynamic coefficients [4] and thermal transport
properties [5,6]. Temperature difference among different
atoms or vibrationalmodes can be examined to check if the sys-
tem is thermally equilibrated [7,8]. The local temperature fields
computed with MD simulations provide reference data in
developing more coarse-grained computational fluid dynamic
schemes [9,10]. These applications typically require a precise
temperature profile with an atomic or sub-angstrom resolution.

On the other hand, MD systems may be subject to geometric
constraints in order to allow for a larger simulation timestep and
to suppress vibration modes that should not be excited in view
of quantummechanics [11]. In particular, freezing bond lengths
and angles involving fast vibrations of hydrogen atoms is often
useful [12]. Such constraints are achieved either by imposing
holonomic constraints in the equation of motion for a point
mass [11,13], or by modelling a molecule or part of a molecule
as a rigid body and solving Euler’s equation of motion for a
rigid body [14]. There is a problemwhen one calculates tempera-
ture profiles in a system subject to such constraints. A single con-
strained molecule usually spans multiple local volumes used for
the local temperature calculation. In this case, the total degrees
of freedom (DOF) in a local volume must be obtained by sum-
ming up the DOF of individual atoms. However, while the

DOF per free atom is known to be 3 (in the 3-dimensional
space), theDOFof atoms in a geometrically constrainedmolecule
is undefined in general. For the constraint of the distance between
two atoms, a convenient approximation is that each of the two
atoms has the DOF reduced by 1/2 [12]. This even-distribution
approximation is reasonable when the two atoms are contained
in a local volume with similar probabilities or are of the same
atom type, and it has been appropriately applied to spatially uni-
form liquids [12,15,16].On the contrary, the atomDOFshouldbe
determined more carefully in systems where the distribution of
the constituent atoms is highly inhomogeneous, such as nanos-
tructures and interfaces of different phases. However, to our
knowledge, explicit DOF expressions for constrained atoms in
such inhomogeneous systems has not been discussed yet. In the
present study, we derive them based on statistical mechanics,
together with the validation by MD simulations. The specific
expression depends on how the molecular geometry is con-
strained. Here, we particularly focus on the DOF of atoms in (i)
a rigidmolecule and (ii) a three-atommolecule with two distance
constraints but no angle constraint. These examples cover many
of the constrained systems dealt with in current MD research.

2. Expressions for the DOF of constrained atoms

2.1. Definition

The temperature Tloc of a local volume Vloc is most commonly
calculated via the kinetic temperature definition:

∑
i[Vloc

Ki

〈 〉
=

∑
i[Vloc

1
2
gikBTloc, (1)
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where gi, Ki =mivi
2/2, mi, and vi are the DOF, kinetic energy,

mass, and velocity vector of atom i, respectively, kB is the
Boltzmann constant, and 〈… 〉 denotes the ensemble average.
Similarly, the temperature of atom i is defined by

Ki〈 〉 = 1
2
gikBTi (2)

In the even-distribution approximation, which is conven-
tionally used, gi for constrained atoms is described as

gi = 3–nc,i/2, (3)

where nc,i is the number of distance constraints that involve
atom i. Although this approximation is quite convenient, its
use is restricted to homogeneous systems.

To derive an atom DOF that is applicable in general cases,
we begin with the following definition:

gi = 2 Ki〈 〉T/(kBT) (4)

where 〈Ki〉T is the average kinetic energy of atom i evaluated in
an equilibrium state at a temperature T. Although Equation (2)
and Equation (4) similar in appearance, their physical mean-
ings are completely different: Equation (2) is the definition
of atom temperature when the value of gi is known. In contrast,
Equation (4) is the definition of gi based on a reasonable
requirement that at least in an equilibrium state, the tempera-
ture of a constrained atom calculated by Equation (2) is equal
to the equilibrium temperature. The atom kinetic energy in
Equation (4) can be evaluated in any equilibrium state. Here,
for simplicity, we assume a canonical ensemble. For an N
atom system, the atom kinetic energy is expressed as

Ki〈 〉T

=
�
1/2miv2i e

−H(r1,...,rN ,v1,...,vN )/kBTfcns(g)dr1 ···drNdv1 ···dvN�
e−H(r1,...,rN ,v1,...,vN )/kBTfcns(g)dr1 ···drNdv1 ···dvN

,

(5)

where H(r1, ...,rN ,v1, ...,vN) is the Hamiltonian of the system,
i.e. the sum of the kinetic and potential energies, described
here as a function of the coordinate vector ri and velocity vector
vi of atom i. The function fcns(γ) is necessary to take geometric
constraints into account and γ represents the set of coordinates
and velocities that are relevant to the constraints. For example,
suppose that the distance between atoms i and j is constrained
to a constant value d as rij = |ri – rj| = d and this is the only geo-
metrical constraint in the system. The atom velocities are also
constrained since the time derivative of rij must be zero as
drij/dt; ṙij=0. This constraint is expressed as fcns(rij, ṙij)=
d(rij−d)d(ṙij), where δ is the Dirac delta function. Since
fcns(rij, ṙij) depends on ri, rj, vi, and vj, this function implicitly
makes vi dependent of ri, rj, and vj. In the general case, fcns is
defined in a similar way. Then, with an appropriate transform-
ation of integral variables, γ and other variables irrelevant to Ki

can be integrated out, and the result is formally written as

Ki〈 〉T=
∫
1
2
miv

2
i e

−Hpart(G)/kBTdG/
∫
e−Hpart(G)/kBTdG. (6)

As we discussed above, vi can depend on other variables
such as the velocity and position vectors of other atoms. The

integral variable Γ represents the collection of all these vari-
ables, and Etot(Γ) is the part of the Hamiltonian that depends
on Γ. In the equilibrium state, inserting Equation (4) into
Equation (2) gives Ti = T, i.e, all constrained atoms have the
same temperature as the equilibrium temperature, regardless
of the homogeneity of the system. The expressions of Γ and
Hpart(Γ), and therefore the analytic form of gi, differ for each
individual case. In the following, we will derive the specific
expressions of gi for some important cases.

In the derivation of Equation (6), we assumed a canonical
ensemble, but the final expression of gi is independent of statisti-
cal ensemble. As will be shown in the examples below, the partial
HamiltonianHpart in Equation (6) is typically equal to the kinetic
energy of a single constrained molecule. Therefore, as long as the
phase variables of a single molecule, such as the translational and
angular velocities, are distributed according to the Maxwell–
Boltzmann distribution, the same expression as Equation (6) is
obtained. This condition is satisfied for common equilibrium
ensembles, including microcanonical ensemble, isobaric–iso-
thermal ensemble, etc., since for a given molecule, the surround-
ing molecules play the role of a thermal bath.

2.2. Rigid molecule

Let us first consider a rigid molecule consisting of n atoms,
having the mass M = ∑

i=1,n mi, centre-of-mass position vec-
tor R = ∑

i=1,n miri/M, and velocity vector
V = ∑

i=1,n mivi/M, inertia tensor I, and angular momentum
ω = I−1Σi = 1,n(ui ×mivi), where ri is the position vector of atom
i and ui = ri−R. Furthermore, we define the atom contribution
to the inertia tensor as.

Ii = mi(u
2
i 1− uiu

T
i ) (7)

such that I = Σi= 1,n Ii, where 1 is the unit matrix, and ui
T denotes

the transpose of ui, so that uiui
T is a matrix whereas ui

Tui = ui
2 is

a scalar. We note that I is a 3 × 3 matrix in the space fixed frame,
but its rank is reduced to 2 in the case of linear molecules. The
rank of Ii is also 2 regardless of molecule type.

We choose V and ω as the integral variables Γ to evaluate
the kinetic energy in Equation (6) for this rigid molecule.
Expressing the atom velocity as vi =V + ω × ui and inserting
this into Ki =mivi

2/2 give the atom kinetic energy as.

Ki(V , v) = 1
2
miV

2 + 1
2
vTIiv+miV

T(v× ui)

; Ktrans
i (V)+ Krot

i (v)+ Kcross
i (V , v),

(8)

where ω × ui is the cross product of ω and ui. The first and
second terms in the right-hand side of Equation (8) represent
the translational and rotational contributions, respectively,
and the third term is their cross effect. The summation of Ki

gives the total kinetic energy of the molecule:

K(V , v) =
∑
i=1,n

Ki(V , v) = 1
2
MV2 + 1

2
vTIv, (9)

which corresponds to the total energy Etot in Equation (6). The
cross termKcross

i makes no contribution in Equation (9)
because

∑
i=1,n miui = 0. From Equations (8) and (9), the
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equilibrium average of the translational term is calculated as

Ktrans
i

〈 〉
T=

∫
1
2
miV

2e− MV2/2kBTdV/
∫
e−MV2/ 2kBTdV = 3mikBT

2M

(10)

The rotational term becomes

Krot
i

〈 〉
T =

∫
1
2
vTIive−vTIv/2kBT dv/

∫
e−vTIv/2kBTdv

= 1
2

∫∑
a

∑
b

I′i,abv′
av

′
be

− 1/2kBT
∑
a

I′aav′2
a

dv′/

∫
e
− 1/2kBT

∑
a

I′aav′2
a

dv′

= kBT
2

∑
a

I′i,aa
I′aa

.

(11)

The second equality in Equation (11) is due to the change of
variables from ω = (ωx, ωy, ωz)

T in the space-fixed frame to ω′

= (ω′
a, ω′

b, ω′
c)
T in the body-fixed frame, and the summation

indices α and β run through a, b, and c. This transformation is
represented by ω = Pω′, where P is an orthogonal matrix so
that the inertia tensor in the body-fixed frame, I′ = PTIP, is
diagonal. Finally, the cross term results in Kcross

i

〈 〉
T= 0 because

Kcross
i is an odd function of V and ω whereas the Boltzmann

factor exp[−K/(kBT )] is an even function of them. In sum-
mary, the atom kinetic energy in total is given by the sum of
Equations (10) and (11) as.

Ki〈 〉T=
kBT
2

3mi

M
+

∑
a

I′i,aa
I′aa

[ ]
. (12)

By inserting Equation (12) into Equation (4), the DOF of
atom i in a rigid molecule is found to be

gi = 3mi

M
+

∑
a

I′i,aa
I′aa

. (13)

Let us consider some simple examples. The first one is a dia-
tomic molecule composed of atoms 1 and 2 separated by a
fixed distance r12. Suppose that in the body-fixed frame, the
two atoms are arranged along the c axis as r′1 = (0, 0, m2r12/
M) and r′2 = (0, 0, −m1r12/M), and thus there is no rotational
degree of freedom about the c-axis. In the body-fixed frame,
the diagonal elements of the partial and total inertia tensors
are calculated to be I′i,aa = I′i,bb =mi[(M−mi)r12/M]2 and I′aa-
= I′bb =m1m2r12

2 /M, respectively. Thus, Equation (13) for a
rigid diatomic molecule is simplified as.

gi = 2+mi/(m1 +m2). (14)

The next example is water, the molecule to which the rigid
body approximation is most frequently applied. From
Equation (13), the DOF expressions of the H and O atoms

in a rigid water molecule are finally found to be

gO = 1+mO

M
+ 2

2+ 4sin2(w/2)mH/mO
,

gH = 2+mH

M
− 1

2+ 4sin2(w/2)mH/mO
,

(15)

where mH = 1.008 u and mO = 15.999 u are the atomic masses
of hydrogen and oxygen [17], respectively, M = 2mH +mO is
the mass of water molecule, and φ is the HOH angle. Different
rigid water models may lead to slightly different DOF values
via a small difference in the HOH angle φ. Some representative
water models are summarised in Ref. [18], for example. The
SPC and SPC/E models use φ = 109.47°, in which case the
DOFs are calculated to be gH = 1.5947 and gO = 2.8106,
whereas the TIP3P and TIP4P models adopt φ = 104.52°,
resulting in gH = 1.5925 and gO = 2.8150.

2.3. Semi-flexible molecules

In a semi-flexible molecule, only a part of molecule is con-
strained. As a result, one molecule is composed of free
atoms and rigid subunits. If there is no atom simultaneously
included in two or more rigid subunits, one can apply
Equation (13) to each rigid subunit. For example, in the case
of a biphenyl molecule where the two rigid benzene rings are
connected by a flexible covalent bond, the atom DOFs can
be obtained by applying Equation (13) to each benzene ring
independently. Conversely, if multiple rigid subunits share
the same atoms, Equation (13) cannot be used, and the
expression for the atom DOFs must be derived for each indi-
vidual case. This type of semi-flexible molecule is called the
linked rigid body [19].

To illustrate this situation, Figure 1 shows a three-atom
molecule in which the two bond lengths r21 and r31 are con-
strained while the angle φ is allowed to change, where rij = |
rij| and rij = ri – rj. The molecule consists of two rigid subunits:
one is the bond between atom 2 and 1 and the other is the bond
between atoms 3 and 1. The two units share atom 1 and their
motions are not independent; for example, if the motion of one
unit is completely frozen, the translational motion of the other
unit is also frozen. Let the molecular motion of this molecule
be described by the translation of r1 and the rotations of the
two rigid subunits around r1. Then, the kinetic energy of

Figure 1. (Colour online) Three-atom molecule where the lengths of r21 and r31
are constrained, but the angle φ is not.
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each atom can be expressed as follows:

K1 = 1
2
m1v

2
1,

K2 = 1
2
m2(v1 +v2 × r21)

2,

K3 = 1
2
m3(v1 +v3 × r31)

2,

(16)

where ωi is the angular velocity of atom i around atom 1 and
satisfies vi − v1 = vi × ri1 under the condition dri1/dt = 0.
The average kinetic energy of atom i is evaluated by

Ki〈 〉T =
∫
Kie

−K(v1,v2,v3)/kBT dv1dv2dv3/

∫
e− K(v1,v2,v3)/kBTdv1dv2dv3,

(17)

where K = Σi = 1,2,3 Ki is the total kinetic energy of the molecule.
After a lengthy calculation, one can finally find the DOFs for
atoms 1–3 as

g1(w) = 2+ m2
1 −m2m3sin2w

m1M +m2m3sin2w
,

g2(w) = 2+m1m2 +m2m3sin2w
m1M +m2m3sin2w

,

g3(w) = 2+m1m3 +m2m3sin2w
m1M +m2m3sin2w

,

(18)

where M =m1 +m2 +m3. The detail derivation of Equation
(18) is described in the Appendix. While the total DOF of
the molecule, g1 + g2 + g3 = 7, is constant, the atom DOFs
change with time since the angle φ is time dependent. If
necessary, gi can be further averaged over φ as
gi
〈 〉 = �

gi(w)f (w) sinwdw/
�
f (w) sinwdw, where f(φ) = exp

[−U(φ)/(kBT )] is the Boltzmann factor with respect to φ and
U(φ) is the potential energy. As one can expect from this
simple example, it is rather complicated or even impossible
to derive the analytical form of gi for linked rigid molecules.
In such a case, it may be reasonable to calculate 〈Ki〉T in
Equation (4) numerically by carrying out MD simulations of
appropriate reference systems.

3. Validation by MD simulation

3.1 Systems and procedures

The expressions of atom DOF derived in Section 2 were exam-
ined by conducting MD simulations using the large-scale
atomic/molecular massively parallel simulator (LAMMPS)
[20]. The expressions for fully rigid molecules, Equations
(13)–(15), were validated for a silica–water system as shown
in Figure 2, where a bulk liquid composed of 3600 water mol-
ecules was sandwiched by two rectangular blocks of silica crys-
tals each consisted of 6 × 6 × 4 unit cells of the α-quartz crystal
with the lattice constants a = b = 4.916 Å, c = 5.4054 Å, α = β =
90°, and γ = 120° [21]. The (001) face of silica surface was in
contact with the bulk liquid of water, and all Si atoms on the
surface were doubly hydroxylated.

The water molecules were described by the rigid SPC/E
model [22], and the DOFs of constituent atoms were calcu-
lated with Equation (15). The silica crystals were modelled
by the CHARMM-compatible force field of Emami et al. [23]
However, the O–H bond length of the surface silanol was
additionally constrained to 0.945 Å, and the DOF values of
the O and H atoms were calculated with Equation (14). The
Rattle algorithm [13] was employed to impose the geometric
constraints on water molecules and hydroxyl groups. All
non-bonded interactions including those between the water
and silica were described by the Lennard-Jones (LJ) and Cou-
lomb interactions. The cut off distance of LJ interaction was set
to 12 Å, and the LJ parameters between water and silica atoms
were obtained from the Lorentz–Berthelot combining rules.
The Coulomb interactions were evaluated using the particle-
particle-particle-mesh method [24]. The periodic boundary
conditions were imposed in the x and y directions while the
boundaries in the z direction were approximately considered
non-periodic using the empty volume insertion method [25].
The x and y dimensions, set to Lx = 6a = 29.496 Å and Ly =
6bsinγ = 25.544 Å, respectively, were kept unchanged through-
out the MD simulation.

The velocity-Verlet integrator was used with a timestep of
0.1 fs to integrate the equations of motion. The total simu-
lation time was 8 ns, where the temperature of the whole sys-
tem was controlled at 298.15 K using the Langevin thermostat
with a damping coefficient of 0.2 ps. In the first 4 ns, a pressure
of 1 atm was applied in the z direction by exerting constant
force on the outmost atom layer of the right silica block
while freezing the outmost atom layer of the left silica block.
In the latter 4 ns, the outmost layer of the right silica block
was also frozen, and the temperature profile along the z direc-
tion was computed in the last 2 ns.

In an additional simulation, the atom DOF expressions in
Equation (18) for the three-atom linked rigid molecule were
applied to a semi-flexible water where the two O–H bonds
are constrained but the HOH angle varies with time. The
water molecule was described by the flexible simple point-
charge water model (SPC/Fw) [26], and the O–H bond length
was additionally constrained to 0.94 Å. A bulk system with a
mass density of 1 g/cm3 was constructed by placing 500
water molecules in a cubic MD box with 24.638 Å on a side,
and the three-dimensional periodic boundary conditionsFigure 2. (Colour online) Silica–water system, where the rigid SPC/E model is

used for water and the O–H bond length of the surface silanol is constrained.
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were imposed. The MD simulation was conducted for 7 ns
employing the velocity-Verlet integrator with a time step of
1 fs, where the system temperature was controlled at
298.15 K using the Langevin thermostat with a damping coeffi-
cient of 0.1 ps. The first 2 ns was used for equilibration, and the
atom DOFs were calculated from the last 5 ns.

For both the silica–water system and semi-flexible water
system, the statistical uncertainty of a physical quantity was

estimated by the standard error of mean calculated by
dividing the production simulation into five time blocks.

3.2. Results and discussion

From the MD simulation of the silica–water system, the local
temperature based on Equation (1) was calculated along the
z direction with an interval of Δz= 0.2 Å. The resultant temp-
erature profile near the silica–water interface on the left side is
shown in Figure 3. With the new expressions of gi, Equations
(13)–(15), the DOFs of constrained atoms are evaluated as gH
= 2.059 and gO = 2.941 for silanol, and gH = 1.5947 and gO =
2.8106 for water. The Si and O atoms inside the silica crystal
are unconstrained, i.e. gSi = gO = 3. The temperature profile
based on these atom DOF values are plotted in Figure 3(a)
by atom type. As expected, the local temperature in every
slab is found to be equal to the setting temperature, Tset =
298.15 K. We note that near the boundaries of different
regions, the number of atoms in a local volume can be so
small that the calculated temperature values deviate signifi-
cantly from Tset with large statistical errors. Since such data
are not reliable, temperature data with the standard error of
mean (SEM) greater than 3 K (1% of Tset) are excluded from
Figure 3 (However, there are still some regions in Figure 3
(a), e.g. at z ∼ 24 Å, where the profile appears to deviate
from Tset, albeit only slightly). Since the SEM of 3 K is smaller
than the markers, the error bars are not explicitly shown in the
figure.

Figure 3. (Colour online) Temperature profile near the silica–water interface on the left side. (a) Profile for each atom type by the new expressions of atom DOF. (b)
Profile for each atom type by the conventional approximation. (c) Average of all atom types based on the conventional approximation, where the inset shows the
number density of H (dotted curve) and O (solid curve) atoms either in silanol (blue) or water (red). In these figures, the setting temperature is denoted by the
grey horizontal line. (d) Profiles of translational and rotational temperatures of surface OH groups and water molecules.

Figure 4. (Colour online) Atom DOFs defined by Equation (18) for (a) O and (b) H
atoms in the semi-flexible water as a function of HOH angle.

MOLECULAR SIMULATION 1369



In contrast to the new DOF expressions, if the conventional
even-distribution approximation Equation (3) is used, the
atom DOFs of the constrained atoms are calculated as gH =
gO = 2.5 for silanol and gH = gO = 2.0 for water. The tempera-
ture profile based on these DOF values are shown in Figure
3(b), where the temperature values of the constrained O and
H atoms significantly deviate from Tset. The temperature
profile in Figure 3(c) is also based on the even-distribution
approximation, but it shows the average of all atom types.
For z >∼28 Å, the temperature is close to Tset. In this region,
the number density distribution in the inset of Figure 3(c)
indicates ρH/ρO ∼ 2, i.e. the number ratio of H and O atoms
in a local slab is close to that in a water molecule, as assumed
in the equal-distribution approximation. In this case, the
errors in the atom temperature between O and H atoms are
cancelled out when their average is taken. For the same reason,
in the case of the silanol region, the average atom temperature
becomes close to Tset when ρH/ρO ∼ 1, as is seen at z ∼ 23.5 Å.
For other regions, the balance in the number of atoms is bro-
ken owing to the inhomogeneous molecular configurations,
and as a result, the temperature profile deviates from Tset.
Thus, the oscillation in the temperature profile in Figure 3(c)
is an artifact of an inappropriate definition of atom DOF,
clearly indicating that the even-distribution approximation is
not suitable for inhomogeneous systems.

Finally, Figure 3(d) displays the profiles of translational and
rotational temperatures calculated by considering surface sila-
nol groups and water as rigid bodies. The profiles are flat with
the values near the setting temperature of 298.15 K, confi-
rming that the system is in an equilibrium state.

Next, we discuss the result for the semi-flexible water system.
The atom DOF expression Equation (18) depends on the
instantaneous value of HOH angle φ. However, in the case of
water, the large difference in atomic mass between H and O
atoms makes the angle dependence ignorable. In Figure 4, the
values of gO and gH based on Equation (18) are plotted as a func-
tion of HOH angle. For both gO and gH, the difference between
the minimum and maximum is only ∼0.2%. From the MD
simulation, the atomDOF values calculated by the time average
of the analytic expressions in Equation (18) were gO = 2.8823
and gH = 2.0588 with statistical errors of the order of 10−7.
We also calculated the atom DOFs from Equation (4) together
with the numerical average of 〈Ki〉T as gO = 2.8829 ± 0.0006 and
gH = 2.0587 ± 0.0003. The two results are in good agreement
with each other. One may be interested in the extent to which
the DOF values depend on statistical ensemble. After the cano-
nical simulation with Langevin thermostat, we conducted a
7.0 ns microcanonical simulation. The average values of atom
DOFs in Equation (18) were calculated from the last 5 ns of
this simulation as gO = 2.8823 and gH = 2.0589 with statistical
errors of the order of 10−7, where the average temperature
was 299.09 ± 0.05 K. Thus, the DOF values are insensitive to
the difference in statistical ensemble. As we saw throughout
the present study, the DOFs of constrained atoms are non-inte-
ger in general. This is because geometric constraints make the
coordinates of a single atom no longer independent variables
ofmotion. In addition, the value of atomDOF tends to be larger
when the atomhas higher atomicmass andhigher partial inertia
moment. For example, suppose a diatomic rigid molecule

moving with a translational velocity V without rotation.
Because of the rigid-body constraint, the velocities of two con-
stituent atoms 1 and 2 must also be V. If the kinetic energy of
atom i, miV

2/2, is equated to gikBT/2 assuming that these
atoms have the same instantaneous temperature T, the atom
DOF gi must be proportional to mi. This simple example, if
not rigorous, would be helpful to intuitively understand why
non-integer and non-uniform DOFs are assigned to con-
strained atoms.

4. Conclusion

In the present study, we derived expressions for the DOF of con-
strained atoms, which is necessary for the calculation of local
temperature in MD simulation systems of fully or partially rigid
molecules. The expressions are based on statistical mechanics to
ensure that in an equilibrium state, all constrained atoms have
the same temperature as the whole system. The conventionally
used approximation of reducing the atomDOFby 1/2 per onedis-
tance constraint can be used if a simulation system is spatially
homogeneous. However, recent MD simulations often have to
deal with systems that do not satisfy this condition, such as nanos-
tructures and interfaces of different phases, and in such cases, the
use of the new atom DOF expressions is essential.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by JST CREST [grant number JPMJCR17I2],
Japan. Numerical simulations were performed on the Supercomputer sys-
tem ’AFI-NITY’ at the Advanced Fluid Information Research Center,
Institute of Fluid Science, Tohoku University.

References

[1] Allen MP, Tildesley DJ. Computer simulation of liquids. 2nd ed.
Oxford University Press; 2017. doi:10.1093/oso/9780198803195.
001.0001

[2] Ponce V, Galvez-Aranda DE, Seminario JM. Analysis of an all-solid
state nanobattery using molecular dynamics simulations under an
external electric field. Phys Chem Chem Phys. 2021;23:597–606.
doi:10.1039/D0CP02851G

[3] Zhao B, Zhao P, Wu J, et al. Investigation on surface generation
mechansim of single-crystal silicon in grinding: surface crystal
orientation effect. SSRN Electron J. 2022;34:105125. doi:10.2139/
ssrn.4267745

[4] Matsubara H, Kikugawa G, Bessho T, et al. Non-equilibrium mol-
ecular dynamics simulation as a method of calculating thermodyn-
amic coefficients. Fluid Phase Equilib. 2016;421:1–8. doi:10.1016/j.
fluid.2016.03.019

[5] Algaer EA, Müller-Plathe F. Molecular dynamics calculations of the
thermal conductivity of molecular liquids, polymers, and carbon
nanotubes. Soft Mater. 2012;10:42–80. doi:10.1080/1539445X.
2011.599699

[6] Liang Z, Hu M. Tutorial: determination of thermal boundary resist-
ance by molecular dynamics simulations. J Appl Phys.
2018;123:191101. doi:10.1063/1.5027519

[7] Oda K, Miyagawa H, Kitamura K. How does the electrostatic
force cut-off generate non-uniform temperature distributions
in proteins? Mol Simul. 1996;16:167–177. doi:10.1080/
08927029608024070

1370 H. MATSUBARA ET AL.

https://doi.org/10.1093/oso/9780198803195.001.0001
https://doi.org/10.1093/oso/9780198803195.001.0001
https://doi.org/10.1039/D0CP02851G
https://doi.org/10.2139/ssrn.4267745
https://doi.org/10.2139/ssrn.4267745
https://doi.org/10.1016/j.fluid.2016.03.019
https://doi.org/10.1016/j.fluid.2016.03.019
https://doi.org/10.1080/1539445X.2011.599699
https://doi.org/10.1080/1539445X.2011.599699
https://doi.org/10.1063/1.5027519
https://doi.org/10.1080/08927029608024070
https://doi.org/10.1080/08927029608024070


[8] Eastwood MP, Stafford KA, Lippert RA, et al. Equipartition and the
calculation of temperature in biomolecular simulations. J Chem
Theory Comput. 2010;6:2045–2058. doi:10.1021/ct9002916

[9] Uranagase M, Ogata S. Nonequilibrium molecular dynamics
method based on coarse-graining formalism: application to a non-
uniform temperature field system. Phys Rev E. 2021;104:65301.
doi:10.1103/PhysRevE.104.065301

[10] Templeton JA, Jones RE, Wagner GJ. Application of a field-based
method to spatially varying thermal transport problems in molecu-
lar dynamics. Model Simul Mater Sci Eng. 2010;18:085007. doi:10.
1088/0965-0393/18/8/085007.

[11] Kräutler V, Van Gunsteren WF, Hünenberger PH. A fast SHAKE
algorithm to solve distance constraint equations for small molecules
in molecular dynamics simulations. J Comput Chem. 2001;22:501–
508. https://doi.org/10.1002/1096-987X(20010415)22:5<501::AID-
JCC1021>3.0.CO;2-V

[12] Zhang M, Lussetti E, de Souza LES, et al. Thermal conductivities of
molecular liquids by reverse nonequilibrium molecular dynamics. J
Phys Chem B. 2005;109:15060–15067. doi:10.1021/jp0512255

[13] Andersen HC. Rattle: A “velocity” version of the shake algorithm
for molecular dynamics calculations. J Comput Phys. 1983;52:24–
34. doi:10.1016/0021-9991(83)90014-1

[14] Kamberaj H, Low RJ, Neal MP. Time reversible and symplectic inte-
grators for molecular dynamics simulations of rigid molecules. J
Chem Phys. 2005;122:224114. doi:10.1063/1.1906216.

[15] Mao Y, Zhang Y. Thermal conductivity, shear viscosity and specific
heat of rigid water models. Chem Phys Lett. 2012;542:37–41. doi:10.
1016/j.cplett.2012.05.044

[16] Matsubara H, Kikugawa G, Ohara T. Comparison of molecular heat
transfer mechanisms between water and ammonia in the liquid
states. Int J Therm Sci. 2021;161:106762. doi:10.1016/j.
ijthermalsci.2020.106762

[17] Prohaska T, Irrgeher J, Benefield J, et al. Standard atomic weights of
the elements 2021 (IUPAC technical report). Pure Appl Chem.
2022;94:573–600. doi:10.1515/pac-2019-0603

[18] Sirk TW, Moore S, Brown EF. Characteristics of thermal conduc-
tivity in classical water models. J Chem Phys. 2013;138:064505.
doi:10.1063/1.4789961.

[19] Forester TR, Smith W. SHAKE, rattle, and roll: efficient constraint
algorithms for linked rigid bodies. J Comput Chem. 1998;19:102–
111. doi:10.1002/(SICI)1096-987X(19980115)19:1<102::AID-
JCC9>3.0.CO;2-T

[20] Thompson AP, Aktulga HM, Berger R, et al. LAMMPS - a flexible
simulation tool for particle-based materials modeling at the atomic,
meso, and continuum scales. Comput Phys Commun.
2022;271:108171. doi:10.1016/j.cpc.2021.108171

[21] Levien L, Prewitt CT, Weidner DJ, et al. Structure and elastic prop-
erties of quartz at pressure. Am Mineral. 1980;65:920–930.

[22] Berendsen HJC, Grigera JR, Straatsma TP. The missing term in
effective pair potentials. J Phys Chem. 1987;91:6269–6271. doi:10.
1021/j100308a038

[23] Emami FS, Puddu V, Berry RJ, et al. Erratum: force field and a sur-
face model database for silica to simulate interfacial properties in
atomic resolution. Chem Mater. 2016;28:406–407. doi:10.1021/acs.
chemmater.5b04760

[24] Deserno M, Holm C. How to mesh up Ewald sums. II. An accurate
error estimate for the particle-particle-particle-mesh algorithm. J
Chem Phys. 1998;109:7694–7701. doi:10.1063/1.477415

[25] Yeh IC, Berkowitz ML. Ewald summation for systems with slab geo-
metry. J Chem Phys. 1999;111:3155–3162. doi:10.1063/1.479595

[26] Wu Y, Tepper HL, Voth GA. Flexible simple point-charge water
model with improved liquid-state properties. J Chem Phys.
2006;124:024503. doi:10.1063/1.2136877.

Appendix

In this appendix, we derive Equation (18), the atom DOF for the three-
atommolecule as shown in Figure 1, in which atom 1 has two constrained
bonds with atom 2 and 3. The kinetic energy of atom i is given by

Equation (16) in terms of the relative position vector ri1 = ri − r1 and
the angular velocity ωi around atom 1. Applying the relation
(vi × ri1)

T(vj × r j1) = vT
i (r

T
i1r j1 − ri1rTj1)vj to the atom kinetic energy,

the total kinetic energy of the molecule can be transformed into the fol-
lowing form:

K(v1, v2, v3) = 1
2
m1v

2
1 +

1
2
m2(v1 +v2 × r21)

2 + 1
2
m3(v1 +v3 × r31)

2

= 1
2
MV2 + 1

2
vT

2 I2v2 + 1
2
vT

3 I3v3 −vT
2 I32v3,

(19)

where M =m1 +m2 +m3 is the total mass of the molecule and

V = v1 + (m2v2 × r21 +m3v3 × r31)/M (20)

is the centre of mass of the molecule expressed in terms of v1, ω2, and ω3.
Here, the partial inertia tensors are defined in a slightly different way from
Equation (7) as

Ii = (rTi1ri1 − ri1r
T
i1)mi(M−mi)/M,

Iij = (rTi1r j1 − ri1r
T
j1)mimj/M.

(21)

We note that the centre of rotation in these tensors is r1 rather than the
molecular centre of mass, and that Ii is a symmetric matrix but Iij is
not. By completing the square, Equation (19) can be further transformed
as

K(V, v′
2, v

′
3) = MV2/2+v′2

2/2+v′2
3/2 (22)

where

v′
2 = (I1/22 v2 − I−1/2

2 I32v3),

v′
3 = B1/2v3,

B = I3 − IT32I
−1
2 I32 = BT.

(23)

Correspondingly, the integral variables v1, ω2, and ω3 of the average kin-
etic energy of atom i in Equation (17) are changed to V, ω′

2, and ω′
3 as

Ki〈 〉T=
∫
Kie

− K(V,v′
2 ,v′

3)/kBTdVdv′
2dv

′
3/

∫
e− K(V,v′

2 ,v′
3)/kBTdVdv′

2dv
′
3

(24)

The Jacobian of this transformation cancels between the numerator
and denominator and is not shown explicitly. As for atom 1, using
Equations (20) and (23), the atom kinetic energy K1 =m1v1

2/2 is rewritten
as a function of V, ω′

2, and ω′
3 as:

K1 = 1
2
m1(V − (m2v2 × r21 +m3v3 × r31)/M)2

= 1
2
m1V

2 + 1
2

m1m2

M(M−m2)
v′2

2

+ 1
2
v′T

3B
−1/2C1B

−1/2v′
3 + F1(V, v

′
2, v

′
3)

(25)

where

C1 = m1(2M−m2)
M(M−m2)

IT32I
−1
2 I32 − m1m3

M(M−m3)
I3

[ ]
(26)

In the right-hand side of Equation (25), F1 represents the collection of
terms that depend linearly on V, ω′

2, and ω′
3 and therefore becomes zero

after integrating with these variables in Equation (24). Inserting K1 in
Equation (25) into Equation (24) gives the equilibrium average of the kin-
etic energy as

K1〈 〉T=
kBT
2

3m1

M
+ 2m1m2

M(M−m2)
+ Tr[C1B

−1]

[ ]
(27)

where the Tr[A] means the trance of a matrix A. The third term in the
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right-hand side of Equation (27) can be obtained as follows:

Ki〈 〉(3)T = 1
2

∫
v′T

3B
−1/2C1B

−1/2v′
3e

−v′2
3/2kBT dv′

3/

∫
e− v′2

3/2kBTdv′
3

= 1
2

∫
v′′T

3P
TB−1/2C1B

−1/2Pv′′
3e

−v′′2
3/2kBT dv′′

3/

∫
e− v′′2

3/2kBTdv′′

= kBT
2

Tr[PTB−1/2C1B
−1/2P],

(28)

where we changed the integral variables as ω′
3 = Pω′′

3 with an orthogonal
matrix P, i.e. PTP = 1, so that PTB−1/2C1B

−1/2P is a 2 × 2 diagonal matrix.
Then, one can perform the integrations with respect to the two com-
ponents of ω′′

3 separately to show the last equality in Equation (28).
The result in Equation (27) is finally obtained using the property that
two matrices X and Y are interchangeable in a trace as Tr[XY] = Tr[YX].

The average kinetic energy of atom 2 can be derived analogously.
The atom kinetic energy K2 =m2v2

2/2 in terms of V, ω′
2, and ω′

3 is writ-
ten as

K2 = 1
2
m2V

2 +M−m2

2M
v′2

2 +
1
2
v′T

3B
−1/2C2B

−1/2v′
3

+ F2(V, v
′
2, v

′
3), (29)

where F2 is linear in V, ω′
2, and ω′

3 and does not contribute to 〈K2〉T,
and

C2 = (M−m2)
2M

m2m3

(M−m2)(M−m3)
I3 − IT32I

−1
2 I32

[ ]
(30)

The equilibrium average of K2 is calculated as

K2〈 〉T=
kBT
2

3m2

M
+ (M−m2)

2M
+ Tr[C2B

−1]

[ ]
(31)

Since atom 2 and 3 are mathematically equivalent in Equation (19),
the expression of 〈K3〉T can be obtained just by exchanging the indices
2 and 3 in Equation (31) and the variables therein.

The matrices C1, C2 and B are calculated from Ii and Iij. The rank-2
matrices Ii and Iij can be first constructed as 3 × 3 matrices using Equation
(21) in an any convenient coordinate system, e.g. that in Figure 1. Then,
we find an orthogonal matrix Pi such thatI′′ i = PT

i IiPi becomes a 3 × 3
diagonal matrix (A double prime is used to denote a matrix or a vector
in the coordinate system where Ii is diagonalised). The 2 × 2 form of I′′i
can be obtained just by removing a row and a column whose components
are all zeros. Since the conversion by Pi corresponds to the coordinate
transform vi = Piv

′′
i in Equation (19), I32 is converted into

I′′32 = PT
2 I32P3, which is also diagonal and can be reduced to a 2 × 2

form. If we choose the coordinate system in Figure 1, we have r21 =
(r21, 0, 0)

T and r31 = (r31cosφ, r31sinφ, 0)
T. The orthogonal matrix P2 is

the 3 × 3 unit matrix and P3 is given by

P3 =
cosw − sinw 0
sinw cosw 0
0 0 1

⎛
⎝

⎞
⎠ (32)

The partial inertia tensors are obtained as follows:

I′′2 = m2(M−m2)r221
M

1 0

0 1

( )
,

I′′3 = m3(M−m3)r231
M

1 0

0 1

( )
,

I′′32 = m2m3r21r31
M

1 0

0 cosw

( )
.

(33)

These matrices are used to evaluate the average kinetic energy in
Equations (27) and (31), which, together with (4), finally leads to
Equation (18). The g3 can be obtained from g2 by exchanging indices
2 and 3.

Finally, it is worth showing the atom DOF expressions for the case of a
four-atom molecule where atom 1 has three constrained bonds with atom
2, 3, and 4, to see how the expressions become more complicated by the
addition of one more atom in the molecule. In the same way as that for the
three-atom molecule above, the DOFs of atom 1 and 2 in the four-atom
molecule are derived as follows:

g1 = 3m1

M
+ 2m1m2

M(M−m1)
− 4

(2M−m2)m1

M(M−m2)
+ Tr[X1],

g2 = 3m2

M
+ (M−m2)

M
(6+ Tr[X2]),

(34)

where M =m1 +m2 +m3 +m4 and

X1 = [n4I4 + n3DB−1
3 I3B

−1
3 DT − 2I34B

−1
3 DTm1/(M−m2)]E

−1 + n3I3B
−1
3 ,

X2 = [q42I4 + q32I3DB−2
3 DT + 2I34B

−1
3 DTM/(M−m2)]E

−1 + q32I3B
−1
3 ,

Bi = Ii − ITi2I
−1
2 Ii2,

D = I34 + IT42I
−1
2 I32,

E = B4 −DB−1
3 DT,

ni = m1(2M−m2 −mi)
(M−m2)(M−mi)

,

qij =
mimj

(M−mi)(M−mj)
− 1.

(35)

The meaning of Ii and Iij are the same as in Equation (21). In the
expression of g2, exchanging indices 2 and 3 yields the expression for
g3, and exchanging indices 2 and 4 yields that for g4. Although it is poss-
ible to rewrite gi, as in Equation (18), in terms ofmi and the three angles to
specify relative orientations of r21, r31, r41, the expression contains too
many terms to be wieldy. Therefore, it is better to use Equation (34)
when one calculates gi numerically. The three-atom and four-atom mol-
ecules above as well as fully rigid molecules cover all cases of geometric
constraints implemented in LAMMPS.
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