Papers

Peer-reviewed
Aug, 2017

Simplified derivation of stopping power ratio in the human body from dual-energy CT data

MEDICAL PHYSICS
  • Masatoshi Saito
  • ,
  • Shota Sagara

Volume
44
Number
8
First page
4179
Last page
4187
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1002/mp.12386
Publisher
WILEY

Purpose: The main objective of this study is to propose an alternative parameterization for the empirical relation between mean excitation energies (I-value) and effective atomic numbers (Z(eff)) of human tissues, and to present a simplified formulation (which we called DEEDZ-SPR) for deriving the stopping power ratio (SPR) from dual-energy (DE) CT data via electron density (rho(e)) and Zeff calibration.
Methods: We performed a numerical analysis of this DEEDZ-SPR method for the human-body-equivalent tissues of ICRU Report 46, as objects of interest with unknown SPR and rho(e). The attenuation coefficients of these materials were calculated using the XCOM photon cross-sections database. We also applied the DEEDZ-SPR conversion to experimental DECT data available in the literature, which was measured for the tissue-characterization phantom using a dual-source CT scanner at 80 kV and 140 kV/Sn.
Results: It was found that the DEEDZ-SPR conversion enables the calculation of SPR simply by means of the weighted subtraction of an electron-density image and a low-or high-kV CT image. The simulated SPRs were in excellent agreement with the reference values over the SPR range from 0.258 (lung) to 3.638 (bone mineral-hydroxyapatite). The relative deviations from the reference SPR were within +/- 0.6% for all ICRU-46 human tissues, except for the thyroid that presented a -1.1% deviation. The overall root-mean-square error was 0.21%. Application to experimental DECT data confirmed this agreement within the experimental accuracy, which demonstrates the practical feasibility of the method.
Conclusions: The DEEDZ-SPR conversion method could facilitate the construction of SPR images as accurately as a recent DECT-based calibration procedure of SPR parameterization based directly on the CT numbers in a DECT data set. (C) 2017 American Association of Physicists in Medicine

Link information
DOI
https://doi.org/10.1002/mp.12386
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000407286900030&DestApp=WOS_CPL
ID information
  • DOI : 10.1002/mp.12386
  • ISSN : 0094-2405
  • eISSN : 2473-4209
  • Web of Science ID : WOS:000407286900030

Export
BibTeX RIS