MISC

2006年

Scattering theory for the elastic wave equation in perturbed half-spaces

TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
  • Mishio Kawashita
  • ,
  • Wakako Kawashita
  • ,
  • Hideo Soga

358
12
開始ページ
5319
終了ページ
5350
記述言語
英語
掲載種別
DOI
10.1090/S0002-9947-06-04244-9
出版者・発行元
AMER MATHEMATICAL SOC

In this paper we consider the linear elastic wave equation with the free boundary condition (the Neumann condition), and formulate a scattering theory of the Lax and Phillips type and a representation of the scattering kernel. We are interested in surface waves (the Rayleigh wave, etc.) connected closely with situations of boundaries, and make the formulations intending to extract this connection.
The half-space is selected as the free space, and making dents on the boundary is considered as a perturbation from the. at one. Since the lacuna property for the solutions in the outgoing and incoming spaces does not hold because of the existence of the surface waves, instead of it, certain decay estimates for the free space solutions and a weak version of the Morawetz arguments are used to formulate the scattering theory.
We construct the representation of the scattering kernel with outgoing scattered plane waves. In this step, again because of the existence of the surface waves, we need to introduce new outgoing and incoming conditions for the time dependent solutions to ensure uniqueness of the solutions. This introduction is essential to show the representation by reasoning similar to the case of the reduced wave equation.

Web of Science ® 被引用回数 : 1

リンク情報
DOI
https://doi.org/10.1090/S0002-9947-06-04244-9
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000242401400006&DestApp=WOS_CPL

エクスポート
BibTeX RIS