MISC

2004年8月

On the number of cycles in generalized Kautz digraphs

DISCRETE MATHEMATICS
  • T Hasunuma
  • ,
  • Y Kikuchi
  • ,
  • T Mori
  • ,
  • Y Shibata

285
1-3
開始ページ
127
終了ページ
140
記述言語
英語
掲載種別
DOI
10.1016/j.disc.2004.01.014
出版者・発行元
ELSEVIER SCIENCE BV

In this paper, we count cycles in a generalized Kautz digraph G(K)(n,d). Let n=pd(h) such that d/p. Also let g(l)=gcd(d(l)-(-1)(l),n). We show that if one of the following conditions holds:
pless than or equal torootd(7)/d+1 and kless than or equal tolog(d) n+1,
rootd(7)/d+1 <p<d(5)(d+1) and kless than or equal tolog(d) (n/(3)rootp(2)(d+1)
d(5)(d+1 <p and k≤log(d) (n/d+1)
then the number of cycles of length k in G(K)(n,d) is given by
[GRAPHICS]
where μ is the Mobius function. (C) 2004 Elsevier B.V. All rights reserved.

Web of Science ® 被引用回数 : 5

リンク情報
DOI
https://doi.org/10.1016/j.disc.2004.01.014
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000223112600011&DestApp=WOS_CPL

エクスポート
BibTeX RIS