
Optimally Computing Compressed
Indexing Arrays Based on the Compact
Directed Acyclic Word Graph

Hiroki Arimura1

Shunsuke Inenaga2

Yasuaki Kobayashi1

Yuto Nakashima2

Mizuki Sue1
The full paper: https://arxiv.org/abs/2308.02269
This slide pdf: https://ikndeva.github.io or arXiv’s “Code, Data, Media/Paper with Code” section
This work is partly supported by MEXT Grant-in-Aid for Basic Research A, 2000-2004, Japan

1) Graduate School of IST,
Hokkaido University, Japan

2) Department of Informatics,
Kyushu University, Japan

Arimura+, 26 Oct. 2023, SPIRE2023

https://arxiv.org/abs/2308.02269
https://ikndeva.github.io/

Backgrounds

n Increasing amount and types of repetitive texts
l Markup texts (Wikipedia), Genome sequences

n Development of compressed index structures for
repetitive texts attracts much attention. E.g.,
l RL-BWT, irreducible PLCP arrays, Lex-parse – size r
l LZ-parse (LZ76) – size z
l CDAWG (Compact Directed Word Graphs) – size e
These indices can compress highly-repetitive texts
beyond the entropy bounds up to r, z, and e

n Natural questions: What is the relationships among
their sizes?; what is the complexities of conversion?2

Arimura+, 26 Oct. 2023, SPIRE2023

Backgrounds: Brief History

n We focus on the relationship between three
compressed indices.

3

Arimura+, 26 Oct. 2023, SPIRE2023

CDAWG
e

Suffix
tree

Size n

LZ-parse
z q-Irr.

LPF
e

RL-BWT
r

Irr.
PLCP

r• BWT is the array of
the preceding letters
at the starting
positions in SA
• r is the number of
equal-letter runs

• LZ-parse is a macro
scheme based on the
previous factors.
• z is the number of
equal-letter runs

•mu: the number of nodes =
#maximal extensions
• e is the number of tree-
and suffix-edges

• An automata-based index,
obtained from the Suffix
Tree of T by merging
isomorphic subtrees

Backgrounds: Brief History

n We focus on the relationship between the indices of
the sizes r, z, and e.

CDAWG
e

RL-BWT
r

LZ-parse
z

4

Arimura+, 26 Oct. 2023, SPIRE2023

Bellazougui &
Cunial
CPM2015

𝑟 ≤ 𝑒

Bellazougui &
Cunial
CPM2015

𝑧 ≤ 𝑒

Relationship
between the
sizes

Kempa &
Kociumaka,
STOC2021

𝑟 ≤ 𝑧 log2𝑛

And many others (see survey by Navarro (CSUR, part i, ’21)

Time ?

Brief History
n On the other hand, there are not many results on

the sub-linear time and space complexities of
conversions . . .

CDAWG
e

RL-BWT
r

LZ-parse
z

Kempa &
Kociumaka,
CACM 2022

5

Arimura+, 26 Oct. 2023, SPIRE2023

Time ?

O(z polylog(n))
time

Our Problem: Conversion problem

n Convert a given compressed index A into another
compressed index B without decompression
l We consider the case that A is the CDAWG of a text T

n Our goal: linear time and space in the combined
input and output sizes |A| + |B|

Index
structure

A

Index
structure

B

conversion

Original textwithout
decompression

without re-
compression6

Arimura+, 26 Oct. 2023, SPIRE2023

Related works
Sublinear time and space conversion between two indices
n Kempa [SODA’19]

l Converting an RL-BWT-based index into the irreducible PLCP, CSA, and
LZ-parse for a text T of length n
in O(n /logsn + r polylog n) time and O(r) space.

n Kempa & Kociumaka [STOC’21, CACM’22]
l Converting the LZ77-parse of a text T into

the RL-BWT for T in O(z polylog n) time and space.
l This work solved a long-standing open problem

n Bannai et al. [CPM’13]
l Converting an SLP of size g into LZ78-parse of size z78

in O(g + z78 log z78) time and space.
l Combined with Belazzougui & Cunial [CPM’15], we obtain the conversion

from the CDAWG for T into LZ78-parse in O(e + z78 log z78) time and space.

7

Arimura+, 26 Oct. 2023, SPIRE2023

Main results

Thm (4.1, 5.1, 5.2): For any integer alphabet S, we
can convert the CDAWG G of size e for a text T into
the following compressed indexing structures for T
in O(e) deterministic time and words of space:
l The RL-BWT (run-length BWT) of size r
l The irreducible PLCP (permuted LCP) array of size r
l The quasi-irreducible LPF

(longest previous factor) array
of size e (def. Sec. 2 of this paper)

l The Lex-parse of size 2r = O(r)
l The LZ-parse of size z

G is given in either
n the CDAWG of size e

with the read only text
of length n,

n the self-index version of
CDAWG of size O(e)
without a text

8

Arimura+, 26 Oct. 2023, SPIRE2023

Algorithms

9

Backgrounds: Brief History

CDAWG
e

RL-BWT
r

LZ-parse
z

10

Arimura+, 26 Oct. 2023, SPIRE2023

Bellazougui &
Cunial
CPM2015

𝑟 ≤ 𝑒

Bellazougui &
Cunial
CPM2015

𝑧 ≤ 𝑒

Coming back to the relationship
between the sizes …

Observation: The proof by
Bellazougui & Canial (2015)
is done by relating “r” and
“z” to O(e) secondary
incoming/ outgoing edges of
CDAWG(T)

n We use two orders of paths

Our approach Arimura+, 26 Oct. 2023, SPIRE2023

11

p One for traversal of CDAWG
p Order for determining

2ndary edges
RL-BWT

e
Forward

DFS

Reverse
DFS

Lex-
parse

r

LZ-
parse

rGeneralized
Longest Previous

Factor Array
[This work]

Ordered DFS from the
source in the

lexicographic order

Ordered DFS
from the sink in
the text order

p Order for traversal

p Order for 2ndary edges
2ndary edge

=~
same-letter run

length of the
longest upper

path =~
irreducible
GLPF-value

Bellazougui
& Cunial
CPM2015

Navarro, Ochoa,
& Prezza (Trans.
Inf. Theory, ’20).

n Observation A1: O(e) secondary incoming
edges of CDAWG(T) correspond to
subintervals of the same-letter runs of the
BWT under the length-order.
(this is because such a search path defines
a non-left-maximal factor in T)

n Observation A2: O(e) incoming edges of
CDAWG(T) can be enumerated in the
lexicographic order of its “canonical suffix”
by the forward DFS from the source.

Sec4. Computing RL-BWT in O(e) time&space
Arimura+, 26 Oct. 2023, SPIRE2023

12

lex-first
path

sink

CDAWG G
source

secondary
incoming
edge in
length-
order

Canonical
suffix longest

path
Forward

DFS

n Observation A1: O(e) secondary outgoing
edge of CDAWG(T) determines the value
PLCP[p] = l by the length l of the longest
path from the source to the
corresponding branching node under the
length-order

n Observation A2: O(e) secondary outgoing
edges can be enumerated in the text
order of its “canonical suffix” by the
reverse DFS from the sink.

Sec5. Computing PLCP in O(e) time&space
Arimura+, 26 Oct. 2023, SPIRE2023

13

longest
path

sink

CDAWG G
source

secondary
outgoing
edge in
lex-order

Reverse
DFS

PLCP[p]
= l

lex-first
path

Canonical
suffix

We can extend the above result from PLCP to PLPF
by employing the definition of 2ndary outgoing edges in length-order

Conclusions
n Conversion problem from the CDAWG into other

compressed indices for highly-repetitive texts
n O(e) time and space conversion from either the CDAWG of

a text T or its self-index into the following structures:
l RL-BWT, (quasi-) irreducible PLCP and LPF arrays, Lex-parse,

and LZ-parse for T.
l Effective version of the result by Belazzougui & Cunial (CPM‘15)

that r <= e and z <= e to actual conversion.
n Techniques:

l Characterization of the “irreducible values” by secondary edges.
l Forward/reverse DFS under the lexicographic/text order

n Future Work:
l Sub-linear time and space conversion from RL-BWT and LZ-

parse into CDAWG. 14

Arimura+, 26 Oct. 2023, SPIRE2023

Thank you!

15

16

Arimura+, 26 Oct. 2023, SPIRE2023

