MISC

2009年1月

The temperature-pressure-volume equation of state of platinum

JOURNAL OF APPLIED PHYSICS
  • Masanori Matsui
  • ,
  • Eiji Ito
  • ,
  • Tomoo Katsura
  • ,
  • Daisuke Yamazaki
  • ,
  • Takashi Yoshino
  • ,
  • Ayako Yokoyama
  • ,
  • Ken-ichi Funakoshi

105
1
開始ページ
013505
終了ページ
記述言語
英語
掲載種別
DOI
10.1063/1.3054331
出版者・発行元
AMER INST PHYSICS

High-temperature and high-pressure equations of state (EOSs) of Pt have been developed using measured shock compression data up to 290 GPa and volume thermal expansion data between 100 and nearly 2000 K and 0 GPa. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Gruneisen relation with the Debye thermal model and the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures has also been included here. The optimized EOS parameters of Pt are K-0T = 273 GPa, K'(0T) = 5.20, gamma(0) = 2.70, and q = 1.10 with Theta(0) = 230 K, where the subscript 0 refers to the ambient conditions. The temperature-pressure-volume (T-P-V) data of Pt have also been measured up to 1600 K and 42 GPa, using synchrotron powder x-ray diffraction experiments combined with a Kawai-type multianvil high pressure apparatus and sintered diamond anvils. We find that the newly developed T-P-V EOS of Pt is fully consistent with not only the shock compression data up to 290 GPa and volume thermal expansion data up to near 2000 K, but also the present measured synchrotron T-P-V data and recently measured T-P-V data of Pt up to 1900 K and 80 GPa. Thus we find that there is no need to include a volume dependence of q over a wide pressure range up to more than 300 GPa. The present EOS has been developed without any pressure scale. Such excellent consistency between the EOS and experimental values over wide temperature and pressure ranges shows that the present EOS can be used as a reliable primary pressure standard for static experiments up to 300 GPa and 3000 K. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3054331]

リンク情報
DOI
https://doi.org/10.1063/1.3054331
CiNii Articles
http://ci.nii.ac.jp/naid/80020070991
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000262534100038&DestApp=WOS_CPL
ID情報
  • DOI : 10.1063/1.3054331
  • ISSN : 0021-8979
  • eISSN : 1089-7550
  • CiNii Articles ID : 80020070991
  • Web of Science ID : WOS:000262534100038

エクスポート
BibTeX RIS