NAKAO Mitsuhiro T.

J-GLOBAL         Last updated: Apr 17, 2018 at 23:04
 
Avatar
Name
NAKAO Mitsuhiro T.
Affiliation
Waseda University
Section
Research Institute for Science and Engineering
Degree
(BLANK)(Kyushu University)
Other affiliation
Waseda University

Research Interests

 
 

Academic & Professional Experience

 
 
   
 
Professor Emeritus, Kyushu University 
 

Awards & Honors

 
Apr 2014
Prizes for Science and Technology, Research Category, Ministry of Education, Culture, Sports, Science and Technology
 
Sep 2012
Autumn Prize, The Mathematical Society of Japan
 

Misc

 
WATANABE Yoshitaka, NAKAO Mitsuhiro T.
Applied Mathematics and Computation   276 239-251   2016   [Refereed]
M. T. Nakao, T. Kimura, T. Kinoshita
SIAM Journal on Numerial Analysis   51 1525-1541   2014   [Refereed]
M.T. Nakao, T. Kinoshita, T. Kimura
Computing   94 151-162   2012
Journal of Computational and Applied Mathematics   147 175-190   2002
A guaranteed bound of the optimal constant in the error estimates for linear triangular element
Computing Supplementum   15 165-173   2001

Books etc

 
Computable error estimates for FEM and numerical verifications of solutions for nonlinear PDEs
Computational and Applied Mathematics I (North-Holland)   1992   
Computable L∞ error estimates in the finite element method with application to nonlinear elliptic problems
World Scientific Series in Appliable Analysis   1993   
Guaranteed error bounds for finite element solutions of the Stokes problem
Scinetific computing and validated numerics   1996   
A guaranteed bound of the optimal constant in the error estimates for linear triangular element Part
Proceedings Volume for Invited Lectures of SCAN 2000, Springer-Verlag   2001   
Numerical verification methods for solutions of free boundary problems
Proceedings of MSCOM Yamaguchi, 2000, LNCSE, Springer-Verlag   2001   

Research Grants & Projects

 
Numerical solutions for partial differential equations
Numerical verification for the solutions of partial differential equations
self-validating numerics
reliability in numerical computing