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Two-dimensional (2D) homonuclear correlated spectra manifest connectivities 
between spin-coupled nuclei and can thus provide assignments of individual spin sys- 
tems in complex ‘H NMR spectra. Two experimental techniques discussed in this 
paper, spin-echo correlated spectroscopy and foldover-corrected correlated spectros- 
copy, are particularly suitable versions for handling the large data matrices en- 
countered in work with biological macromolecules. This paper explains the funda- 
mental aspects of these two techniques and the relations with the conventional 2D 
correlated spectroscopy technique. 

I. INTRODUCTION 

Two-dimensional (2D) correlated spectroscopy, originally proposed by Jeener 
(I ), is potentially an intriguing technique for the elucidation of connectivity among 
coupled nuclei (2). However, until quite recently, it has not been used extensively 
for the main reason that an enormous amount of data is required to compute a 2D 
correlated spectrum of a large- or even medium-sized molecule. 

This situation has been changed recently by the recognition that in many situa- 
tions the use of difference frequencies in one of the two frequency domains permits 
a significant reduction of the amount of data required (3). Several applications in 
our laboratories have shown that spin-echo correlated spectroscopy (SECSY) 
is a quite successful embodiment of this idea (3). 

In this paper, we would like to demonstrate the connection between SECSY 
(3) and conventional 2D correlated spectroscopy (I, 2), to discuss in some detail 
the experimental procedure and results, and to describe “foldover-corrected 
correlated spectroscopy” (FOCSY), another promising form of 2D correlated 
spectroscopy. 

II. IMPLEMENTATION OF 2D CORRELATED SPECTROSCOPY 

Conventional 2D correlated spectroscopy (1, 2) employs a pair of 90” pulses 
(Fig. la). The first pulse, called the preparation pulse, serves to create transverse 
magnetization components for all allowed transitions. The following evolution 
period of length t1 is required to “label” the various magnetization components 
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Q2 

(b) (b’) 
FIG. 1. The two schemes of 2D correlated spectroscopy. (a) conventional scheme (2); (a’) 

spin-echo correlated spectroscopy scheme (3); (b) conventional 2D correlated spectrum showing 
two quadrants with N- and P-type peaks which are symmetry related; (b’) corresponding 2D 
spin-echo correlated spectrum. Since r; = 2r,, comparison of schemes a and a’ might lead to the 
conclusion that SECSY has inherently lower sensitivity than conventional correlated spec- 
troscopy. Since one is free in the choice of sampling points, this apparent limitation has no ill 
effects in practice. 

with their characteristic precession frequencies. The second 90” pulse, the mixing 
pulse, causes transfer of magnetization components among all those transitions 
which belong to the same coupled spin systems. The ultimate distribution of 
labeled magnetization components is determined, finally, by measuring their new 
precession frequencies during the detection period (time variable t2). 

A 2D correlated spectrum can be considered as an autocorrelation diagram of 
a normal one-dimensional spectrum demonstrating the connectivity of transitions 
and of nuclei in coupled spin systems. The representation of such a 2D spectrum 
normally requires a quadratic matrix of dimension F x F where F is the chemical 
shift range covered by the spectrum. Such a matrix can require an excessively 
large set of data points, which may exceed the capacity of normally available com- 
puter systems, in particular for high-frequency spectroscopy with wide spectral 
ranges . 

It has recently been recognized (3) that in many applications correlated resonance 
lines have rather close resonance frequencies so that most of the cross-peaks in a 
2D correlated spectrum are located in a relatively narrow band along the main 
diagonal. By a suitable rearrangement (similarity mapping) of the 2D spectrum it 
is possible to considerably reduce the size of the matrix and to facilitate the practi- 
cal application of 2D correlated spectroscopy using high-field spectrometers. In 
the following, we describe two practical implementations of such a rearrangement. 
SECSY achieves the rearrangement by a modified experimental scheme while 
FOGY utilizes a special data processing technique. 



TWO-DIMENSIONAL CORRELATED SPECTROSCOPY 323 

(a) Spin-Echo Correlated Spectroscopy 

The modified scheme required for SECSY (3) is indicated in Fig. la’. Here, the 
90” mixing pulse is applied in the middle of the evolution period of length t;, and 
the transfer of magnetization components occurs at t = t1/2. Let us consider the 
initially created magnetization of transition (mn). It will be transferred by the 
90” pulse to, e.g., transition (kl). The average precession frequencies during the 
complete evolution period are then 0 = 1/2(0,, _ + wkl). The sum frequencies can 
be suppressed by performing, in addition, a phase-shifted experiment. Details 
are explained in Section IV. The remaining difference frequencies 6 = M(w,, 
- wkl) often span a narrow frequency range in the o1 direction of the 2D spectrum. 
During the detection period the intrinsic precession frequencies lead to a full width 
F of the 2D spectrum in the o, direction. 

The potential of SECSY for delineating spin-coupling connectivities in protein 
‘H NMR spectra is illustrated in Figs. 2 and 3. Figure 2 presents a three-dimensional 
visualization of the region from 0 to 6 ppm in the ‘H NMR spectrum of the basic 
pancreatic trypsin inhibitor (BPTI). Figure 3 presents a contour plot of the 
same spectrum and illustrates the analysis of a SECSY spectrum. 

BPTI is a small globular protein with molecular weight 6500 which consists of 
one polypeptide chain of 58 amino acid residues. With the exception of the 
aromatic resonances of the four tyrosines and four phenylalanines, which we 
presented previously (3), the resonances of all nonlabile protons in BPTI are 
contained in the spectral region shown in Figs. 2 and 3. Connectivities between 
spin-coupled resonances are manifested in the following characteristic trait of 
a SECSY spectrum (3). Two spin-coupled resonances of nuclei A and X at 
A6 = 0, $ = SA and Aa = 0, 6 = 6x, respectively, give rise to cross-peaks at 
the positions A6 = M(6* - 6x), 6 = aA and A6 = 1/(8x - a,), 6 = 6x, where 
8* and 6x are the chemical shifts of A and X. Hence the cross-peaks lie on a 
straight line which intersects the chemical shift axis at an angle of 135”. In 
Fig. 3 the connectivities are indicated for the resonances of four aliphatic 
amino acid residues which were previously identified by conventional one- 
dimensional NMR (4, 5). Threonine 32 gives rise to the highest-field methyl 
resonance at 0.59 ppm, which is connected with the P-proton line at 4.01 ppm, 
which is also coupled with the a-proton resonance at 5.28 ppm. The two methyl 
groups of valine 34 at 0.81 and 0.71 ppm are coupled with the /3 proton 
seen at 1.96 ppm, which in turn is connected also with the a-proton resonance at 
3.92 ppm. The two A3X spin systems of alanines 16 and 27 are seen to be identical 
within the resolution obtained in these experiments, with chemical shifts of 1.19 
and 4.30 ppm for the methyl protons and the (Y proton, respectively. 

A complete analysis of the spectra in Figs. 2 and 3, which provide connectivities 
between components of 30 spin systems, will be presented elsewhere 
(Nagayama, Ernst, and Wuthrich, to be submitted for publication). 

(b) Foldover-Corrected Correlated Spectroscopy 

FOCSY uses the basic experimental scheme of 2D correlated spectroscopy 
shown in Fig. la. The desired saving in experiment time and data storage is realized 
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by a coarse sampling on the t1 time axis. In this, the sampling theorem (6, 7) is 
violated, which causes foldover of the 2D spectrum in the w1 direction. In most 
situations such foldover is fatal for the unequivocal interpretation of a spectrum. 
However, quite recently, Miiller (8) has shown in the context of 2D resolved 
13C spectroscopy that under certain conditions a removal of foldover can be 
achieved by a quite simple data rearrangement procedure after 2D Fourier 
transformation. This idea can also be used in 2D correlated spectroscopy. 

The basic principle of FOCSY is visualized in Fig. 4 which shows a hypothetical 
spectrum corresponding to three pairs of coupled spins with differences of 
Zeeman frequencies loi - wkl = 3, 4, and 2, respectively. Figure 4a shows the 
original 2D correlated spectrum in which foldover occurred in the o1 direction at 
the Nyquist frequency oN = 9% because of coarse sampling along rl. The foldover 
can be seen from the fact that the main diagonal is broken. The corresponding 
FOCSY spectrum is given in Fig. 4b. Here, the main diagonal has been recon- 
stituted and put along the new 06 axis. The cross-peaks appear at positions 
reminiscent of those in a SECSY spectrum. However, the scale in the w; 
direction is twice that of a SECSY spectrum. As a consequence, related cross- 
peaks appear therefore at an angle of 116.6” instead of 135”. 

-------_ -+ - ---- 

Jf 
i I3 

II I 

4. 2. 

-4. u 
b :u. 

-10 -5 0 5 10 

FIG. 4. The principle of FOCSY. (a) 2D correlated spectrum with foldover in the o1 direction. Fold- 
over is visible by the solid line which indicates the broken main diagonal. (b) Foldover-corrected 
spectrum obtained from (a) by a cyclic rotation of the data points within each data column by its 
value of -oz. Note that the direction of o1 is opposite to that in Figs. 1 to 3 and 5. This 
choice is necessary to obtain a FOCSY spectrum directly comparable to a SECSY plot. 
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To obtain Fig. 4b from Fig. 4a, the data within each data column must be 
rotated by a number of places given by the corresponding value of -02. The 
sense of rotation is determined by the sign of -02. This is a very simple mathe- 
matical procedure. Let us consider as examples the operation for some of the 
multiplet centers of Fig. 4. 

(~l,WZ) (01 - @22, w2) (4, d4 

C-2, -2) (0, -2) (0, -2) 
(2, --a (4, -2) (4, -2) 
(4, -7) (11,-7) (0, -7) 

(-4, -7) (3,--7) (3, -7) 
(-2,7) t-9771 (~~7) 

The rearrangement procedure of the originally computed spectrum S(w,, y) 
into a foldover-corrected spectrum S’(oi,og) can also be formulated in mathe- 
matical terms as follows: 

S’(4,d) = S(%,O,) 111 
with: 

o; = (ml - co2 + oN) mod 20, - oN, 

w; = 02. 

This rearrangement ensures that ol lies within the Nyquist frequency, -oN 
< 0; < ON. 

It is important to recognize that foldover correction is possible only when 
positive and negative w1 frequencies can be distinguished. This requires the 
performance of two independent recordings for each r1 value with the second 90” 
pulse phase-shifted by 90”, i.e., 

Experiment 1: (t), , cl, (t), , acquisition, 

Experiment 2: (f), , rl, (:),, acquisition. 

In addition, it is of advantage to distinguish also positive and negative frequencies 
in o2 by means of quadrature phase detection. 

(c) Comparison of the Two Techniques 

Both methods have characteristic properties which we would like to point out. 
(i) Attainment of pure phase. SECSY has a strong relation to 2D J-resolved 

spectroscopy (9-11). It is known that in homonuclear 2DJ-resolved spectroscopy 
it is not possible to separate 2D absorptive and 2D dispersive lineshapes (12). 
The same is true also for SECSY. The basic reason for this fact is the absence 
of a phase-selection pulse at the end of the evolution period. FOCSY, however, 
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uses the unmodified basic pulse sequence of 2D correlated spectroscopy and 
permits clean phase separation. 

Phase separation is of advantage when ultimate resolution must be achieved 
as the dispersive contribution necessarily leads to line broadening. This feature, 
however, should not be overemphasized as 2D correlated spectra of complex 
molecules are normally restricted to relatively low resolution because of limitations 
of the available data set and of measuring time. 

(ii) Experimental technique. Two-dimensional correlated spectroscopy will often 
be used side by side with 2D J-resolved spectroscopy (Nagayama, Ernst, and 
Wtithrich, to be submitted for publication). In this context SECSY has the 
inherent advantage that a minimum number of changes to a 2D J-resolved 
spectroscopy program must be made for its realization. 

(iii) Storage and computational requirements. The requirements with respect 
to data storage and to computation time are very similar in the two techniques. 

Although no FOCSY experiments have yet been performed, it can be expected 
that in practical applications performance of both techniques is very similar 
and that the inherent differences do not become apparent in typical spectra. 

III. RELATION BETWEEN SPIN-ECHO CORRELATED SPECTROSCOPY AND 
CONVENTIONAL 2D CORRELATED SPECTROSCOPY 

We would like to illuminate further the relation between the two types of 
presentation of a 2D correlated spectrum from the mathematical side. The clue 
to understand the relationship between conventional 2D correlated spectroscopy 
and SECSY, illustrated schematically in Figs. la and a’, is the similarity 
theorem (6, 7) which asserts that Fourier transform pairs conserve their func- 
tional forms under a similarity transformation. 
If 

&f(t) 22 F(o), PI 
then 

f(at) 2% ’ - F(w/a). 
I4 

[31 

The similarity theorem can easily be extended to n-dimensional Fourier transforms: 

If 

then 
f(t) = F(h) [41 

f(At) = ’ - F(ijA-‘). 
IAl 

151 

Here, A is the matrix of the similarity transformation, t is the n-dimensional 
column vector of time variables, and ij is the n-dimensional row vector of fre- 
quency variables; IA ( represents the determinant of A. 

The two schemes shown in Figs. la and a’ differ in the definition of the time 
variables tl, t2 and t;, td. The following connection is found between the two 
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impulse response functions s(tl,tz) and s’(t;,td) of correlated spectroscopy and of 
SECSY, respectively: 

s(tl,t2) = s’(r;,t;) = s’(At), 

2 0 
A= [ 1 A-1 

M ' 
= -1 1 ’ [ M 1 1’ 

161 

Applying the n-dimensional similarity theorem to the above equation, we can 
derive a relationship which connects the two corresponding spectra, 

S(Wl,WZ) = 

+S 
( 

Wl + 02 = 

2 
, f32 7 

1 
171 

ij = (0~402). 

Equation [7] expresses the fact that a SECSY spectrum can be obtained by a 
similarity mapping from a conventional 2D correlated spectrum. These considera- 
tions are correct as far as the signal frequencies are concerned. However, 
considerations of the resulting lineshapes are more subtle. This arises from the 
fact that the two data sets in the time domain are not identical since in SECSY, 
signal observation starts only following a time lag t1 after the mixing pulse (Fig. 1). 
We do not discuss here the consequences for the lineshapes. 

The similarity theorem allows us also to understand the appearance of a set of 
unexpected peaks in a SECSY spectrum. They occur unless a special phase 
alternation scheme is used, which will be described in the next section. Let us 
assume a single-phase experiment which does not permit the distinction of positive 
and negative w1 frequencies in a 2D correlated experiment. It produces a duplica- 
tion of the peaks in the positive and negative w1 frequency domain. This is 
indicated in Fig. lb by the two peaks P(n,,fi,) and N(-R,,fi2). A similarity 
mapping according to Eq. [7] again produces two peaks in the SECSY spectrum 
shown in Fig. lb’. The peak designated as N’((S1, - &)/2, a,) belongs to the 
desired set while P’((f12 + J&)/2, 0,) appears at a high w; frequency and 
will in most cases lead to foldover. Aliasing problems can be prevented by a 
suppression of the P’ peaks. 

In more physical terms, one may say that the 7~/2 mixing pulse leads to terms 
with apparent positive and negative time evolution during the first half of the 
evolution period. The term with apparent negative time evolution causes the de- 
sired peaks at the difference frequencies while the term with the apparent posi- 
tive time evolution leads to additive precession angles during the two halves of 
the evolution period and must be suppressed to obtain a clean SECSY spectrum. 
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FIG, 5. The relation between the conventional 2D correlated spectrum and the SECSY of an 
AX two-spin system. (a) 2D correlated spectrum obtained by the scheme of Fig. la; (a’) 
SECSY obtained by the scheme of Fig. la’. 

IV. SUPPRESSION OF SUM FREQUENCY PEAKS IN SPIN-ECHO 
CORRELATEDSPECTROSCOPY 

Let us investigate the features shown in Figs. lb and lb’ in more detail by 
considering the 2D spectra for the weakly coupled two-spin system represented 
in Fig. 5. The 2D correlated spectrum, given in Fig. 5a, consists of eight groups 
of four peaks. Half of the groups, numbered 1 to 4, belong to N-type peaks while 
peaks 5 to 8 are P-type peaks (compare Section III). There is an exact symmetry 
of N- and P-type peaks. The similarity mapping, according to Eq. [7], leads to 
the SECSY spectrum of Fig. 5a’. It is obvious that groups 1 to 4 contain the 
desired connectivity information while peaks 5 to 8 lead only to additional 
complications and possibly to foldover. They will be eliminated by the procedure 
to be described in the following. 

Let us consider the effects of a phase change of the mixing pulse by ?r/2 by 
using the basic formalism of 2D correlated spectroscopy (2). The complex ampli- 
tude factor of a cross-peak between transitions (mn) and (kl) is given by 

-m!mn = F,dWRE,‘*F,m.. PI 

Here, F, is the y component of the total spin operator and RcS), explicitly 
given by R W) = exp(-i(?r/2)F,), is the rotation operator representing the mixing 
pulse. Now let us rotate the phase of the mixing pulse by v/2, replacing F, 
by F, in the rotation operator. This phase change can be expressed by 
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For Zg,‘,,,n we obtain the following explicit expression using the magnetic quantum 
numbers of the involved states: 
Z(U) 

klmn = exp{i[Mk - MJd2 + i[Mm - M,]7r/2} X F,klR($R’k”,“‘Fy,,, [lOI 
= eXp{i(AMkl + AM,,)?1-/2}Z;&n, 

AMkl = Mk - Ml = ?l, AM,,,,, = M, -M, = ?l. 

One finds that for N-type peaks AM,, = A Mkl and therefore 
z’ II) 

klmn = -Z%~. 1111 
That is, a phase change of the mixing pulse by 7r/2 leads to a sign change of N-type 
peak amplitudes. On the other hand, for P-type peaks, AM,, = -AMkl, and 

Z(Y) 
klmn = Z;$;mn. 1121 

By subtraction of the response to a (7~/2)~ mixing pulse from that to a (7r/2), mixing 
pulse it is possible to eliminate the undesired P-type peaks. 

It turns out that for practical applications it is worthwhile to use for each t1 value 
a sequence of four recordings instead of the two recordings suggested by the 
above considerations: 

(f),, !J2 , (f), , $ , acquisition (+); 

(:)z, :, (f),, +, acquisition(-); 

(+),, + , (t)-, , $- , acquisition (-1; 

(:)X, 2, (c)-,, +, acquisition (+>. 

With this scheme, it is possible also to eliminate, in addition top-type peaks, the 
axial peaks (2) which originate from the mixing pulse and do not contain any 
connectivity information. 

V. CALCULATION OF SPIN-ECHO CORRELATED SPECTRA 

The similarity relation between SECSY and conventional 2D correlated 
spectra pointed out in Section III enables us to use the expressions derived for 
2D correlated spectroscopy to compute SECSY spectra. The signal intensities 
are given by Eq. [8] and the line positions can be obtained by the similarity rules 
given in Section III. The lineshapes, however, differ from those of 2D correlated 
spectroscopy (2) where pure 2D absorptive or 2D dispersive lines are obtained. For 
SECSY, all lines are superpositions of equally weighted 2D absorptive and 2D 
dispersive contributions. Some of the peaks show positive, some negative peak 
intensities. 
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TABLE 1 

PEAK INTENSITIES IN A SECSY SPECTRUM OF A STRONGLY COUPLED TWO-SPIN AB SYSTEM 
USING A 90;, t;l2, px, t;/2, t; PULSE SEQUENCE 

-‘SD - MJ 

-MD 

-MD + MJ 

-‘hJ 

0 

MJ 

‘h/20 - MJ 

‘hD 

‘hD + ‘hJ 

M(o, + og) - HD - MJ 

M(o, + OS) - ‘SD 

M(o, + og) - ‘AD + MJ 

‘h(oA + w.) + MD - MJ 

M(o, + og) + IhD 

M(w, + ma) + ‘hD + MI 

(I - sin 20) sin” f 2 
ii 

-‘A cd 20 sir? fi 

P -cos2 20 sin’ T 
0 

-‘X(1 - sin 20)’ sin’ p 

(I - sin 20) cd f I: 
0 

-‘A cos2 20 sin’ p 

‘A/4( I - sin 20)’ sinP 6 

-‘A( I + sin 20)’ sin’ p 

P -cd 20 sin’ ; 
0 

‘A cd 20 sin’ p 

(1 + sin 20) cd f A 
i i 

U( I t sin 2.9)’ sin’ fi 

--y4 cd 20 sin’ /3 

- ‘A( 1 + sin 20)’ sin’ p -Y4( 1 - sin 20)* sin2 fi 

cd (20) sin’ f 
0 

(1 + sin 20) sin’ f A 
0 

-!4 cd 20 sin’ p -!4 cd 20 sina p 

--y4 cd 20 sin’ p 

‘A( 1 + sin 20)’ sin’ p Y4(1 - sin 2O)l sid p 

- ti ccd 20 sin’ p 

(1 + sin 20) cd f A 
0 

(1 - sin20) cd f E 
0 

+sin28rin’(~)~:A=[caP(f)-sin2Osin’(~j]:D=[~+( WA - w,)=]“~; cm 20 = (o* - &ID. 

We would like to point out that for computational purposes it is also possible 
to relate SECSY spectra to 2D J-resolved spectroscopy. Signal intensities for a 
SECSY spectrum can then be computed from the expressions given by Kumar 
(13) for 2D J-resolved spectroscopy by setting the rotation angle of the second 
radio frequency pulse equal to 90”. 

As a simple example of such a calculation, we present in Table 1 the frequencies 
and the intensities of a SECSY spectrum for a strongly coupled two-spin AB 
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system. A mixing pulse with rotation angle /3 is assumed. The table has been 
arranged to correspond pictorially to Fig. 5a’. The upper half contains the 
desired N-type peaks, while the lower half consists of the P-type peaks, which 
are suppressed by the extended scheme discussed in Section IV. The relative 
peak intensities of Table 1 can be obtained from the real amplitudes given by 
Eq. [61] of Ref. (2) taking into account that the complex amplitudes of Eq. 
[8] can be expressed by the real amplitudes of Ref. (2) as follows: 

For the special case p = 180”, the peak intensities of Table 1 reduce to those 
collected in Table 4 of Ref. (13). For a weakly coupled spin system with 8 = 0 
and p = 90”, all peaks have equal absolute intensities. It is important to note that 
the groups of four cross-peaks relating transitions of different nuclei have zero 
total intensity. For the weakly coupled two-spin case, this is true for all values 
of p, for the strongly coupled AB spin system only for p = 90”. This implies that the 
cross-peak intensities will mutually cancel when the multiplets are not resolved. 
Inherently broad lines or resolution limited by insufficient data points can lead 
to such a cancellation. None or extremely weak cross-peaks will occur for 
unresolved long-range couplings. This fact makes a SECSY spectrum of a 
biological macromolecule simple and interpretable. It can generally be observed 
that cross-peaks are often of rather low intensity due to partial cancellation 
of overlapping peaks. 

Overlap of peaks due to field inhomogeneity does not lead to the above- 
mentioned cancellation. This arises from the virtue that the field inhomogeneity 
is partially refocused for N-type peaks in the w1 direction. On the other hand, 
P-type peaks do not experience such a refocusing effect and are generally 
broader than N-type peaks. 

VI. CONCLUSIONS 

It has been a surprise to the authors that despite the enormous number of 
cross-peaks to be expected in a 2D correlated spectrum of a large molecule, e.g., 
a protein, a quite informative presentation of the connectivity information can 
be obtained. It appears that 2D correlated spectroscopy in the particular forms 
described here will become a valuable tool for the elucidation of complex 
high-resolution NMR spectra. 
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