1	Performance Evaluation of PM, NO _x , and Hydrocarbon Removal
2	in Diesel Engine Exhaust by Surface Discharge-Induced Plasma
3	
4	Kohei Kawakami*, Ken Watatani**, Haruhiko Yamasaki*, **,
5	Tomoyuki Kuroki*, **, Masaaki Okubo*, ***
6	* Department of Mechanical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho,
7	Naka-ku, Sakai 599-8531, Japan
8	**Department of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho,
9	Naka-ku, Sakai 599-8531, Japan
10	
11	*The final publication of this paper is
12	Kohei Kawakami, Ken Watatani, Haruhiko Yamasaki, Tomoyuki Kuroki, Masaaki Okubo,
13	Performance evaluation of PM, NOx, and hydrocarbon removal in diesel engine exhaust by
14	surface discharge-induced plasma, Journal of Hazardous Materials, Volume 462, 2024,
15	132685, https://doi.org/10.1016/j.jhazmat.2023.132685.
16	(https://www.sciencedirect.com/science/article/pii/S0304389423019684)

^{*}Corresponding author: M. Okubo, Department of Mechanical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan Tel.: +81 72 254 9230; Fax: +81 72 254 9230. *E-mail address*: mokubo@mokubo.com

18 Abstract

Diesel engines are characterized by low CO₂ emissions and high fuel efficiency. 1920However, their exhausts contain nitrogen oxides (NO_x), particulate matter (PM), and hydrocarbons (HC) that require removal by aftertreatment. A novel low-temperature 2122plasma-based aftertreatment method has been developed for the simultaneous removal of 23NO_x, PM, and HC. NO_x could be reduced by reacting with HC and CO in the exhaust gas. The particle and gas concentrations in the exhaust are measured using a scanning mobility 2425particle sizer, a NO_x analyzer, and a total hydrocarbon analyzer. The treatment performance is evaluated using the resulting measurements. The diesel engine is operated under 0, 25, 50, 2627and 75% loads (maximum output of 2 kW), and the exhaust gas is mixed with $N_2 + O_2(13\%)$ 28gas. The power is adjusted to provide 100, 200, 300, and 400 W input power during the 29plasma reactor treatment. The aftertreatment removal of NO_x, PM, and HC is evaluated, and the engine exhibits a removal efficiency of 70% for NO_x, 98% for PM, and 67% for HC at 30 75% engine load and an input power of 100 W. 3132

33 Keywords: Diesel engine, Surface discharge plasma, NO_x, PM, Hydrocarbon

35 **1. Introduction**

Diesel engines have long been favored in several segments of the vehicle industry. One of 36 the core reasons for their popularity is their inherent capability to produce lower CO₂ 37 emissions compared to their gasoline counterparts. Another compelling feature of diesel 38engines is their superior fuel efficiency, allowing them to move longer distances on a single 39 40 fuel tank. These advantages make diesel engines a sustainable choice for long-haul transport and heavy-duty vehicles. Although every technology has its challenges, a significant concern 41 is the exhaust gas for diesel engines. The exhaust from these engines consists of a mix of 42nitrogen oxides (NO_x), particulate matter (PM), and hydrocarbons (HC). These components, 43especially NO_x and PM, are harmful to both the environment and human health. To curb 44 these emissions, the introduction of aftertreatment technologies becomes indispensable 45[1-15]. The industry has relied on a few established aftertreatment methods. One of the most 46 commonly employed is the selective catalytic reduction (SCR). Several studies on SCR 47[13–15] should be explained. The article [13] predicted the efficiency of the SCR system 48through modeling. The article [14] analyzed the treatment of NO_x, HC, CO, and other 4950pollutants in the SCR system in detail through experiments. The article [15] identified the issue of urea crystallization in the SCR system. SCR works efficiently in reducing NO_x 51emissions. However, it is not without its challenges. For SCR to function effectively, a urea 52water solution is needed, necessitating a separate storage tank. Over time, the SCR catalyst 53

54	degrades and must be replaced periodically. Another limitation is the inability of HC and NO_x
55	trap catalysts to be used with heavy oils, limiting their application in certain conditions.
56	Beyond the challenge posed by NO _x , the removal of particulate matter (PM), such as
57	PM _{2.5} , is a significant concern, particularly in the East Asian region. Upon inhalation, it gets
58	lodged in the lungs and detrimentally impacts human well-being. Consequently, there has
59	been global attention directed towards its mitigation. Indoor air cleaners containing
60	electrostatic precipitators and high-efficiency particulate air (HEPA) filters prove efficacious
61	in eliminating airborne PM. Employing these air purifiers indoors can lead to a substantial
62	reduction in PM levels [2, 3]. Diesel particulate filters (DPF) have emerged as a leading
63	solution in this domain. These filters are integrated into most modern diesel automobiles,
64	ensuring they meet stringent annual emissions regulations [16–18]. However, again, DPFs
65	are not free from complications. As they trap particulates, they need regular maintenance.
66	Over time, PM accumulates, leading to a high-pressure drop and clogging of the filter. Thus,
67	passive regeneration, which is done continuously, and active regeneration, which is periodic
68	high-temperature burn-off, are essential to maintain the DPF's efficiency [19–25]. The
69	passive regeneration is made with catalysts while active regeneration is made with electric
70	heaters or afterburners.
71	In the development of the automobile industry, hybrid-powered vehicles, which combine

the power of traditional combustion engines and electric motors, are gaining traction. With

73	this evolution, there is a significant shift in aftertreatment technologies, too.
74	Low-temperature plasma, an innovation harnessing electrical energy, stands out as a
75	promising technology. Unlike traditional methods, it does not rely on ammonia or catalysts
76	for NO _x , PM, and HC removal [26–45]. Low-temperature plasma, in essence, leverages high
77	voltage to generate a plasma field. Within this field, reactive oxygen species, known for their
78	strong oxidizing power, are produced. These species then interact with NO _x , PM, and HC,
79	effectively breaking them down. The advantages are manifold. For instance, this technology
80	can treat low-temperature exhaust gases continuously. Additionally, it does not experience
81	the same pressure drop issues as DPFs, making it a viable alternative [42]. Some papers will
82	introduce research on the treatment of hydrocarbons and NO _x . The paper [43] investigates the
83	use of a plasma/adsorbent system to treat NOx emissions in diesel exhaust. By using solid
84	industrial wastes as the adsorbent, the authors present a potentially sustainable method for
85	NO _x reduction, simultaneously addressing pollution and waste management issues. The paper
86	[44] evaluates the performance of waste foundry sand and bauxite residue in reducing NO_x
87	emissions from diesel exhaust. The paper [45] introduces a novel system, employing
88	cascaded plasma-ozone injections, to decrease total hydrocarbon emissions from diesel
89	exhaust. The results were promising and activating inexpensive adsorbents and catalysts with
90	plasma opens the way to various industrial applications for environmental cleaning.
01	In a manipus study [46], a glasma grastan and high fragmanay high yeltage gamen suggly

91 In a previous study [46], a plasma reactor and high-frequency, high-voltage power supply,

which were the components of a plasma aftertreatment system, were installed to conduct new tests with the aim of applying it practically as a PM aftertreatment technology to meet future emission regulations. Evidently, PM oxidation removal by surface discharge plasma was confirmed, thus indicating the possibility of the simultaneous removal of PM and NO_x [27, 28, 46, 47].

97 In this study, we treat a plasma filtration technique aimed at extracting particulate matter (PM) while it is airborne, achieved by directly subjecting PM-laden gas to plasma. Within 9899 this approach, PM gets eliminated through chemical reactions and the particle-collecting influences inherent to plasma. This is realized by guiding PM-containing gas through a 100 cylindrical plasma reactor housing surface discharge electrodes. Because minimal pressure is 101 102lost and performance degradation over extended operation periods is negligible, the process 103 remains efficient and uninterrupted, obviating the need for filter rejuvenation or cleansing. Additionally, the reactor exhibits the capability to eliminate nitrogen oxides ($NO_x = NO +$ 104 NO₂), odors, and gases containing volatile organic compounds (VOCs). The primary aim of 105this current investigation is to explore a plasma system capable of accommodating 106 107 substantial filtration volumes, enhancing the enduring presence of radicals, and amplifying the overall decomposition efficiency of the system. Furthermore, to evaluate the treatment 108 performance, the particle and gas concentrations (NO, NO_x, CO, CO₂, O₂, HC, HNO₃, and 109O₃) are measured. Additionally, to compare reactor performance at these loads, experiments 110

111	are conducted with engine loads of 0, 25, 50, and 75 %. In summary, as the vehicle industry
112	progresses, the imperative to find efficient, cost-effective, and sustainable aftertreatment
113	solutions grows. While traditional methods like SCR and DPF have their place, innovations
114	like low-temperature plasma offer a glimpse into a cleaner future for diesel engines.
115	
116	2. Experimental setup and methods
117	2.1 Experimental setup
118	Fig. 1(a) shows a schematic of the experimental setup for the diesel engine exhaust
119	treatment system using a surface discharge plasma reactor. The experimental apparatus
120	consists of a diesel engine (KDE2.0E, Wuxi Kipor Power Co., Ltd.) exhaust flow path and
121	dilution cylinder flow path, which are mixed and diluted before entering the plasma reactor
122	to treat the NO _x , PM, and HC in the exhaust gas. In the figure, N_2 cylinder gas (secondary
123	pressure fixed at 0.2 MPa) and synthetic air cylinder gas ($N_2 = 79$ %, $O_2 = 21$ %, secondary
124	pressure fixed at 0.2 MPa) are used as the dilution gases. The N_2 cylinder gas and synthetic
125	air are mixed at an O_2 concentration and flow rate of 13 % and 2.5 L/min, respectively, using
126	a set of mass flow controllers (SFC280, Hitachi Metals, Ltd.), with maximum flow rates of 5
127	and 10 NL/min (N indicates the standard state of 0 °C, one pressure). Additionally, flow
128	meter A (RK1710, KOFLOC Corp.; maximum flow rate = 5 NL/min) is used to adjust the
129	flow rate of the dilution gas. Further, to evaluate the removal performance of NO_x , PM, and

130	HC, the exhaust gas passes through a plasma reactor. Thus, the O ₂ concentration in the
131	reactor must be matched with that of the exhaust gas. Therefore, dilution gas with an O_2
132	concentration of 13 % is prepared as the O_2 concentration of diesel engine exhaust gas is
133	approximately 13 %. In this experiment, the diluted gas (flow rate = 2.5 L/min) is mixed with
134	the exhaust gas, and the mixed gas (flow rate = 5 L/min; dilution ratio = 2.0) is prepared and
135	tested. The reason for dilution is that if the exhaust gas is used without dilution, the PFA tube
136	becomes clogged, and particles become trapped because of the effects of the large amount of
137	soot contained in the exhaust gas and water vapor in the exhaust gas adhering to the PFA tube
138	in the flow path, thus rendering difficulty in obtaining accurate experimental data and
139	conducting the experiment. It is noted that O2 concentration of the raw exhaust gas is almost
140	the same as the diluted gas. Therefore, the dilution has little effect on the reaction pathways
141	of the plasma reactor. The mixed gas is pressurized using a pump (APN-110LVX1-2, Iwaki
142	Co., Ltd.; maximum discharge pressure = 0.10 MPa), and the flow rate is adjusted to 5 L/min
143	using a flow meter C (RK1710, KOFLOC Corp.; maximum flow rate = 5 L/min). Next, the
144	gas mixture is introduced into the plasma reactor, where PM and HC are oxidized and
145	removed by the surface discharge plasma. The concentrations of HNO_3 and O_3 in the exhaust
146	gas after the treatment are measured using gas detector tubes (No. 15L nitric acid, No. 18M
147	ozone, GASTEC CORPORATION) through a gas detector tube sampling port. Note that the
148	treated exhaust gas contains the O ₃ generated in the reactor, which may corrode and damage

149	the measurement equipment. Therefore, a tubular furnace (KPO-14K, Isuzu Seisakusho Co.,
150	Ltd.) is installed immediately after the reactor to perform pyrolysis at a set temperature of
151	300 °C. Three-way valves A and B are installed to prevent the exhaust gas from flowing into
152	the reactor by changing the flow path when the reactor is turned off. When the exhaust gas
153	flow into the reactor, water vapor and particles accumulate and negatively affects the
154	measurement.
155	After treatment in the plasma reactor, the gas is divided into two flow paths. The exhaust
156	gas is adjusted to a flow rate of 4.0 L/min using flow meter E (RK1710, KOFLOC Corp.;
157	maximum flow rate = 5 L/min), and particles are removed using an air filter (ZFC-EL-4,
158	SMC Corporation) and hollow fiber membrane filter (DRY7-1/4, KITZ Corporation).
159	Subsequently, a set of gas analyzers (PG-235 and PG-240, HORIBA, Ltd.) and total
160	hydrocarbon (THC) or total volatile organic fraction (TVOC) analyzer (FV-250, HORIBA,
161	Ltd.) are used to measure the gas components (NO, NO _x , O ₂ , CO, and CO ₂) and THC,
162	respectively. In the other flow path, the flow rate is adjusted to 1 L/min, and the gas is
163	sampled using flow meter D (RK1650, KOFLOC Corp.; maximum flow rate = 1 L/min). The
164	sampled gas is diluted to 1/5 concentration with N_2 cylinder gas (secondary pressure fixed at
165	0.1 MPa) using flow meter B (RK1710, KOFLOC Corp.; maximum flow rate = 5 L/min) and
166	measured using a scanning mobility particle sizer (SMPS). The SMPS is comprised of a
167	differential mobility analyzer (DMA, Model 3080, measurement range of particle size: 10 to

168	414 nm, TSI Inc.) and a condensation particle counter (CPC, Model 3787, TSI Inc.). As the
169	particle concentration $dN/d\log D_p$ in the CPC measurement ranges from 0 to 2.5×10^5 (cm ⁻³),
170	dilution with N_2 gas is necessary to avoid exceeding the upper limit of 2.5×10^5 (cm^{-3}).
171	Additionally, the current, voltage, and power waveforms in the reactor are measured using an
172	oscilloscope (DLM3054, Yokogawa Electric Corporation) using a current probe (MODEL
173	2878, Pearson Electronics, Inc.; 10 A/V) and a high-voltage probe (HV-P60, Iwatsu Electric
174	Co., Ltd.; 2 kV/V). The exhaust gas and reactor surface temperatures are measured using
175	thermocouple thermometers (MTCTS, MISUMI Group Inc. and AD-5602, A&D Company,
176	Limited, respectively).
177	Fig. 1(b) shows a photograph of the diesel engine, exhaust piping, apparatus, and flow
178	directions used in this experiment. The diesel engine exhaust gas obtained from the sampling
179	port has a high temperature and contains water vapor, which is removed and cooled by
180	passing it through a drain pot.
181	
182	2.2 Plasma treatment system
183	2.2.1 Overview of plasma reactor equipment
184	Fig. 2 shows the cylindrical surface discharge element (HCII-OC70, Masuda Research
185	Inc.) constituting the surface discharge plasma reactor used in this experiment. Fig. 2(a)
186	shows a schematic of the cylindrical surface discharge element and cross-section of the inner
	10

187	wall of the element. The exhaust gas flows in through the sample inlet and flows out through
188	the sample outlet after being treated with plasma. The equipment consists of a surface
189	discharge tube utilizing the surface discharge induced plasma chemical process (SPCP
190	discharge tube: OC-70/AC, Masuda Research Inc.) technology and a high-frequency and
191	high-voltage power supply (HCII-70/2, input: voltage = three-phases 200 Vac, power = 1.5
192	kVA (50/60 Hz), output: peak-to-peak voltage = 14 kV (no electrical load), input power =
193	70–860 W, frequency = 9.9 kHz, Masuda Research Inc.). Fig. 2(b) shows the front view of
194	the surface discharge element and the high-frequency and high-voltage power supply. The
195	element is a ceramic tube (outer diameter = 80 mm; length = 300 mm) with a discharge
196	electrode on its surface of the ceramic tube and an induction electrode inside the ceramic. A
197	surface discharge is extended along the inner walls of the discharge electrode and ceramic
198	tube by applying a high frequency and voltage between the two electrodes. Thus, a surface
199	discharge plasma is generated on the surface of the discharge electrode, thereby producing
200	reactive free radicals (active oxygen (O) and nitrogen (N)) with strong oxidation properties.
201	The PM, HC, and NO_x in the exhaust gas react with these active oxygen species for their
202	removal. Air cooling of the heat-dissipating fins attached to the outer wall of the ceramic
203	tube prevents overheating of the surface discharge elements. Figs. 2(c) and 2(d) show the
204	internal structure of the reactor, as photographed by the endoscope. Fig. 2(c) shows the
205	results when the power is turned off, whereas Fig. 2(d) shows the results when the reactor

input power is 400 W. These images show that the discharge is generated along the electrodeson the ceramic surface.

208

209 **2.2.2 Experimental condition and measurement procedure**

210Table 1 shows the engine specifications and experimental conditions. Fig. 3 shows the 211relationship between each composition of the raw exhaust gas components and the engine load. Regarding CO₂, NO, and NO_x, the values increase as the load increases. Regarding 212THC, O₂, and CO, the values decrease with increasing load. This graph gives the exhaust 213boundary conditions of the experiments. The input power to the plasma power supply is set 214to 0, 100, 200, 300, and 400 W, and the particle-removal efficiency of the reactor, discharge 215power, and concentration changes in the engine exhaust are measured. The time required for 216each power level to stabilize is 10 min. To determine the particle concentration before 217removal, the particle concentration is measured using the SMPS when the reactor is turned 218off. Subsequently, the flow path is changed using three-way valves A and B, and the reactor 219is turned on and allowed to stabilize for 10 min. After stabilization, measurements are taken 220221using the SMPS and an oscilloscope, and these are used as the results when the reactor is turned on. The state of the reactor is alternately repeated three times between off and on 222conditions, and the measurements are performed under one condition. The gas concentration 223before the treatment is the average value of the 1-min period immediately before the reactor 224

225	is turned on. The gas concentration after the treatment is the average value at 1 min after the
226	reactor power stabilized. During the measurement of one condition, changes in the exhaust
227	gas components over time are recorded. In this experiment, the engine load is changed to 0,
228	25, 50, and 75 %, and the reactor removal performances at each engine load are compared.
229	When the engine load is 100%, the exhaust gas concentrations fluctuates greatly because it is
230	a critical condition of the engine performance. Therefore, the experiment could not be
231	conducted because it was not possible to dilute the flue gas accurately, and to compare the
232	gas concentrations before and after the treatment accurately. For all the conditions, the engine
233	and gas analyzer warm-up times are both 60 min. Under each condition, the particle size
234	distribution and gas concentration in the engine exhaust are measured using an SMPS, gas
235	analyzer, and gas detector tube.
236	
237	2.2.3 Reactions of PM, HC, and NO _x in the plasma reactor
238	Diesel exhaust particles (DEP) contain dry soot (C), soluble organic compounds (SOF),
239	hydrocarbon compounds (HC), sulfates, and water droplets. PM (C, SOF, and HC) is
240	oxidized by active oxygen species, and gaseous CO and CO ₂ are induced. Thus, PM may be
241	treated spatially. The main chemical reactions for PM oxidation and removal are shown in
242	reactions (1)–(11) [16, 25, 27, 28].
0.42	

244	$O_3 \rightarrow O_2 + O$	(1)
245	$NO + O \rightarrow NO_2$	(2)
246	$NO_2 \rightarrow NO + O$	(3)
247	$C + 2O \rightarrow CO_2$	(4)
248	$C + O \rightarrow CO$	(5)
249	$CO_2 \rightarrow CO + O_2/2$	(6)
250	$SOF + O \rightarrow mCO_2 (mCO) + nH_2O$	(7)
251	$2HC + 5O \rightarrow 2CO_2 + H_2O$	(8)
252	$2HC+5NO \rightarrow 5N_2/2+H_2O+2CO_2$	(9)
253	$2NO_2 + 2C \rightarrow N_2 + 2CO_2$	(10)
254	$2NO_2 + 4C \rightarrow N_2 + 4CO$	(11)
255	(<i>m</i> , <i>n</i> : Integers)	
256		
257	In these reactions, according to reactions (4)–(8), C, SOF, and HC are oxidized by ox	ygen
258	radicals induced by reactions (1)–(3). Simultaneous reduction of NO and HC is induc	ed by
259	reaction (9). Simultaneous reduction of NO_2 and dry soot is induced by reactions (10)) and
260	(11).	
261		

3. Results and discussion

3.1 Particle concentration and removal efficiency

264	Fig. 4 shows particle concentration before and after plasma treatment for engine loads of:
265	(a) 0%, (b) 25%, (c) 50%, and (d) 75 %. The particle size distribution of PM in the mixed gas
266	is measured to confirm the PM treatment performance of the reactor for each engine load
267	(sampling flow rate, $Q = 5$ L/min, and dilution air flow rate, $Q_A = 2.5$ L/min). The horizontal
268	and vertical axes represent the particle diameter (nm) and particle concentration of
269	$dN/d\log D_p$ (cm ⁻³), respectively. Each symbol indicates the particle concentrations before and
270	after treatment at 100, 200, 300, and 400 W. Additionally, each symbol represents the average
271	value of the measurements, and each error bar represents the standard deviation $\pm \sigma$. The
272	figure shows that the reactor performs well in PM removal at each load and input power
273	based on particle concentration measurements. As the load increased, the peak value of the
274	particle diameter distribution before treatment transitioned to a larger particle diameter range.
275	This is speculated to be due to the fact that the PM particle diameter is larger, and the
276	percentage of coarse particles increases as the engine load increases. Generally, there is a
277	tendency for the diameter of diesel engine exhaust particles to increase as the engine load
278	becomes larger. When the engine load increases, the combustion process becomes more
279	efficient, leading to an increase in particle generation, which could result in larger particle
280	diameters. However, this can vary depending on specific conditions and engine design. The
281	following papers [48–50] provide information about diesel engine exhaust particles. Each

282	paper focuses on the characteristics of particles under specific engine load conditions. PM is
283	composed primarily of soot and the soluble organic fraction (SOF), which are carbon
284	components. Organic components, such as SOF, attach to the surface of agglomerates formed
285	by the aggregation of soot particles and are emitted as PM. As the engine load increases, soot
286	particle agglomerates tend to form more soot particles, SOF, and agglomerates. In addition,
287	the combustion temperature in the engine increases, and small particles are burned.
288	Consequently, as the number of small particles decreases, the proportion of coarse particles
289	increases. These observations suggest that the peak concentration of particles before
290	treatment is likely to shift toward larger particle diameters.
291	Fig. 5 shows particle removal efficiency for engine loads of: (a) 0%, (b) 25%, (c) 50%,
292	and (d) 75 %. The horizontal and vertical axes represent the particle size (nm) and removal
293	efficiency (%), respectively. The symbols indicate the removal efficiencies after treatment
294	with input powers of 100, 200, 300, and 400 W. When the particle concentration before
295	treatment at each particle diameter is less than 2 % of the peak value, it is excluded to ensure
296	measurement accuracy. The figure shows that in the particle size range of 23.8 nm and above,
297	the averaged removal efficiency is higher than 96 % for all loads and input powers except for
298	a plot point protruded from the frame of Fig. 5(c) . The plot point is the removal efficiency of
299	95% and standard deviation of 3.35 for the particle size of 20.2 nm at the power of 200 W.
300	However, it is found that for the particle size range of 10–40 nm, the nucleation mode

301	particle removal efficiency is relatively lower, as shown in Fig. 5(c) . This indicates that a
302	surface discharge plasma reactor provides high performance for PM removal.

3.2 Gas concentration over time during engine load change

305	Fig. 6 shows time-dependent gaseous concentrations (input power $P = 100$ W) for
306	various engine loads of: (a) 0%, (b) 25%, (c) 50%, and (d) 75 %. In the figure, the horizontal
307	axis represents the elapsed time (s); the left vertical axis represents the concentrations of CO,
308	CO ₂ /10, O ₂ /100 (ppm), and THC \times 10 (ppmC); and the right vertical axis represents NO and
309	NO _x concentrations (ppm). It is noted that the THC unit of ppmC means methane (CH ₄)
310	equivalent concentration. The two-direction arrows indicate the periods in which the power is
311	turned on (ON) and off (OFF). The dotted line indicates the time that the flow path is
312	switched with the three-way valves A and B to measure the particle concentration, and the
313	gas concentrations instantaneously change. To determine the particle concentration before
314	removal, the particle concentration is measured during the period when the reactor is turned
315	off. Subsequently, the reactor is turned on and maintained for 10 min to stabilize the power.
316	After the stabilization, the particle diameter distribution, reactor discharge power, and O_3 and
317	HNO ₃ concentrations are measured. This process of turning on and off is repeated three times
318	for each power level. It is noted that the reason why there is a difference between the first
319	time and the second time is that the first time measurement was affected by the previous

320	experimental conditions. For example, although Fig. 6(b) is a measurement result at $P = 100$
321	W, it is considered that it was affected by the post-treatment gas at 200 W that was performed
322	previously. It is difficult to completely remove this effect due to experimental time
323	constraints. Repeating these experiments more consistently will be considered in future work.
324	The figure shows that the NO, NO _x , and THC concentrations decrease, whereas the CO
325	concentration increases when the reactor is turned on. The HC is oxidized by the active
326	oxygen species such as oxygen (\bullet O) and hydroxyl (\bullet OH) radicals generated by the discharge
327	plasma [43–45, 47].
328	Fig. 7 shows typical time-dependent gaseous concentrations with an engine load = 75%
329	and input power = 400 W. Evidently, the THC concentration decreases, whereas the NO, NO _x ,
330	and CO concentrations increase owing to the formation of NO and NO_x by the active
331	nitrogen generated in the reactor for large power of 400 W. When the plasma is turned off,
332	CO ₂ concentration is increasing. This could be mainly caused by CO ₂ reduction to CO when
333	the plasma is turned on. Under the conditions in Fig. 7, a carbon balance is achived before
334	and after treatment within the range of measurement accuracy. A similar trend to that in Fig.
335	7 is observed at loads of 0, 25, and 50 % loads (input power, 400 W).
336	
337	3.3 Gaseous concentrations before and after treatment for various engine load
338	Fig. 8 shows the gaseous concentrations before and after the treatment for various engine

339	loads, with input powers of: (a) 100 W, (b) 200 W, (c) 300 W, and (d) 400 W. The horizontal
340	axis represents the load (%), the left vertical axis represents the concentrations of CO,
341	CO ₂ /10 (ppm), and THC \times 10 (ppmC), and the right vertical axis represents NO, NO _x , HNO ₃ ,
342	and O_3 (ppm). The solid lines indicate the gas concentration after treatment, and the dotted
343	lines indicate the gas concentration before treatment. It is noted that the gas concentration
344	values used in the comparison before and after treatment shown in Fig. 8 are the average
345	values for one minute immediately before turning on and off of the reactor. Since the value
346	during that time was stable, the stabilization time of 10 min is reasonable.
347	Fig. 8(a) shows that the NO, NO_x , and THC concentrations after treatment decrease at an
348	input power of 100 W for all engine loads. Essentially, the simultaneous removal of NO _x , PM,
349	and HC is achieved. As HNO ₃ is generated at this time, the reduced NO and NO _x first react
350	with active oxygen species such as ozone, oxygen, hydroxyl radicals etc., and then with
351	water in the exhaust gas to generate HNO ₃ . The O ₃ concentration decreases, whereas the
352	HNO ₃ concentration increases with increasing load. More than 57 % HC removal is achieved
353	at all loads and powers. The highest removal efficiencies of 70, 98, and 67 $\%$ for NO _x , PM,
354	and HC, respectively, are achieved at a 75 % engine load because the amount of water in the
355	exhaust gas increase at higher loads, which enhances the conversion of NO_x to HNO_3 .
356	Fig. 8(b) shows that the NO and NO_x concentrations increase after treatment at an input
357	power = 200 W. The amount of HNO_3 generated is insignificant. Increased NO and NO_x

358	concentrations vary with the load owing to the influence of exhaust gas components. As the
359	engine load increases, the CO_2 concentration increases, whereas the THC and CO
360	concentrations before the treatment decrease. This is owing to an increase in the combustion
361	temperature of the engine and the ratio of completely combusts PM to HC in the exhaust gas.
362	Figs. 8(c) and (d) show that the trends at input powers of 300 and 400 W are similar to
363	that at 200 W. The results reveal that the system performs well at an input power of 100 W
364	for NO _x , PM, and HC simultaneous removal. Combined with a wet scrubber for HNO ₃
365	removal and a catalyst bed for O3 removal followed by the plasma reactor, absorption,
366	neutralization, and removal enable the simultaneous removal of NO _x , PM, HC, HNO ₃ , and
367	O ₃ , and a total pollution control system will be realized. The trend with some hypothesis and
368	reaction kinetics in the plasma discharge zone are discussed in the next section.
369	
369 370	3.4 NO _x , PM, and HC removal for various specific energy
	3.4 NO_x, PM, and HC removal for various specific energy Fig. 9 shows the results of NO _x , PM, and HC removal efficiencies for various specific
370	
370 371	Fig. 9 shows the results of NO _x , PM, and HC removal efficiencies for various specific
370 371 372	Fig. 9 shows the results of NO_x , PM, and HC removal efficiencies for various specific energy. The horizontal and vertical axes represent the specific energy (<i>SE</i>) (J/L) and removal

376 in Fig. 5. NO_x and HC removal efficiencies are calculated from the NO_x and HC

concentrations before and after treatment, as shown in Fig. 8. Note that a NO_x removal of
less than zero is excluded. Therefore, NO_x plots are fewer NO_x plots than those for PM and
HC. At an input power of 100 W or *SE* less than 824 J/L, NO_x in the exhaust gas is reduced
and removed by reacting with HC and CO in the exhaust gas through the following reactions.

$$382 \qquad 2NO + 2CO \rightarrow N_2 + 2CO_2 \tag{12}$$

$$383 \qquad 2NO_2 + 2CO \rightarrow N_2 + O_2 + 2CO_2 \tag{13}$$

$$384 \qquad 4NO + 2HC \rightarrow 2N_2 + 2CO_2 + H_2 \tag{14}$$

$$385 \qquad 4NO_2 + 2HC \rightarrow 2N_2 + 2CO_2 + H_2 + 2O_2 \tag{15}$$

386

It is known from the figure that more than 98 % removal of PM, 70 % removal of NO_x, and 387 67 % removal of HC are achieved at a specific energy of 634 J/L. Concerning about HC 388removal, removal efficiency is almost constant irrespective of SE because the exhaust gas 389 contains a certain concentration of hydrocarbons which are difficult to be decomposed by the 390 plasma, such as monocyclic and polycyclic aromatic hydrocarbons. The decomposition 391efficiency of each component of the hydrocarbon have not been measured, and it should be 392done in future research. At a power of 200 W or more, the exhaust gas reaches a temperature 393 of about 80 °C, and the plasma produces NO_x at a concentration higher than the NO_x can be 394reduced by HC and CO. Therefore, NO_x removal efficiency becomes negative. This suggests 395

396	that this exhaust gas treatment system can achieve a high treatment performance when
397	operated at low specific energy.
398	
399	4. Conclusions
400	A performance evaluation of PM, NO _x , and HC removal from diesel engine exhaust by
401	surface-discharge-induced plasma is performed. The main conclusions are as follows.
402	(1) At 100 W input power, NO _x , PM, and HC are removed at engine loads, with top
403	efficiencies of 70% for NO _x , 98% for PM, and 67% for HC at 75% load. NO _x reduces
404	by interacting with HC and CO. Increasing CO concentration leads to PM and HC
405	oxidation from reactive oxygen species such as O in plasma discharge. Furthermore,
406	simultaneous reduction of NO and HC, and simultaneous reduction of NO ₂ and dry soot
407	are induced.
408	(2) HNO ₃ is generated at an input power of 100 W when the NO and NO _x concentrations
409	decrease. However, HNO ₃ is not significantly generated under the other conditions. To
410	generate HNO ₃ , reduced NO and NO_x react with some active oxygen species and then
411	with vapor. The O ₃ concentration decreases, and the HNO ₃ concentration increases with
412	increasing load.
413	(3) At input powers of 200, 300, and 400 W, PM removal of more than 98 % and HC
414	removal of 57 % are achieved at all loads by the oxidation with the active oxygen

415	species such as oxygen and hydroxyl radicals. However, NO and NO_x concentrations
416	increase after treatment owing to the formation by the active nitrogen generated in the
417	reactor.
418	(4) More than 98 % removal of PM, 70 % removal of NO_x , and 67 % removal of HC are
419	achieved at a specific energy of 634 J/L. Because the removal of HC is almost constant,
420	the exhaust gas contains a certain concentration of hydrocarbons which are difficult to
421	be decomposed by the plasma.
422	(5) The experimental results reveal that NO_x , PM, and HC in diesel engine exhaust can be
423	treated simultaneously using a surface discharge plasma reactor. Combined with a wet
424	scrubber for HNO_3 removal and a catalyst bed for O_3 removal followed by the plasma
425	reactor, absorption, neutralization, and removal enable the total pollution control
426	system.
427	
428	Acknowledgments
429	The authors acknowledge the cooperation of Mr. Ryotaro Tamaoki, an undergraduate
430	student of mechanical engineering at Osaka Prefecture University, in conducting this research.
431	This study was partially supported by JSPS KAKENHI Grant Number JP20H02374 and
432	JP23H01626.
433	

434 **References**

- 435 [1] Kuwahara T, Yoshida K, Kuroki T, Hanamoto K, Sato K, Okubo M. Pilot-Scale
- 436 combined reduction of accumulated particulate matter and NO_x using nonthermal plasma for
- 437 marine diesel engine. IEEE Trans Ind Appl 2020; 56 (2): 1804–14.
- 438 [2] Kim HJ, Kim M, Han B, Woo CG, Zouaghi A, Zouzou N, Kim YJ. Fine particle removal
- 439 by a two-stage electrostatic precipitator with multiple ion-injection-type prechargers. J
- 440 Aerosol Sci 2019; 130: 61–75.
- [3] Kim M, Lim GT, Kim YJ, Han B, Woo CG, Kim HJ. A novel electrostatic
- 442 precipitator-type small air purifier with a carbon fiber ionizer and an activated carbon fiber
- 443 filter. J Aerosol Sci 2018; 117:63–73.
- 444 [4] Okubo M. Recent Development of Technology in Scale-up of Plasma Reactors for
- Environmental and Energy Applications, Springer, Plasma Chem Plasma Process 2022; 42:
- 446 **3–33**.
- 447 [5] Ni P, Wang X, Li H. A review on regulations, current status, effects and reduction
- strategies of emissions for marine diesel engines. Fuel 2020; 279: 118477.
- [6] Xiao X, Xian C, He G, Liao C, Hu C. Current status of NOx emission treatment in marine
- diesel engine, Earth and Environmental Sci, IOP Conf Ser 2020; 474: 022028.
- 451 [7] Shi Y, He Y, Cai Y, Li Z, Wang W, Zhou Y, Lu Y, Yang Y. Effect of nonthermal plasma
- 452 with different ozone concentrations on the oxidation and removal of different components in

453 particulate matter. J the Energy Inst 2022; 102: 268–77.

454	[8] Sonawane U, Agarwal AK. Engine emission control devices for particulate matter and
455	oxides of nitrogen: challenges and emerging trends. In: Singh, A.P., Agarwal, A.K. (eds)
456	Novel Internal Combustion Engine Technologies for Performance Improvement and
457	Emission Reduction. Energy, Environment, and Sustainability. Springer, Singapore.
458	[9] Holub M. Engine emission control: ozone and plasma desorption. Encyclopedia of
459	Plasma Technology, Edition1st Edition. CRC Press 2016; 9.
460	[10] Wongchang T, Sittichompoo S, Theinnoi K, Sawatmongkhon B, Jugjai S. Impact of
461	high-voltage discharge after-treatment technology on diesel engine particulate matter
462	composition and gaseous emissions. ACS Omega 2021; 6 (32): 21181–92.
463	[11] Zhang Z, Sui Z, Song C, Lu W, Fan X, Li H, Wang P. Research status of engine
464	emissions treated by nonthermal plasma. Environ Technol Innov 2023; 29: 103007.
465	[12] Park C, Kim C, Kim K, Lee D, Song Y, Moriyoshi Y. The influence of
466	hydrogen-enriched gas on the performance of lean NOx trap catalyst for a light-duty diesel
467	engine. Int J Hydrogen Energy 2010; 35 (4): 1789–96.
468	[13] Xia C, Zhu Y, Zhou S, Peng H, Feng Y, Zhou W, Shi J. Simulation study on transient
469	performance of a marine engine matched with high-pressure SCR system. Int J Engine Res
470	2022; 24 (4): https://doi.org/10.1177/14680874221084052

471 [14] Zhang Y, Xia C, Liu D, Zhu Y, Feng Y. Experimental investigation of the high-pressure

- 472 SCR reactor impact on a marine two-stroke diesel engine. Fuel 2023; 335: 127064.
- 473 [15] Xia C, Zhu Y, Liu D, Zhou S, Feng Y, Shi J, Yang Jun Y. Newly developed detailed
- 474 urea decomposition mechanism by marine engine urea-SCR system crystallization test and
- 475 DFT calculations. Chem Eng J 2023; 470: 144176.
- 476 [16] Okubo M. and Kuwahara T. New Technologies for Emission Control in Marine Diesel
- 477 Engines: Butterworth-Heinemann, imprint of Elsevier, 2019.
- 478 [17] Palma V, Ciambelli P, Meloni E, Sin A. Catalytic DPF microwave assisted active
- 479 regeneration. Fuel 2015; 140:50–61.
- 480 [18] Palma V, Ciambelli P, Meloni E, Sin A. Study of the catalyst load for a microwave
- 481 susceptible catalytic DPF. Catal Today 2013; 216 (6): 185–93.
- 482 [19] Huang Y, Ng ECY, Surawski NC, Zhou JL, Wang X, Gao J, Lin W, Brown RJ. Effect
- 483 of diesel particulate filter regeneration on fuel consumption and emissions performance
- under real-driving conditions. Fuel 2022; 320: Article 123937.
- 485 [20] Okubo M, Arita N, Kuroki T, Yoshida K, Yamamoto T. Total diesel emission control
- 486 technology using ozone injection and plasma desorption. Plasma Chem Plasma Process
- 487 2008; 28 (2): 173–87.
- 488 [21] Babaie M, Davari P, Talebizadeh P, Zare F, Rahimzadeh H, Ristovski Z. Chem. Eng. J
 489 2015; 276 (2): 240–48.
- 490 [22] Pu X, Cai Y, Shi Y, Wang J, Gu L, Tian J, Fan R. Carbon deposit incineration during

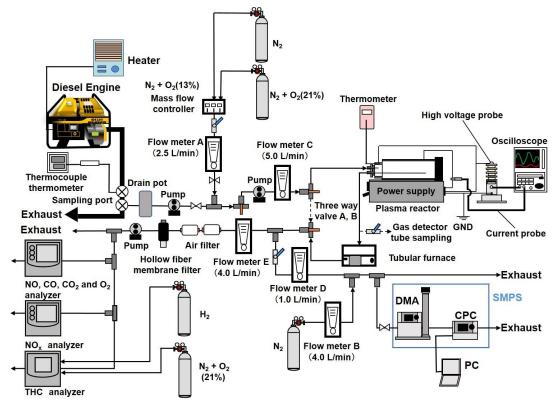
- 491 engine flameout using non-thermal plasma injection. Int J Automot Technol 2018; 19:
- 492 421–32.
- 493 [23] Ranji-Burachaloo H, Masoomi-Godarzi S, Khodadadi AA, Mortazavi Y. Synergetic
- 494 effects of plasma and metal oxide catalysts on diesel soot oxidation. Appl Catal B 2016; 182:
- 495 74–84.
- 496 [24] Ji L, Cai Y, Shi Y, Fan R, Wang W, Chen Y. Effects of nonthermal plasma on
- 497 microstructure and oxidation characteristics of particulate matter. Environ Sci Technol 2020;
- 498 54: 2510–19.
- 499 [25] Kuwahara T, Yoshida K, Hanamoto K, Sato K, Kuroki T, Okubo M. Effect of exhaust
- 500 gas temperature on oxidation of marine diesel emission particulates with
- nonthermal-plasma-induced ozone. Ozone Sci Eng 2015; 37 (6): 518–26.
- 502 [26] Yao S, Kodama S, Yamamoto S, Fushimi C. Characterization of an uneven DBD reactor
- 503 for diesel PM removal. Asia-Pac J Chem Eng 2009; 5 (5): 701–7.
- 504 [27] Okubo M, Kuroki T, Yoshida K, Yamamoto T. Single-stage simultaneous reduction of
- 505 diesel particulate and using oxygen-lean nonthermal plasma application. IEEE Trans Ind
- 506 Appl 2010; 46 (6): 2143–50.
- 507 [28] Okubo M, Yamada H, Yoshida K, Kuroki T. Simultaneous reduction of diesel particulate
- and NO_x using a catalysis-combined nonthermal plasma reactor. IEEE Trans Ind Appl 2017;
- 509 53 (6): 5875–82.

- 510 [29] Kuwahara T, Yoshida K, Kuroki T, Hanamoto K, Sato K, Okubo M. A pilot-scale
- 511 experiment for total marine diesel emission control using ozone injection and nonthermal
- 512 plasma reduction. IEEE Trans Ind Appl 2015; 51 (2): 1168–78.
- 513 [30] Shi Y, Cai Y, Li X. Wang W. Evolution of diesel particulate physicochemical properties
- using nonthermal plasma. Fuel 2019; 253:1292–99.
- 515 [31] Yoshida K. Aftertreatment of carbon particles emitted by diesel engine using a
- 516 combination of corona and dielectric barrier discharge. IEEE Trans Ind Appl 2019; 55 (5):
- 517 5261–68.
- 518 [32] Kuwahara T, Nishii S, Kuroki T, Okubo M. Complete regeneration characteristics of
- 519 diesel particulate filter using ozone injection. Appl Energy 2013; 111: 652–6.
- 520 [33] Lin H, Huang Z, Shangguan W, Peng X. Temperature-programmed oxidation of diesel
- 521 particulate matter in a hybrid catalysis-plasma reactor. Proc Combust Inst 2007; 31: 3335–42.
- 522 [34] Babaie M, Davari P, Zare F, Rahman M, Rahimzadeh H, Ristovski Z, Brown R. Effect
- 523 of pulsed power on particle matter in diesel engine exhaust using a DBD plasma reactor.
- 524 IEEE Trans Plasma Sci 2013; 41: 2349–58.
- 525 [35] Babaie M, Kishi T, Arai M, Zama Y, Furuhata T, Ristovski Z, Rahimzadeh H, Brown R.
- 526 Influence of non-thermal plasma after-treatment technology on diesel engine particulate
- 527 matter composition and NO_x concentration. Int J Plasma Environ Sci Technol 2016; 13:
- 528 221–30.

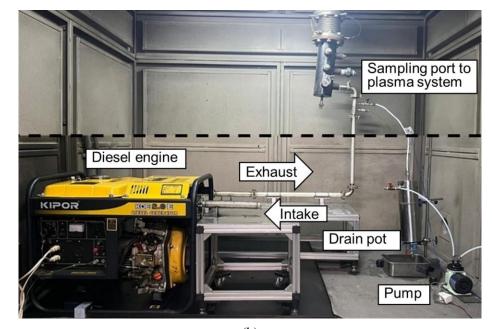
- 529 [36] Shi Y, Cai Y, Fan R, Cui Y, Chen Y, Ji L. Characterization of soot inside a diesel
- particulate filter during a nonthermal plasma promoted regeneration step. Appl Therm Eng
 2019; 150: 612–19.
- 532 [37] Wang P, Gu W, Lei L, Cai Y, Li Z. Micro-structural and components evolution
- 533 mechanism of particular matter from diesel engines with non-thermal plasma technology.
- 534 Appl Therm Eng 2015; 91: 1–10.
- 535 [38] Fan R, Cai Y, Shi Y, Cui Y. Effect of the reaction temperature on the removal of diesel
- particulate matter by ozone injection. Plasma Chem Plasma Process 2019; 39: 143–63.
- 537 [39] Gu L, Cai Y, Shi Y, Wang J, Pu X, Tian J, Fan R. Effect of indirect non-thermal plasma
- 538 on particle size distribution and composition of diesel engine particles. Plasma Sci Technol
- 539 2017; 19 (11): 115503.
- [40] Gao J, Ma C, Xing S, Sun L. Oxidation behaviours of particulate matter emitted by a
- diesel engine equipped with a NTP device. Appl Therm Eng 2017; 119 (5): 593–602.
- 542 [41] Yao S, Shen X, Zhang X, Han J, Wu Z, Tang X, Lu H, Jiang B. Sustainable removal of
- 543 particulate matter from diesel engine exhaust at low temperature using a plasma-catalytic
- 544 method. Chem. Eng. J 2017; 327: 343–50.
- 545 [42] Naito K, Taniguchi M, Madokoro K, Shimamura R, Nadanami N, Sakai S, Takagi K,
- 546 Itoh S. Development of PM aftertreatment system using nonthermal plasma. Int J Automot
- 547 Eng 2018; 49 (2): 265–70 (in Japanese).

- 548 [43] Madhukar A, Rajanikanth BS. Plasma/adsorbent system for NOx treatment in diesel
- exhaust: a case study on solid industrial wastes. Int J Environ Sci Te 2019; 16 (7):2973–88.
- 550 [44] Madhukar A, Rajanikanth BS. Waste foundry sand/Bauxite residue for enhanced NOx
- reduction in diesel exhaust pre-treated with plasma/O3 injection. IEEE Trans Plasma Sci
- 552 2019; 47 (1): 376–86.
- 553 [45] Madhukar A, Rajanikanth BS. Cascaded plasma-ozone injection system: a novel
- approach for mitigating total hydrocarbons in diesel exhaust. Plasma Chem Plasma P 2019;
- 555 39 (4): 845–62.
- 556 [46] Yamasaki H, Shidara A, Shimizu Y, Kuroki T, Kim HJ, Okubo M. In-flight diesel
- 557 particulate matter removal using nonthermal plasma filtering. Int J Plasma Environ Sci
- 558 Technol 2020; 14 (3): e03007 (total 13 pages).
- 559 [47] Takehana K, Kuroki T, Okubo M. Evaluation on nitrogen oxides and nanoparticle
- 560 removal and nitrogen monoxide generation using a wet-type nonthermal plasma reactor. J
- 561 Phys D: Appl Phys 2018; 51 (20): 204002.
- 562 [48] Kittelson, DB. Engines and nanoparticles: a review. J Aerosol Sci 1998; 29(5–6):
- 563 575–88.
- 564 [49] Zhu J, Lee KO, Yozgatligil A, Choi MY. Effects of engine operating conditions on
- 565 morphology, microstructure, and fractal geometry of light-duty diesel engine particulates. P
- 566 Combust Inst 2005; 30 (2): 2781–89.

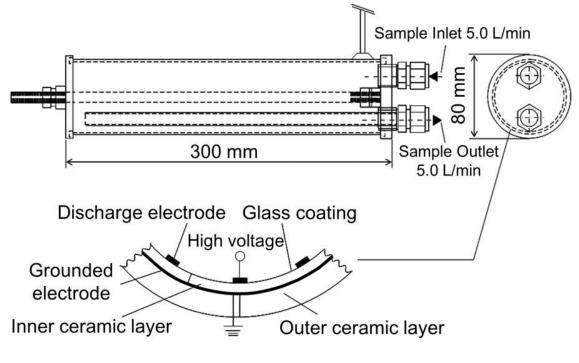
- 567 [50] An P, Sun W, Li G, Tan M, Lai C, Chen S. Characteristics of particle size distributions
- about emissions in a common-rail diesel engine with biodiesel blends. Procedia
- 569 Environmental Sciences 2011; 11: 1371–78.
- 570

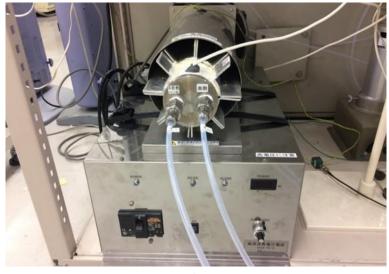

571 **Figure and table captions**

572


573	Fig. 1. Experimental setup for diesel exhaust treatment system using a surface discharge
574	plasma reactor. (a) Schematic of experimental equipment. (b) Photograph of the diesel engine,
575	exhaust piping, apparatus, and flow directions used in the experiment.
576	Fig. 2. Surface discharge plasma reactor. (a) Surface discharge element and cross section of
577	the inner wall of the element. (b) Front view of the surface discharge element and the
578	high-frequency and high-voltage power supply. (c) Photograph inside the surface discharge
579	plasma reactor when the power is turned off. (d) Photograph inside the surface discharge
580	plasma reactor when the reactor input power is 400 W.
581	Table 1. Engine specifications and experimental conditions.
582	Fig. 3. Relationship between each composition of the raw exhaust gas components and the
583	engine load.
584	Fig. 4. Particle concentration before and after plasma treatment for engine loads of: (a) 0 %,
585	(b) 25 %, (c) 50 %, and (d) 75 %. The white symbol indicates particle concentration before
586	treatment, and the colored symbols indicate the particle concentration after treatment with
587	input power of 100, 200, 300, and 400 W. Each symbol and error bar represent the average
588	value of the measurements and the standard deviation $\pm \sigma$, respectively.
589	Fig. 5. Particle removal efficiency for engine loads of: (a) 0 %, (b) 25 %, (c) 50 %, and (d)

- 590 75 %. Symbols indicate the average removal efficiency after treatment with input power of
- 591 100, 200, 300, and 400 W.
- 592 **Fig. 6.** Time-dependent gaseous concentrations (input power P = 100 W) for various engine
- 593 loads of: (a) 0 %, (b) 25 %, (c) 50 %, and (d) 75 %.
- Fig. 7. Typical time-dependent gaseous concentrations (engine load = 75 %; input power =
 400 W).
- 596 **Fig. 8.** Gaseous concentrations before and after treatment for various engine load, with an
- input power of: (a) 100 W, (b) 200 W, (c) 300 W, and (d) 400 W. The solid lines indicate the
- 598 gaseous concentrations after treatment, and the dotted lines indicate the gaseous
- 599 concentrations before treatment.
- 600 Fig. 9. NO_x, PM, and HC removal efficiencies for various specific energy. Symbols indicate
- 601 the removal efficiencies of NO_x, PM, and HC, respectively.


Figures and Table


(a)


(b) **Fig. 1.**

(a)

(b) **Fig. 2.**

(c)

(d) Fig. 2.

Load, %	0	25	50	75
Number of cylinder	1			
Diameter of cylinder, mm	70			
Stroke of cylinder, mm	55			
Displacement volume, mL	211			
Rotating speed, rpm	3600			
Power, kW	0	0.5	1.0	1.5
Dry weight of engine, kg	60			

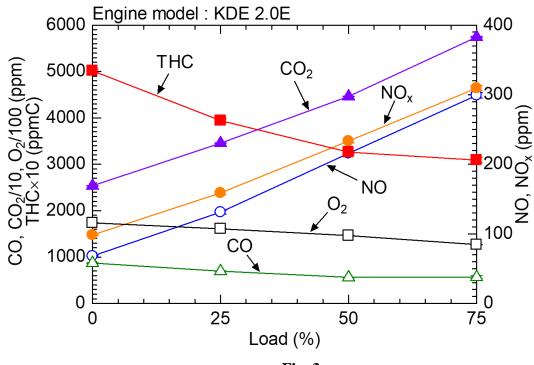
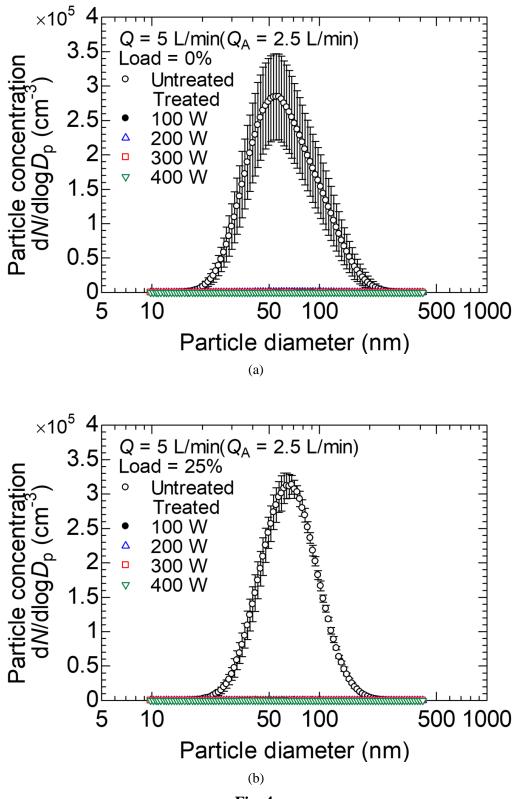
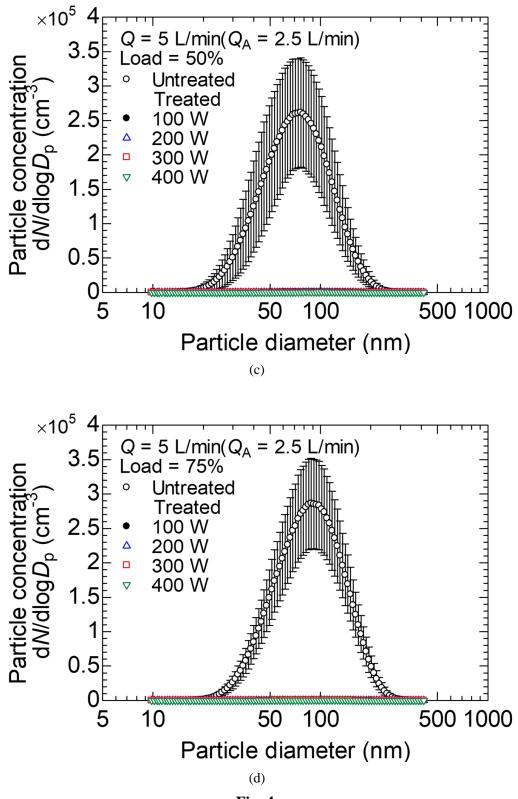
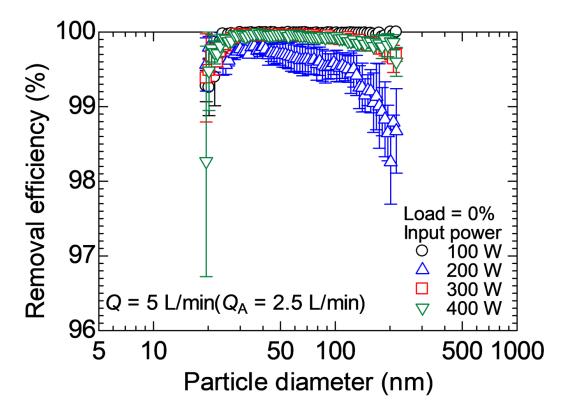
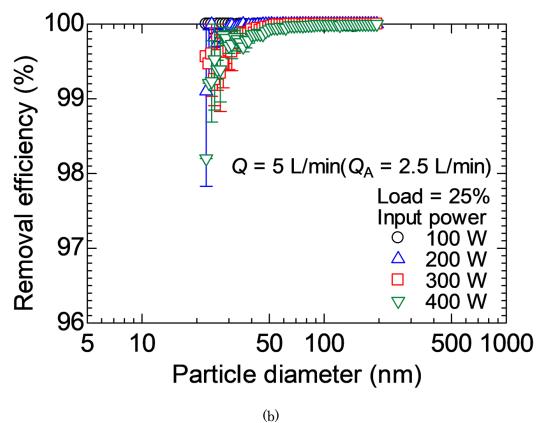
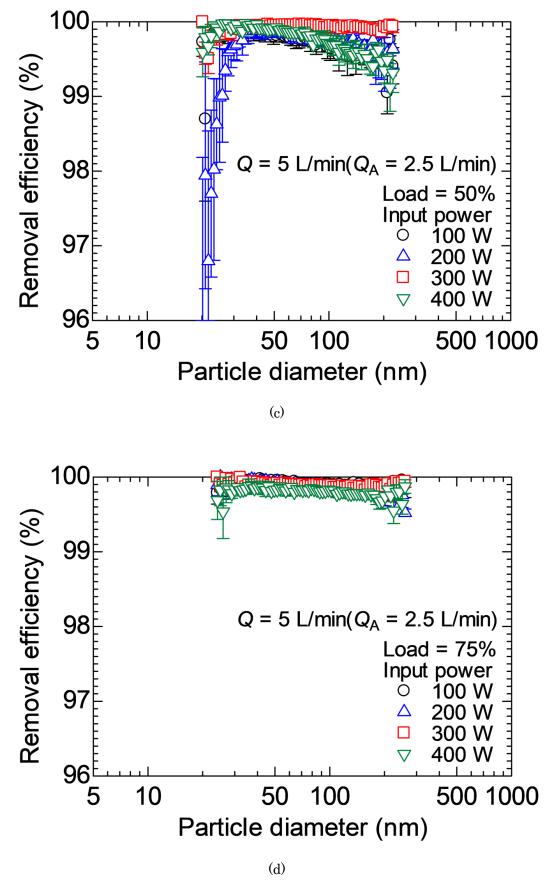
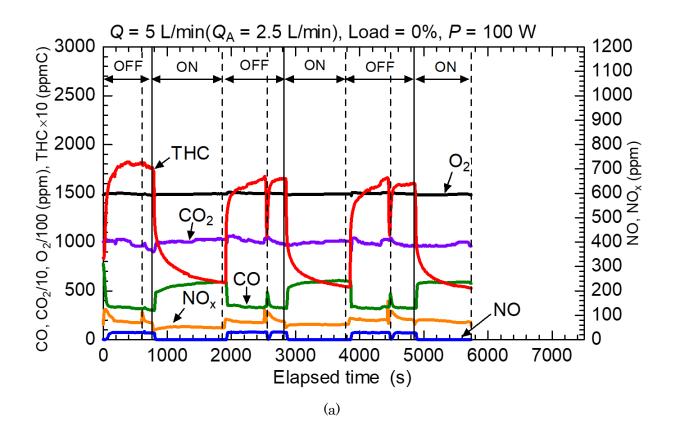


Fig. 3.


Fig. 4.




(a)

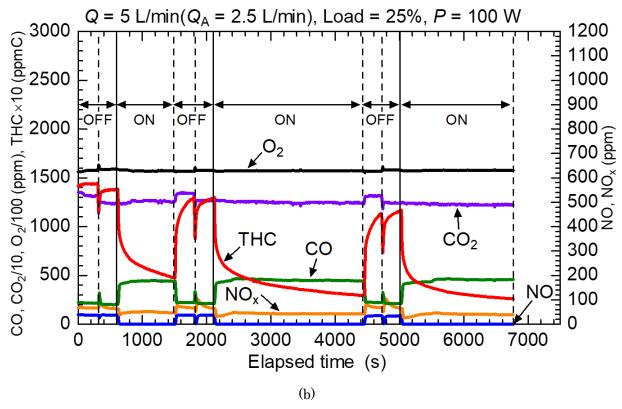


Fig. 6.

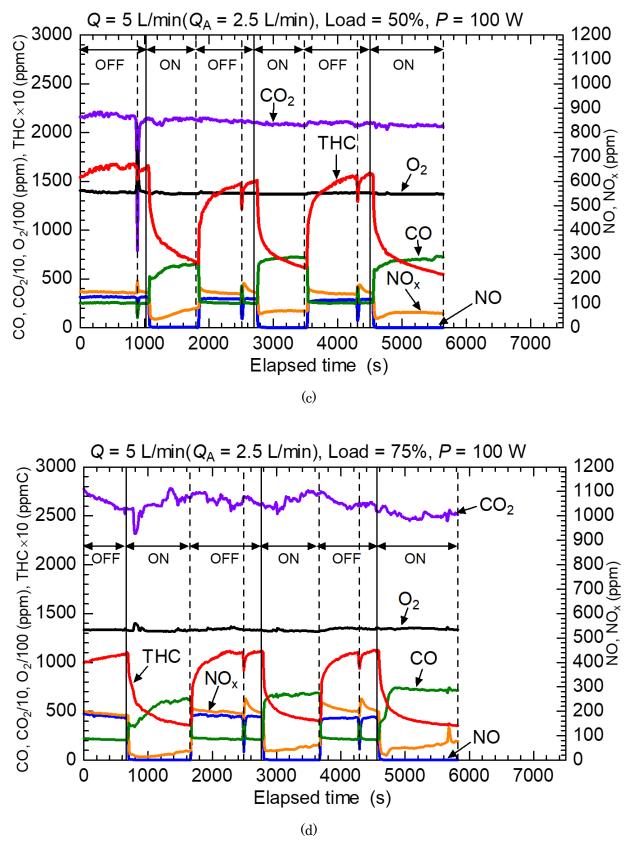


Fig. 6.

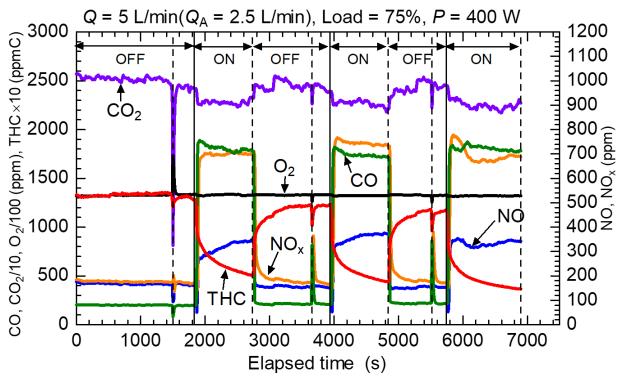
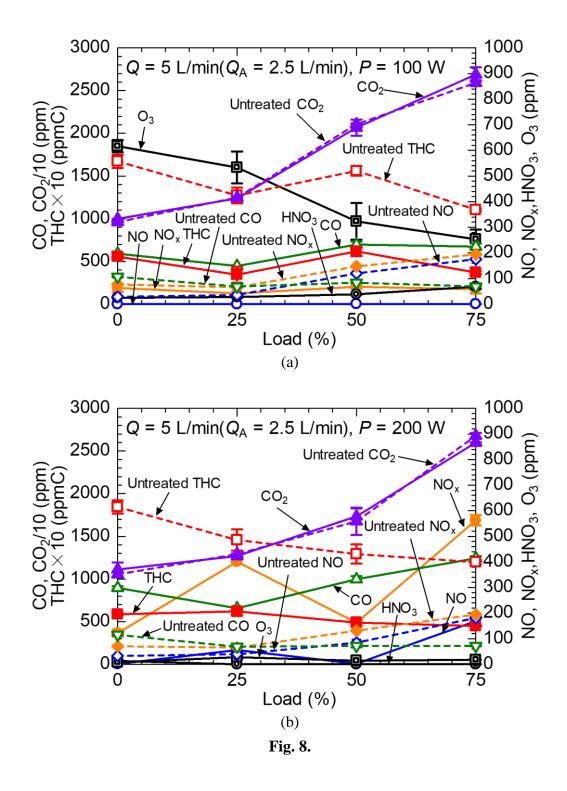
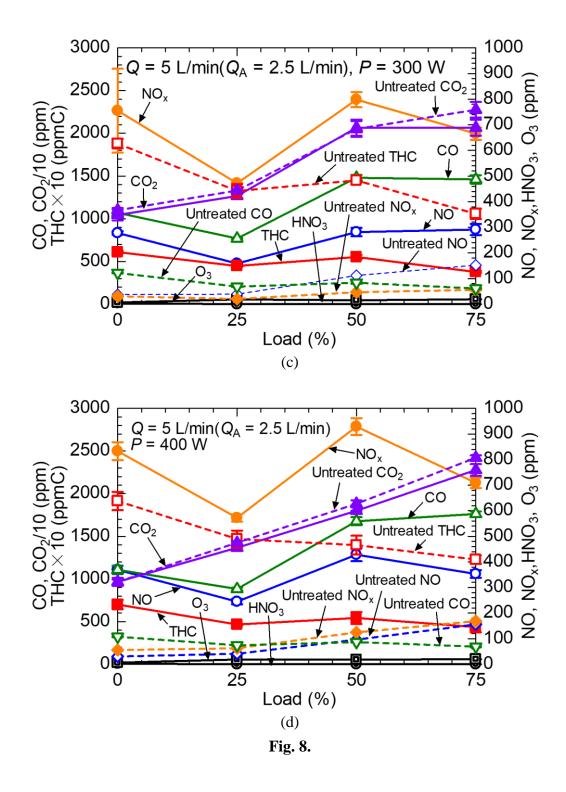




Fig. 7.

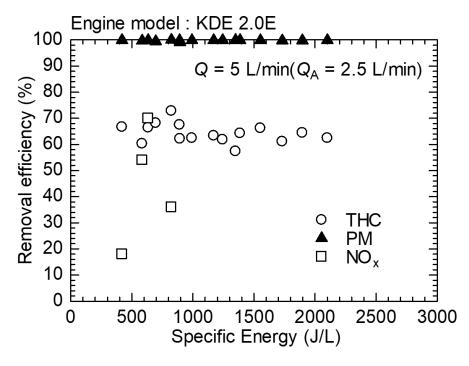


Fig. 9.