論文

査読有り 責任著者
2022年3月15日

Stereoisomer-dependent conversion of dinaphthothienothiophene precursor films

Scientific Reports
  • Shioya, N.
  • ,
  • Fujii, M.
  • ,
  • Shimoaka, T.
  • ,
  • Eda, K.
  • ,
  • Hasegawa, T.

12
1
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1038/s41598-022-08505-5
出版者・発行元
Springer Science and Business Media LLC

Abstract

Soluble precursor materials of organic semiconductors are employed for fabricating solution-processable thin film devices. While the so-called precursor approach has already been tried for various organic electronic devices such as transistors and solar cells, understanding of the conversion process in the film lags far behind. Here, we report that molecular aggregation of the precursor compound significantly influences the thermal conversion reaction in the film. For this study, two stereoisomers of a dinaphthothienothiophene (DNTT) precursor that are the endo- and exo-DNTT-phenylmaleimide monoadducts are focused on. The structural change during the thermal conversion process has been investigated by a combination of infrared spectroscopy and X-ray diffraction techniques. The results show that the endo-isomer is readily converted to DNTT in the film by heating, whereas the exo-isomer exhibits no reaction at all. This reaction suppression is found to be due to the self-aggregation property of the exo-isomer accompanying the intermolecular C–H$$\cdots$$O interactions. This finding shows a new direction of controlling the on-surface reaction, as well as the importance of analyzing the film structure at the initial stage of the reaction.

リンク情報
DOI
https://doi.org/10.1038/s41598-022-08505-5
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000769466200037&DestApp=WOS_CPL
URL
https://www.nature.com/articles/s41598-022-08505-5.pdf
URL
https://www.nature.com/articles/s41598-022-08505-5
ID情報
  • DOI : 10.1038/s41598-022-08505-5
  • ISSN : 2045-2322
  • eISSN : 2045-2322
  • ORCIDのPut Code : 115990045
  • SCOPUS ID : 85126700301
  • Web of Science ID : WOS:000769466200037

エクスポート
BibTeX RIS