論文

2022年12月

Strain-level profiling of viable microbial community by selective single-cell genome sequencing

Scientific Reports
  • Masahito Hosokawa
  • ,
  • Taruho Endoh
  • ,
  • Kazuma Kamata
  • ,
  • Koji Arikawa
  • ,
  • Yohei Nishikawa
  • ,
  • Masato Kogawa
  • ,
  • Tatsuya Saeki
  • ,
  • Takuya Yoda
  • ,
  • Haruko Takeyama

12
1
記述言語
掲載種別
研究論文(学術雑誌)
DOI
10.1038/s41598-022-08401-y
出版者・発行元
Springer Science and Business Media LLC

<title>Abstract</title>Culture-independent analysis with high-throughput sequencing has been widely used to characterize bacterial communities. However, signals derived from non-viable bacteria and non-cell DNA may inhibit its characterization. Here, we present a method for viable bacteria-targeted single-cell genome sequencing, called PMA-SAG-gel, to obtain comprehensive whole-genome sequences of surviving uncultured bacteria from microbial communities. PMA-SAG-gel uses gel matrixes that enable sequential enzymatic reactions for cell lysis and genome amplification of viable single cells from the microbial communities. PMA-SAG-gel removed the single-amplified genomes (SAGs) derived from dead bacteria and enabled selective sequencing of viable bacteria in the model samples of <italic>Escherichia coli</italic> and <italic>Bacillus subtilis</italic>. Next, we demonstrated the recovery of near-complete SAGs of eight oxygen-tolerant bacteria, including <italic>Bacteroides</italic> spp. and <italic>Phocaeicola</italic> spp., from 1331 human feces SAGs. We found the presence of two different strains in each species and identified their specific genes to investigate the metabolic functions. The survival profile of an entire population at the strain level will provide the information for understanding the characteristics of the surviving bacteria under the specific environments or sample processing and insights for quality assessment of live bacterial products or fecal microbiota transplantation and for understanding the effect of antimicrobial treatments.

リンク情報
DOI
https://doi.org/10.1038/s41598-022-08401-y
URL
https://www.nature.com/articles/s41598-022-08401-y.pdf
URL
https://www.nature.com/articles/s41598-022-08401-y
ID情報
  • DOI : 10.1038/s41598-022-08401-y
  • eISSN : 2045-2322

エクスポート
BibTeX RIS