Papers

Peer-reviewed Lead author International journal
Nov, 1999

Differentiation of Monocytes to Macrophages Primes Cells for Lipopolysaccharide Stimulation via Accumulation of Cytoplasmic Nuclear Factor κB

Infection and Immunity
  • Shogo Takashiba
  • ,
  • Thomas E. Van Dyke
  • ,
  • Salomon Amar
  • ,
  • Yoji Murayama
  • ,
  • Aubrey W. Soskolne
  • ,
  • Lior Shapira

Volume
67
Number
11
First page
5573
Last page
5578
Language
English
Publishing type
Research paper (scientific journal)
DOI
10.1128/iai.67.11.5573-5578.1999
Publisher
American Society for Microbiology

<title>ABSTRACT</title>
During infection, circulating blood monocytes migrate from the vasculature to the extravascular compartments where they mature into tissue macrophages. The maturation process prepares the cell to actively participate in the inflammatory and the immune responses, and many transcription factors have been found to be involved. Here we report on a novel role for nuclear factor κB (NF-κB) in this process. Its accumulation in the cytoplasm of differentiated macrophages is responsible for the enhanced ability of the cell to respond to lipopolysaccharide (LPS) stimulation, as determined by tumor necrosis factor alpha (TNF-α) secretion. Differentiation of the human monocytic cell line THP-1 into macrophage-like cells was induced by exposure of the cells to phorbol myristate acetate. DNA-bindable NF-κB was not detected in the cytoplasm of undifferentiated THP-1 cells but accumulated in the cytoplasm of the cells following differentiation. No TNF-α was detected in the media of resting differentiated and nondifferentiated THP-1 cells. Stimulation with LPS of differentiated cells induced the production of higher levels of TNF-α than stimulation of nondifferentiated cells. This hyperresponsiveness to LPS was found in the mRNA and secreted TNF-α levels. Furthermore, stimulation with LPS induced the translocation of NF-κB from the cytoplasm into the nucleus. This translocation process was more rapid in the differentiated cells than in the nondifferentiated cells, and the resultant accumulated levels of NF-κB in the nucleus were higher. The DNA-bindable NF-κB was identified as a heterodimer of p65 and p50. The results suggest that NF-κB accumulation in the cytoplasm during maturation of monocytes to macrophages primes the cells for enhanced responsiveness to LPS and results in the rapid secretion of inflammatory mediators, such as TNF-α, by mature macrophages following LPS challenge.

Link information
DOI
https://doi.org/10.1128/iai.67.11.5573-5578.1999
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/10531202
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC96928
Web of Science
https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=JSTA_CEL&SrcApp=J_Gate_JST&DestLinkType=FullRecord&KeyUT=WOS:000083343000005&DestApp=WOS_CPL
URL
https://journals.asm.org/doi/pdf/10.1128/IAI.67.11.5573-5578.1999
ID information
  • DOI : 10.1128/iai.67.11.5573-5578.1999
  • ISSN : 0019-9567
  • eISSN : 1098-5522
  • ORCID - Put Code : 47542651
  • Pubmed ID : 10531202
  • Pubmed Central ID : PMC96928
  • Web of Science ID : WOS:000083343000005

Export
BibTeX RIS