MODULI OF 3-DIMENSIONAL DIFFEOMORPHISMS WITH SADDLE-FOCI

SHINOBU HASHIMOTO
Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397, Japan.
E-mail address: hashimoto-shinobu@ed.tmu.ac.jp

SHIN KIRIKI
Department of Mathematics, Tokai University, 4-1-1 Kitakaname, Hiratuka Kanagawa, 259-1292, Japan.
E-mail address: kiriki@tokai-u.jp

TERUHIKO SOMA
Department of Mathematical Sciences, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397, Japan.

E-mail address: tsoma@tmu.ac.jp

Abstract

We consider a space \mathcal{U} of 3 -dimensional diffeomorphisms f with hyperbolic fixed points p the stable and unstable manifolds of which have quadratic tangencies and satisfying some open conditions and such that $D f(p)$ has non-real expanding eigenvalues and a real contracting eigenvalue. The aim of this paper is to study moduli of diffeomorphisms in \mathcal{U}. We show that, for a generic element f of \mathcal{U}, all the eigenvalues of $D f(p)$ are moduli and the restriction of a conjugacy homeomorphism to a local unstable manifold is a uniquely determined linear conformal map.

The topological classification of structurally unstable diffeomorphisms or vector fields on a manifold M is an important subject in the study of dynamical systems. Palis Pa suggested that moduli play important roles in such a classification. For a subspace \mathcal{N} of the diffeomorphism space $\operatorname{Diff}^{r}(M)$ with $r \geq 1$, we say that a value $m(f)$ determined by $f \in \mathcal{N}$ is a modulus in \mathcal{N} if $m(g)=m(f)$ holds for any $g \in \mathcal{N}$ topologically conjugate to f, that is, there exists a homeomorphism $h: M \rightarrow M$ with $g=h \circ f \circ h^{-1}$. A modulus for a certain class of vector fields

[^0]is defined similarly. We say that a set $\mu_{\mathcal{N}}$ of moduli is complete if any $f, g \in \mathcal{N}$ with $m(f)=m(g)$ for all $m \in \mu_{\mathcal{N}}$ are topologically conjugate. For given vector fields X, Y on M, a candidate for a conjugacy homeomorphism between X and Y is found in a usual manner. In many cases, such a map is well defined in a most part of M. So it remains to show that the map is extended to a homeomorphism on M by using the condition that X and Y have the same value for any moduli in $\mu_{\mathcal{N}}$. On the other hand, in the diffeomorphism case, it would be difficult to find a complete set of moduli except for very restricted classes \mathcal{N} in $\operatorname{Diff}^{r}(M)$.

First we consider the case that $\operatorname{dim} M=2$ and $f_{j}(j=0,1)$ are elements of $\operatorname{Diff}^{r}(M)(r \geq 2)$ with two saddle fixed points p_{j}, q_{j}. Suppose moreover that $W^{u}\left(p_{j}\right)$ and $W^{s}\left(q_{j}\right)$ have a quadratic heteroclinic tangency r_{j} and there exists a conjugacy homeomorphism h between f_{1} and f_{2} with $h\left(p_{0}\right)=p_{1}, h\left(q_{0}\right)=q_{1}$ and $h\left(r_{0}\right)=r_{1}$. Then, Palis Pa proved that $\frac{\log \left|\lambda_{0}\right|}{\log \left|\mu_{0}\right|}=\frac{\log \left|\lambda_{1}\right|}{\log \left|\mu_{1}\right|}$ holds under ordinary conditions, where λ_{j} is the contracting eigenvalue of $D f\left(p_{j}\right)$ and μ_{i} is the expanding eigenvalue of $D f\left(q_{j}\right)$. In [Po, Posthumus proved that the homoclinic version of Palis' results. In fact, he proved that, if $f_{j}(j=0,1)$ has a saddle fixed point p_{j} with a homoclinic quadratic tangency, then $\frac{\log \left|\lambda_{0}\right|}{\log \left|\mu_{0}\right|}=\frac{\log \left|\lambda_{1}\right|}{\log \left|\mu_{1}\right|}$ holds, where λ_{j}, μ_{j} are the contracting and expanding eigenvalues of $D f\left(p_{i}\right)$. Moreover, he showed that, by using some results of de Melo [dM, $\lambda_{0}=\lambda_{1}$ and $\mu_{0}=\mu_{1}$ hold if $\frac{\log \left|\lambda_{0}\right|}{\log \left|\mu_{0}\right|}$ is irrational. We refer to [dMP, dMvS, PT, MP1, GPvS, Ha] and references therein for more results on moduli of 2-dimensional diffeomorphisms. Moduli for 2dimensional flows with saddle-connections are studied by Palis Pa and Takens Ta and so on. In those papers, they present finite sets of moduli which are complete in a neighborhood of the saddle connection in M.

In this paper, we consider 3-dimensional diffeomorphisms f with a hyperbolic fixed point p such that $W^{u}(p)$ and $W^{s}(p)$ have a quadratic tangency and $D f(p)$ has non-real expanding eigenvalues $r e^{ \pm \sqrt{-1} \theta}$ with $r>1$ and a contracting eigenvalue $0<\lambda<1$. Moduli for diffeomorphisms of dimension more than two have been already studied by NPT, Du2, MP2 and so on.

First we will prove the following theorem.
Theorem A. Let M be a 3-manifold and $f_{j}(j=0,1)$ elements of $\operatorname{Diff}^{r}(M)$ for some $r \geq 3$ which have hyperbolic fixed points p_{j} and homoclinic quadratic tangencies q_{j} positively associated with p_{j} and satisfy the following conditions.

- For $j=0,1$, there exists a neighborhood $U\left(p_{j}\right)$ of p_{j} in M such that $\left.f_{j}\right|_{U\left(p_{j}\right)}$ is linear and $D f_{j}\left(p_{j}\right)$ has non-real eigenvalues $r_{j} e^{ \pm \sqrt{-1} \theta_{j}}$ and a real eigenvalue λ_{j} with $r_{j}>1, \theta_{j} \neq 0 \bmod \pi$ and $0<\lambda_{j}<1$.
- f_{0} is topologically conjugate to f_{1} by a homeomorphism $h: M \rightarrow M$ with $h\left(p_{0}\right)=p_{1}$ and $h\left(q_{0}\right)=q_{1}$.
Then the following (1) and (2) hold.
(1) $\frac{\log \lambda_{0}}{\log r_{0}}=\frac{\log \lambda_{1}}{\log r_{1}}$.
(2) Either $\theta_{0}=\theta_{1}$ or $\theta_{0}=-\theta_{1} \bmod 2 \pi$.

Here we say that a homoclinic quadratic tangency q_{0} is positively associated with p_{0} if both $f_{0}^{n}\left(q_{0}\right)$ and $f_{0}^{-n}(\alpha)$ lie in the same component of $U\left(p_{0}\right) \backslash W_{\text {loc }}^{u}\left(p_{0}\right)$ for a
sufficiently large $n \in \mathbb{N}$ and any small curve α in $W^{s}\left(p_{0}\right)$ containing q_{0}. Theorem A holds also in the case when $\theta_{0}=0 \bmod \pi$ or $-1<\lambda_{j}<0$ except for some rare case, see Remark 1.1 for details.

Remark 0.1. Assertion (1) of Theorem A is implied in the case (D) of Theorem 1.1 in [NPT, Chapter III]. Assertion (2) is also proved by Dufraine Du2 under weaker assumptions. The author used non-spiral curves in $W_{\text {loc }}^{u}(p)$ emanating from p. On the other hand, we employ unstable bent disks defined in Section 1 which are originally introduced by Nishizawa Ni]. By using such disks, we construct a convergent sequence of mutually parallel straight segments in $W_{\text {loc }}^{u}(p)$ which are mapped to straight segments in $W_{\text {loc }}^{u}(h(p))$ by h, see Figure 3.1. An advantage of our proof is that these sequences are applicable to prove our main theorem, Theorem B below.

Results corresponding to Theorem A for 3-dimensional flows with Shilnikov cycles are obtained by Togawa [T0, Carvalho-Rodrigues [R] and for those with connections of saddle-foci by Bonatti-Dufraine BD, Dufraine [Du1, Rodrigues Ro, and so on. See the Section 2 in Ro for details. Moreover Carvalho and Rodrigues [R] present results on moduli of 3-dimensional flows with Bykov cycles.
Theorem B. Under the assumptions in Theorem $\sqrt[A]{ }$, suppose moreover that $\theta_{0} / 2 \pi$ is irrational. Then the following conditions hold.
(1) $\lambda_{0}=\lambda_{1}$ and $r_{0}=r_{1}$.
(2) The restriction $\left.h\right|_{W_{\mathrm{loc}}^{u}\left(p_{0}\right)}: W_{\mathrm{loc}}^{u}\left(p_{0}\right) \rightarrow W_{\mathrm{loc}}^{u}\left(p_{1}\right)$ is a uniquely determined linear conformal map.
In contrast to Posthumus' results for 2-dimensional diffeomorphisms, the eigenvalues λ_{0} and r_{0} are proved to be moduli without the assumption that $\frac{\log \lambda_{0}}{\log r_{0}}$ is irrational.

The restriction $\left.h\right|_{W_{\text {loc }}^{u}\left(p_{0}\right)}$ is said to be a linear conformal map if $\left.h\right|_{W_{\text {loc }}^{u}\left(p_{0}\right)}$ is represented as $\left.h\right|_{W_{\text {loc }}^{u}\left(p_{0}\right)}(z)=\rho e^{\sqrt{-1} \omega} z\left(z \in W_{\text {loc }}^{u}\left(p_{0}\right)\right)$ for some $\rho \in \mathbb{R} \backslash\{0\}$ and $\omega \in \mathbb{R}$ under the natural identification of $W_{\text {loc }}^{u}\left(p_{0}\right), W_{\text {loc }}^{u}\left(p_{1}\right)$ with neighborhoods of the origin in \mathbb{C} via their linearizing coordinates.

For any $r_{j}>1$ and $\theta_{j} \in \mathbb{R}(j=0,1)$, let $\varphi_{j}: \mathbb{C} \rightarrow \mathbb{C}$ be the map defined by $\varphi_{j}(z)=r_{j} e^{\sqrt{-1} \theta_{j}} z$. Then there are many choices of conjugacy homeomorphisms on \mathbb{C} for φ_{0} and φ_{1}. For example, we take two-sided Jordan curves Γ_{j} in \mathbb{C} with $\varphi_{j}\left(\Gamma_{j}\right) \cap \Gamma_{j}=\emptyset$ and bounding disks in \mathbb{C} containing the origin arbitrarily. Then there exists a conjugacy homeomorphism $h: \mathbb{C} \rightarrow \mathbb{C}$ for φ_{0} and φ_{1} with $h\left(\Gamma_{0}\right)=\Gamma_{1}$. On the other hand, Theorem B 2) implies that we have severe constraints in the choice of conjugacy homeomorphisms for 3-dimensional diffeomorphisms as above. Intuitively, it says that only a homeomorphism h with $\left.h\right|_{W_{\text {loc }}^{u}}(p)$ linear and conformal can be a candidate for a conjugacy between f_{0} and f_{1}. As an application of the linearity and conformality of $\left.h\right|_{W_{\text {loc }}} ^{u}(p)$, we will present a new modulus for f_{0} other than $\theta_{0}, \lambda_{0}, r_{0}$, see Corollary C in Section 4.

1. Front curves and folding curves

For $j=0,1$, let f_{j} be a diffeomorphism and q_{j} a quadratic tangency associated with a hyperbolic fixed point p_{j} satisfying the conditions of Theorem A. We will define in this section front curves in $W^{u}\left(p_{j}\right)$ and folding curves in $W_{\mathrm{loc}}^{u}\left(p_{j}\right)$ and
show in the next section that these curves converge to straight segments which are preserved by any conjugacy homeomorphism between f_{0} and f_{1}.

We set $f_{0}=f, p_{0}=p, q_{0}=q, r_{0}=r, \theta_{0}=\theta$ and $\lambda_{0}=\lambda$ for short. Similarly, let $f_{1}=f^{\prime}, p_{1}=p^{\prime}, q_{1}=q^{\prime}, r_{1}=r^{\prime}, \theta_{1}=\theta^{\prime}$ and $\lambda_{1}=\lambda^{\prime}$. Suppose that $(z, t)=(x, y, t)$ with $z=x+\sqrt{-1} y$ is a coordinate around p with respect to which f is linear. For a small $a>0$, let $D_{a}(p)$ be the disk $\{z \in \mathbb{C} ;|z| \leq a\}$. We may assume that q is contained in the interior of $D_{a}(p) \times\{0\} \subset W_{\text {loc }}^{u}(p)$ and $\widehat{q}=f^{N}(q)$ is in the interior of the upper half $W_{\text {loc }}^{s+}(p)=\{0\} \times[0, a]$ of $W_{\text {loc }}^{s}(p)$ for some $N \in \mathbb{N}$. See Figure 1.1. Let $U_{a}(p)$ be the circular column in the coordinate neighborhood defined by

Figure 1.1. A saddle-focus p and a homoclinic quadratic tangency q in $D_{a}(p)$.
$U_{a}(p)=D_{a}(p) \times[0, a]$ and $V_{\widehat{q}}$ a small neighborhood of \widehat{q} in $U_{a}(p)$. Suppose that $U_{a}(p)$ has the Euclidean metric induced from the linearizing coordinate on $U_{a}(p)$. By choosing the coordinate suitably and replacing θ by $-\theta$ if necessary, we may assume that the restriction $\left.f\right|_{D_{a}(p)}$ is represented as $r e^{\sqrt{-1} \theta} z$ for $z \in \mathbb{C}$ with $|z|<a$. Similarly, one can suppose that $\left.f^{\prime}\right|_{D_{a^{\prime}}\left(p^{\prime}\right)}$ is represented as $r^{\prime} e^{\sqrt{-1} \theta^{\prime}} z$ for some $a^{\prime}>0$. The orthogonal projection pr : $U_{a}(p) \rightarrow D_{a}(p)$ is defined by $\operatorname{pr}(x, y, t)=(x, y)$.

In this section, we construct an unstable bent disk \widetilde{H}_{0} in $W^{u}(p) \cap U_{a}(p)$, the front curve $\widetilde{\gamma}_{0}$ in \widetilde{H}_{0} and the folding curves γ_{0} in $U_{a}(p)$. We also define the sequence of unstable bent disks \widetilde{H}_{m} in $W^{u}(p) \cap U_{a}(p)$ converging to \widetilde{H}_{0}, which will be used in the next section to construct the sequence of front curves converging to $\widetilde{\gamma}_{0}$.
1.1. Construction of unstable bent disks, front curves and folding curves. We set $\widehat{q}=\left(0, t_{0}\right)$. Let \widetilde{H} be the component of $W^{u}(p) \cap V_{\widehat{q}}$ containing \widehat{q}. One can retake the linearizing coordinate on \mathbb{C} if necessary so that the line in $V_{\widehat{q}}$ passing through \widehat{q} and parallel to the x-axis in $U_{a}(p)$ meets \widetilde{H} transversely. Then \widetilde{H} is represented as the graph of a C^{r}-function $x=\varphi(y, t)$ with

$$
\begin{equation*}
\varphi\left(0, t_{0}\right)=0, \quad \frac{\partial \varphi}{\partial t}\left(0, t_{0}\right)=0 \quad \text { and } \quad \frac{\partial^{2} \varphi}{\partial t^{2}}\left(0, t_{0}\right) \neq 0 \tag{1.1}
\end{equation*}
$$

By the implicit function theorem, there exists a C^{r-1}-function $t=\eta(y)$ defined in a small neighborhood V of 0 in the y-axis and satisfying $\eta(0)=t_{0}$ and $\partial \varphi(y, \eta(y)) / \partial t=$ 0 . Then the curve $\widetilde{\gamma}$ in $V_{\widehat{q}}$ parametrized by $(\varphi(y, \eta(y)), y, \eta(y))$ divides \widetilde{H} into two components and $\gamma=\operatorname{pr}(\widetilde{\gamma})$ is a C^{r-1}-curve embedded in $D_{a}(p)$. Let \widetilde{H}^{+}(resp. \widetilde{H}^{-}) be the closure of the upper (resp. lower) component of $\widetilde{H} \backslash \widetilde{\gamma}$. For a sufficiently large $n_{0} \in \mathbb{N}$, the component \widetilde{H}_{0} of $f^{n_{0}}(\widetilde{H}) \cap U_{a}(p)$ containing $q_{0}=f^{n_{0}}(\widehat{q})$ is an unstable bent disk in $U_{a}(p)$ such that $\partial \widetilde{H}_{0}$ is a simple closed C^{r}-curve in $\partial_{\text {side }} U_{a}(p)$, where

$$
\partial_{\text {side }} U_{a}(p)=\{(x, t) \in \mathbb{C} \times \mathbb{R} ;|z|=a, 0 \leq t<a\} \subset \partial U_{a}(p)
$$

See Figure 1.2. We set $\widetilde{\gamma}_{0}=f^{n_{0}}(\widetilde{\gamma}) \cap \widetilde{H}_{0}, \widetilde{H}_{0}^{+}=f^{n_{0}}\left(\widetilde{H}^{+}\right) \cap \widetilde{H}_{0}, \widetilde{H}_{0}^{-}=f^{n_{0}}\left(\widetilde{H}^{-}\right) \cap \widetilde{H}_{0}$, $H_{0}=\operatorname{pr}\left(\tilde{H}_{0}^{+}\right)=\operatorname{pr}\left(\widetilde{H}_{0}^{-}\right)$and $\gamma_{0}=\operatorname{pr}\left(\widetilde{\gamma}_{0}\right)$. Then $\widetilde{\gamma}_{0}$ is called the front curve of \widetilde{H}_{0} and γ_{0} is the folding curve of H_{0}.

Figure 1.2. The front curve $\widetilde{\gamma}_{0}$ divides \widetilde{H}_{0} into the two sheets \widetilde{H}_{0}^{+}and \widetilde{H}_{0}^{-}. The folding curve γ_{0} of H_{0} is the orthogonal image of $\widetilde{\gamma}_{0}$.

We note that Nishizawa Ni] has studied unstable bent disks similar to \widetilde{H}_{0} as above in a different situation. In fact, he considered a 3-dimensional diffeomorphism g which has a saddle fixed point s such that all the eigenvalues of $D g(s)$ are real and has a homoclinic quadratic tangency associated with s. Here we consider the component $\widetilde{H}_{0 ; u}^{-}$of $f^{u}\left(\widetilde{H}_{0}^{-}\right) \cap U_{a}(p)$ containing $f^{u}\left(q_{0}\right)$ for $u \in \mathbb{N}$. Since the homoclinic tangency q is positively associated with p, one can show that there exists $\widetilde{H}_{0 ; u}^{-}$ which meets $W^{s}(p)$ transversely at a point \widehat{z} near q by using an argument similar to that in Ni, Lemma 4.4]. See Figure 1.3 . To show the claim, the assumption of $\theta_{0} \neq 0 \bmod \pi$ in Theorem A is crucial. In fact, the condition implies that the following property:
(P) There exists an arbitrarily large u such that the interior of $H_{0 ; u}=\operatorname{pr}\left(\widetilde{H}_{0 ; u}^{-}\right)$in $D_{a}(p)$ contains q.

Figure 1.3. The half disk $\widetilde{H}_{0 ; u}^{-}$meets $W^{s}(p)$ transversely at two points near q, one of which is \widehat{z}.

Remark 1.1. (1) We here suppose $\theta=0 \bmod \pi$. Even in this case, if f has the property (P), then the component of $W^{s}(p)$ containing q and $W^{u}(p)$ have a homoclinic transverse intersection point. Then Theorems A and B will be proved quite similarly. Since $\theta=0 \bmod \pi$, all $f^{u}\left(\gamma_{0}\right)$ are tangent to a unique straight segment γ_{∞} in $D_{a}(p)$ at p. Thus the property (P) is satisfied if γ_{∞} does not pass through q.
(2) Even in the case of $-1<\lambda<0$, one can show that f has the property (P) similarly by using f^{2} instead of f if $2 \theta \neq 0 \bmod \pi$. Moreover, since either q or $f(q)$ is a homoclinic tangency positively associated with p, Theorems A and B hold without the assumption that q is positively associated with p.
1.2. Construction of convergent sequence of unstable bent disks. Take $v \in \mathbb{N}$ such that $\widehat{z}_{0}=f^{v}(\widehat{z})$ is a point $(0, \widehat{t})$ contained in $U_{a}(p)$, where \widehat{z} is the transverse intersection point of $\widetilde{H}_{0 ; u}^{-}$and $W^{s}(p)$ given in the previous subsection. Let D be a small disk in $W^{u}(p) \cap U_{a}(p)$ whose interior contains \widehat{z}_{0}. The absolute slope $\sigma(\boldsymbol{v})$ of a vector $\boldsymbol{v}=\left(v_{1}, v_{2}, v_{3}\right)$ in $U_{a}(p)$ with $\left(v_{1}, v_{2}\right) \neq(0,0)$ is given as

$$
\sigma(\boldsymbol{v})=\frac{\left|v_{3}\right|}{\sqrt{v_{1}^{2}+v_{2}^{2}}}
$$

The maximum absolute slope $\sigma(D)$ of D is defined by

$$
\sigma(D)=\max \left\{\sigma(\boldsymbol{v}) ; \text { unit vectors } \boldsymbol{v} \text { in } U_{a}(p) \text { tangent to } D\right\}
$$

Fix $m_{0} \in \mathbb{N}$ such that, for any $m \in \mathbb{N} \cup\{0\}$, the component D_{m} of $f^{m_{0}+m}(D) \cap U(p)$ containing $f^{m_{0}+m}\left(\widehat{z}_{0}\right)$ is a properly embedded disk in $U_{a}(p)$ with $\partial D_{m} \subset \partial_{\text {side }} U_{a}(p)$. Note that D_{m} intersects $W_{\text {loc }}^{s}(p)$ transversely at $\left(0, \lambda^{m} t_{0}\right)$, where $t_{0}=\lambda^{m_{0}} \widehat{t}$. See Figure 1.4. The maximum absolute slope of D_{m} satisfies

$$
\begin{equation*}
\sigma\left(D_{m}\right) \leq \sigma_{0} \lambda^{m} r^{-m} \tag{1.2}
\end{equation*}
$$

where $\sigma_{0}=\sigma(D) \lambda^{m_{0}} r^{-m_{0}}$. Consider a short straight segment ρ in $U_{a}(p)$ meeting \widetilde{H}_{0} orthogonally at q_{0}. Then $\widetilde{\rho}=f^{-\left(N+n_{0}\right)}(\rho)$ is a C^{r}-curve meeting $D_{a}(p)$

Figure 1.4. Trip from \widetilde{H}_{0}^{-}to $\widetilde{H}_{m}: f^{u+v}\left(\widetilde{H}_{0}^{-}\right) \supset D, f^{m_{0}}(D) \supset$ $D_{0}, f^{m}\left(D_{0}\right) \supset D_{m}$ and $f^{N+n_{0}}\left(D_{m}\right) \supset \widetilde{H}_{m}$, where N, n_{0} are the positive integers with $f^{N}(q)=\widetilde{q}$ and $f^{n_{0}}(\widetilde{q})=q_{0}$. The dotted line passing through q represents a straight segment tangent to $\widetilde{\rho}$ at q.
transversely at q, where N, n_{0} are the positive integers given as above. One can choose $m_{0} \in \mathbb{N}$ so that, for any $m \in \mathbb{N} \cup\{0\}, \widetilde{\rho}$ meets D_{m} transversely at a single point $\boldsymbol{w}_{m}=\left(z_{m}, s_{m}\right)$. Then (1.2) implies that $\left|t_{0} \lambda^{m}-s_{m}\right| \leq \widetilde{a} \sigma_{0} \lambda^{m} r^{-m}$, where $\widetilde{a}=\sup _{m \geq 0}\left\{\left|z_{m}\right|\right\}<\infty$. It follows that $s_{m}=t_{0} \lambda^{m}+O\left(\lambda^{m} r^{-m}\right)$. Since $\widetilde{\rho}$ has a tangency of order at least two with a straight segment at q,

$$
\begin{equation*}
\operatorname{dist}\left(\boldsymbol{w}_{m}, q\right)=\widetilde{t}_{0} \lambda^{m}+O\left(\lambda^{m} r^{-m}\right)+O\left(\lambda^{2 m}\right)=\widetilde{t}_{0} \lambda^{m}+o\left(\lambda^{m}\right) \tag{1.3}
\end{equation*}
$$

for some constant $\widetilde{t}_{0}>0$. By the inclination lemma, D_{m} uniformly C^{r}-converges to $D_{a}(p)$. A short curve in $W^{s}(p)$ containing q as an interior point meets D_{m} transversely in two points for all sufficiently large m. Let \widetilde{H}_{m} be the component of $f^{N+n_{0}}\left(D_{m}\right) \cap U_{a}(p)$ containing $f^{N+n_{0}}\left(\boldsymbol{w}_{m}\right)$. Then $\widetilde{H}_{m} C^{r}$-converges to \widetilde{H}_{0} as $m \rightarrow$ ∞. By (1.1), there exist C^{r}-functions $\varphi_{m}(y, t) C^{r}$-converging to φ and representing \widetilde{H}_{m} as the graph of $x=\varphi_{m}(y, t)$. Then the front curve $\widetilde{\gamma}_{m}$ in \widetilde{H}_{m} is defined as the front curve $\widetilde{\gamma}_{0}$ in \widetilde{H}_{0}. Since $\partial \varphi_{m}(y, t) / \partial t C^{r-1}$-converges to $\partial \varphi(y, t) / \partial t, \widetilde{\gamma}_{m}$ also C^{r-1}-converges to $\widetilde{\gamma}_{0}$. Note that $\widetilde{\gamma}_{m}$ divides \widetilde{H}_{m} into the upper surface \widetilde{H}_{m}^{+}and the lower surface \widetilde{H}_{m}^{-}with $\widetilde{\gamma}_{m}=\widetilde{H}_{m}^{+} \cap \widetilde{H}_{m}^{-}$and $H_{m}=\operatorname{pr}\left(\widetilde{H}_{m}\right)=\operatorname{pr}\left(\widetilde{H}_{m}^{+}\right)=\operatorname{pr}\left(\widetilde{H}_{m}^{-}\right)$. The image $\gamma_{m}=\operatorname{pr}\left(\widetilde{\gamma}_{m}\right)$ is called the folding curve of H_{m}.

2. Limit straight segments

A curve γ in $D_{a}(p)$ is called a straight segment if γ is a segment with respect to the Euclidean metric on $D_{a}(p)$. In this section, we will construct a proper straight segment γ_{0}^{\natural} in $D_{a}(p)$ with $p \notin \gamma_{0}^{\natural}$ which is mapped to a straight segment in $U_{a^{\prime}}\left(p^{\prime}\right)$ by h.
2.1. Sequences of folding curves converging to straight segments. Let α be an oriented C^{r-1}-curve in $D_{a}(p)$ of bounded length. Since $r-1 \geq 2$, there exists the maximum absolute curvature $\kappa(\alpha)$ of α. If α passes near the center 0 of $D_{a}(p)$ and satisfies $\kappa(\alpha)<1 / a$, then α has a unique point $z(\alpha)$ with $\operatorname{dist}(0, z(\alpha))=\operatorname{dist}(0, \alpha)$. In fact, if α had two points $z_{i}(i=1,2)$ with $\operatorname{dist}\left(0, z_{i}\right)=\operatorname{dist}(0, \alpha)$, then for a point z_{3} in α with the maximum $\operatorname{dist}\left(0, z_{3}\right)$ between z_{1} and z_{2}, the curvature of α at z_{3} is not less than $1 / \operatorname{dist}\left(0, z_{3}\right) \geq 1 / a$, a contradiction. We denote by $\vartheta(\alpha) \bmod 2 \pi$ the angle between $\widehat{\alpha}$ and the positive direction of the x-axis at 0 , where $\widehat{\alpha}$ is the oriented curve in $D_{a}(p)$ obtained from α by the parallel translation taking $z(\alpha)$ to 0.

By (1.3), there exists a constant $\widetilde{d}_{0}>0$ such that

$$
\begin{equation*}
\operatorname{dist}\left(\widetilde{\gamma}_{m}, \text { the } t \text {-axis }\right)=\widetilde{d}_{0}\left(\widetilde{t}_{0} \lambda^{m}+o\left(\lambda^{m}\right)\right)+o\left(\lambda^{m}\right)=\widetilde{d}_{0} \widetilde{t}_{0} \lambda^{m}+o\left(\lambda^{m}\right) \tag{2.1}
\end{equation*}
$$

Since $\gamma_{m} C^{r-1}$-converges to $\gamma_{0}, \kappa\left(\gamma_{m}\right)$ also converges to $\kappa\left(\gamma_{0}\right)$ as $m \rightarrow \infty$. This shows that

$$
\begin{equation*}
\sup _{m}\left\{\kappa\left(\gamma_{m}\right)\right\}=\kappa_{0}<\infty . \tag{2.2}
\end{equation*}
$$

It follows that, for all sufficiently large m, there exists a unique point c_{m} of γ_{m} with

$$
\operatorname{dist}\left(c_{m}, 0\right)=\operatorname{dist}\left(\gamma_{m}, 0\right)=\operatorname{dist}\left(\widetilde{c}_{m}, \text { the } t \text {-axis }\right)=\operatorname{dist}\left(\widetilde{\gamma}_{m}, \text { the } t \text {-axis }\right)
$$

where \widetilde{c}_{m} is the point of $\widetilde{\gamma}_{m}$ with $\operatorname{pr}\left(\widetilde{c}_{m}\right)=c_{m}$.
Fix w with $0<w<a / 2$ arbitrarily. For any $n \in \mathbb{N}$, let $m(n)$ be the minimum positive integer such that $f^{n}\left(c_{m}\right)$ is contained in $D_{w}(p)$ for any $m \geq m(n)$. Then $\lim _{n \rightarrow \infty} m(n)=\infty$ holds. For any $m \geq m(n)$, the component $\widetilde{H}_{m, n}$ of $f^{n}\left(\widetilde{H}_{m}\right) \cap$ $U_{a}(p)$ containing $\widetilde{c}_{m, n}=f^{n}\left(\widetilde{c}_{m}\right)$ is a proper disk in $U_{a}(p)$ with $\partial \widetilde{H}_{m, n} \subset \partial_{\text {side }} U_{a}(p)$. Then $\widetilde{\gamma}_{m, n}=f^{n}\left(\widetilde{\gamma}_{m}\right) \cap \widetilde{H}_{m, n}$ is the front curve of $\widetilde{H}_{m, n}$ and $\gamma_{m, n}=\operatorname{pr}\left(\widetilde{\gamma}_{m, n}\right)$ is the folding curve of $H_{m, n}=\operatorname{pr}\left(\widetilde{H}_{m, n}\right)$. Then $c_{m, n}=\operatorname{pr}\left(\widetilde{c}_{m, n}\right)$ is a unique point of $\gamma_{m, n}$ closest to 0 . Here we orient $\widetilde{\gamma}_{m}=\widetilde{\gamma}_{m, 0}$ so that $\widetilde{\gamma}_{m, 0} C^{r-1}$-converges as oriented curves to $\widetilde{\gamma}_{0}$ as $m \rightarrow \infty$. Suppose that $\gamma_{m, n}$ has the orientation induced from that on $\widetilde{\gamma}_{m, 0}$ via $\mathrm{pr} \circ f^{n}$. In particular, it follows that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \vartheta\left(\gamma_{m, 0}\right)=\vartheta\left(\gamma_{0}\right) \tag{2.3}
\end{equation*}
$$

We set $d_{m, n}=\operatorname{dist}\left(c_{m, n}, 0\right)$. By 2.1, ,

$$
\begin{equation*}
d_{m, n}=r^{n}\left(\widetilde{d}_{0} \widetilde{t}_{0} \lambda^{m}+o\left(\lambda^{m}\right)\right) . \tag{2.4}
\end{equation*}
$$

There exist subsequences $\left\{m_{j}\right\},\left\{n_{j}\right\}$ of \mathbb{N} and $w \lambda / 2 \leq w_{0} \leq w$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \widetilde{d}_{0} \tilde{t}_{0} \lambda^{m_{j}} r^{n_{j}}=w_{0} \tag{2.5}
\end{equation*}
$$

If necessary taking subsequences of $\left\{m_{j}\right\}$ and $\left\{n_{j}\right\}$ simultaneously, we may also assume that $\vartheta\left(\gamma_{m_{j}, n_{j}}\right)$ has a limit θ^{\natural}. Since $f(z)=r e^{\sqrt{-1} \theta} z$ on $D_{a}(p)$, by 2.2 we have

$$
\kappa\left(\gamma_{m_{j}, n_{j}}\right) \leq r^{-n_{j}} \kappa\left(\gamma_{m_{j}, 0}\right) \leq r^{-n_{j}} \kappa_{0} \rightarrow 0 \quad \text { as } \quad j \rightarrow \infty .
$$

Thus the following lemma is obtained immediately.
Lemma 2.1. The sequence $\gamma_{m_{j}, n_{j}}$ uniformly converges as oriented curves to an oriented straight segment γ_{0}^{\natural} in $D_{a}(p)$ with $\vartheta\left(\gamma_{0}^{\natural}\right)=\theta^{\natural}$ and $\operatorname{dist}\left(\gamma_{0}^{\natural}, 0\right)=w_{0}$.

We say that γ_{0}^{\natural} is the limit straight segment of $\gamma_{m_{j}, n_{j}}$.
2.2. Limit straight segments preserved by the conjugacy. Let $U_{a^{\prime}}\left(p^{\prime}\right), U_{b^{\prime}}\left(p^{\prime}\right)$ be the circular columns defined as $U_{a}(p)$ for some $0<a^{\prime}<b^{\prime}$ which are contained in a coordinate neighborhood around p^{\prime} with respect to which f^{\prime} is linear. One can retake $a>0$ and choose such a^{\prime}, b^{\prime} so that $U_{a^{\prime}}\left(p^{\prime}\right) \subset h\left(U_{a}(p)\right) \subset U_{b^{\prime}}\left(p^{\prime}\right)$.

Let $\widetilde{H}_{m, n}^{\prime}$ be the component of $h\left(\widetilde{H}_{m, n}\right) \cap U_{a^{\prime}}\left(p^{\prime}\right)$ defined as $\widetilde{H}_{m, n}$ and $\operatorname{pr}\left(\widetilde{H}_{m, n}^{\prime}\right)=$ $H_{m, n}^{\prime}$. One can define the front and folding curves $\widetilde{\gamma}_{m, n}^{\prime}, \gamma_{m, n}^{\prime}$ in $\widetilde{H}_{m, n}^{\prime}$ and $H_{m, n}^{\prime}$ as $\widetilde{\gamma}_{m, n}, \gamma_{m, n}$ in $\widetilde{H}_{m, n}$ and $H_{m, n}$ respectively. See Figure 2.1 .

Figure 2.1. The image $h\left(\widetilde{H}_{(j)}\right)$ is contained in $\widehat{H}_{(j)}^{\prime}$, but $h\left(\widetilde{H}_{(j)}^{ \pm}\right)$ is not necessarily contained in $\widehat{H}_{(j)}^{\prime \pm}$.

Since h is only supposed to be a homeomorphism, $h\left(\widetilde{\gamma}_{m, n}\right) \cap U_{a^{\prime}}\left(p^{\prime}\right)$ would not be equal to $\widetilde{\gamma}_{m, n}^{\prime}$. We will show that this equality holds in the limit. For the sequences $\left\{m_{j}\right\},\left\{n_{j}\right\}$ given in Section 2 we set $\widetilde{H}_{m_{j}, n_{j}}=\widetilde{H}_{(j)}, H_{m_{j}, n_{j}}=H_{(j)}, \widetilde{H}_{m_{j}, n_{j}}^{\prime}=\widetilde{H}_{(j)}^{\prime}$ and $H_{m_{j}, n_{j}}^{\prime}=H_{(j)}^{\prime}$ for simplicity. Similarly, suppose that $\widehat{H}_{(j)}^{\prime}$ is the component of $W^{u}\left(p^{\prime}\right) \cap U_{b^{\prime}}\left(p^{\prime}\right)$ containing $\widetilde{H}_{(j)}^{\prime}$ and $\widehat{\gamma}_{m_{j}, n_{1}}^{\prime}$ is the front curve of $\widehat{H}_{(j)}^{\prime}$. The distance between $\boldsymbol{x}, \boldsymbol{y}$ in $U_{a}(p)$ is denoted by $d(\boldsymbol{x}, \boldsymbol{y})$ and that between $\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}$ in $U_{a^{\prime}}\left(p^{\prime}\right)$ by $d^{\prime}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)$.

The path metric on $\widetilde{H}_{(j)}$ is denoted by $d_{\widetilde{H}_{(j)}}$. That is, for any $\boldsymbol{x}, \boldsymbol{y} \in \widetilde{H}_{(j)}$, $d_{\widetilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y})$ is the length of a shortest piecewise smooth curve in $\widetilde{H}_{(j)}$ connecting \boldsymbol{x} with \boldsymbol{y}. The path metrics $d_{\widetilde{H}_{(j)}^{\prime}}$ on $\widetilde{H}_{(j)}^{\prime}$ and $d_{\widehat{H}_{(j)}^{\prime}}$ on $\widehat{H}_{(j)}^{\prime}$ are defined similarly.
Lemma 2.2. (i) For any $\varepsilon>0$, there exists a constant $\eta(\varepsilon)>0$ independent of $j \in \mathbb{N}$ and satisfying the following conditions.

- $\lim _{\varepsilon \rightarrow 0} \eta(\varepsilon)=0$.
- Let $\boldsymbol{x}, \boldsymbol{y}$ be any points of $\widetilde{H}_{(j)}$ both of which are contained in one of $\widetilde{H}_{(j)}^{+}$ and $\widetilde{H}_{(j)}^{-}$. If $d(\boldsymbol{x}, \boldsymbol{y})<\eta(\varepsilon)$, then $d_{\widetilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y})<\varepsilon$.
(ii) For any $\varepsilon>0$, there exists a constant $\delta(\varepsilon)>0$ independent of $j \in \mathbb{N}$ and satisfying the following conditions.
- $\lim _{\varepsilon \rightarrow 0} \delta(\varepsilon)=0$.
- Let $\boldsymbol{x}, \boldsymbol{y}$ be any points of $\widetilde{H}_{(j)}$ both of which are contained in one of $\widetilde{H}_{(j)}^{+}$and $\widetilde{H}_{(j)}^{-}$. If $d_{\widetilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y})<\delta(\varepsilon)$ and $\boldsymbol{x}^{\prime}=h(\boldsymbol{x})$ and $\boldsymbol{y}^{\prime}=h(\boldsymbol{y})$ are contained in $\widetilde{H}_{(j)}^{\prime}$, then $d_{\widetilde{H}_{(j)}^{\prime}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)<\varepsilon$.
One can take these constants $\eta(\varepsilon), \delta(\varepsilon)$ so that they work also for $d_{\tilde{H}_{(j)}^{\prime}}$ and $d_{\widehat{H}_{(j)}^{\prime}}$.
Proof. (i) The assertion is proved immediately from the fact that $\widetilde{H}_{(j)}^{ \pm}$uniformly converges to a disk H^{\natural} in $D_{a}(p)$ such that $d(\boldsymbol{x}, \boldsymbol{y})=d_{H^{\natural}}(\boldsymbol{x}, \boldsymbol{y})$ for any $\boldsymbol{x}, \boldsymbol{y} \in H^{\natural}$.
(ii) Suppose that $\boldsymbol{x}, \boldsymbol{y} \in \widetilde{H}_{(j)}^{+}$. First we consider the case that both \boldsymbol{x}^{\prime} and \boldsymbol{y}^{\prime} are contained in one of $\widetilde{H}_{(j)}^{\prime+}$ and $\widetilde{H}_{(j)}^{\prime-}$, say $\widetilde{H}_{(j)}^{\prime+}$. If $d_{\widetilde{H}_{(j)}^{\prime}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right) \geq \varepsilon$, then it follows from the assertion (i) that $d^{\prime}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right) \geq \eta(\varepsilon)$. Since h is uniformly continuous on $U_{a}(p)$, there exists a constant $\delta_{1}(\varepsilon)>0$ with $\lim _{\varepsilon \rightarrow 0} \delta_{1}(\varepsilon)=0$ and $d(\boldsymbol{x}, \boldsymbol{y}) \geq \delta_{1}(\varepsilon)$. Hence, in particular, $d_{\widetilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y}) \geq \delta_{1}(\varepsilon)$. Thus $d_{\widetilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y})<\delta_{1}(\varepsilon)$ implies $d_{\widetilde{H}_{(j)}^{\prime}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)<$ ε.

Next we suppose that $\boldsymbol{x}^{\prime} \in \widetilde{H}_{(j)}^{\prime+}$ and $\boldsymbol{y}^{\prime} \in \widetilde{H}_{(j)}^{\prime-}$. Consider a shortest curve α in $\widetilde{H}_{(j)}$ connecting \boldsymbol{x} and \boldsymbol{y}. Since $\alpha^{\prime}=h(\alpha)$ is contained in $\widehat{H}_{(j)}^{\prime}, \alpha^{\prime}$ intersects $\widehat{\gamma}_{m_{j}, n_{j}}^{\prime}$ non-trivially. Let \boldsymbol{z} be one of the intersection points of α with $h^{-1}\left(\widehat{\gamma}_{m_{j}, n_{j}}^{\prime}\right)$. See Figure 2.2 Suppose that $d_{\widetilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y})<\delta_{1}(\varepsilon / 2)$. Since $d_{\widetilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y})=d_{\widetilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{z})+$

Figure 2.2. The case of $\boldsymbol{x}, \boldsymbol{y} \in \widetilde{H}_{(j)}^{+}, \boldsymbol{x}^{\prime} \in \widetilde{H}_{(j)}^{\prime+}$ and $\boldsymbol{y}^{\prime} \in \widetilde{H}_{(j)}^{\prime-}$.

$$
d_{\widetilde{H}_{(j)}}(\boldsymbol{z}, \boldsymbol{y}), \quad d_{\widetilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{z})<\delta_{1}(\varepsilon / 2) \quad \text { and } \quad d_{\widetilde{H}_{(j)}}(\boldsymbol{z}, \boldsymbol{y})<\delta_{1}(\varepsilon / 2) .
$$

Since $\boldsymbol{x}^{\prime}, \boldsymbol{z}^{\prime} \in \widehat{H}_{(j)}^{\prime+}$ and $\boldsymbol{z}^{\prime}, \boldsymbol{y}^{\prime} \in \widehat{H}_{(j)}^{\prime-}$, by the result in the previous case we have $d_{\widehat{H}_{(j)}^{\prime}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{z}^{\prime}\right)<\varepsilon / 2$ and $d_{\widehat{H}_{(j)}^{\prime}}\left(\boldsymbol{z}^{\prime}, \boldsymbol{y}^{\prime}\right)<\varepsilon / 2$, and hence

$$
d_{\widetilde{H}_{(j)}^{\prime}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)=d_{\widehat{H}_{(j)}^{\prime}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)<\varepsilon .
$$

Thus $\delta(\varepsilon):=\delta_{1}(\varepsilon / 2)$ satisfies the conditions of (ii).
The following result is a key of this paper.

Lemma 2.3. For any $\varepsilon>0$, there exists $j_{0} \in \mathbb{N}$ such that, for any $j \geq j_{0}$,

$$
h\left(\widetilde{\gamma}_{m_{j}, n_{j}}\right) \cap \widetilde{H}_{(j)}^{\prime} \subset \mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m_{j}, n_{j}}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)
$$

where $\mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m_{j}, n_{j}}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)$ is the ε-neighborhood of $\widetilde{\gamma}_{m_{j}, n_{j}}^{\prime}$ in $\widetilde{H}_{(j)}^{\prime}$.
Figure 2.3 illustrates the situation of Lemma 2.3 .

Figure 2.3. The shaded region represents $\mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m_{j}, n_{j}}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)$.

Proof. For $\sigma= \pm$, we will show that $h^{-1}\left(\widetilde{H}_{(j)}^{\prime \sigma} \backslash \mathcal{N}_{\varepsilon}\left(\gamma_{m_{j}, n_{j}}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)\right) \subset \widetilde{H}_{(j)}^{\sigma}$ for all sufficiently large j. Since $\left.h^{-1}\right|_{U_{a^{\prime}\left(p^{\prime}\right)}}$ is uniformly continuous, there exists $\nu(\varepsilon)>0$ such that, for any $\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime} \in U_{a^{\prime}}\left(p^{\prime}\right)$ with $d^{\prime}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)<\nu(\varepsilon)$, the inequality $d(\boldsymbol{x}, \boldsymbol{y})<$ $\eta(\delta(\varepsilon))$ holds, where $\boldsymbol{x}=h^{-1}\left(\boldsymbol{x}^{\prime}\right), \boldsymbol{y}=h^{-1}\left(\boldsymbol{y}^{\prime}\right)$. Since both $\widetilde{H}_{(j)}^{\prime+}$ and $\widetilde{H}_{(j)}^{\prime-}$ uniformly converge to the same half disk $H^{\prime \natural}$ in $D_{a^{\prime}}\left(p^{\prime}\right)$, there exists $j_{0} \in \mathbb{N}$ such that, for any $j \geq j_{0}$ and any $\boldsymbol{x}^{\prime} \in \widetilde{H}_{(j)}^{\prime \sigma} \backslash \mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{(j)}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right), d^{\prime}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)$ is less than $\nu(\varepsilon)$, where \boldsymbol{y}^{\prime} is the element of $\widetilde{H}_{(j)}^{\prime-\sigma}$ with $\operatorname{pr}\left(\boldsymbol{x}^{\prime}\right)=\operatorname{pr}\left(\boldsymbol{y}^{\prime}\right)$. Then we have $d(\boldsymbol{x}, \boldsymbol{y})<\eta(\delta(\varepsilon))$. If both \boldsymbol{x} and \boldsymbol{y} were contained in one of $\widetilde{H}_{(j)}^{\sigma}$ and $\widetilde{H}_{(j)}^{-\sigma}$, then by Lemma 2.2 (i) $d_{\widetilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y})<\delta(\varepsilon)$. Then, by Lemma 2.2 (ii), $d_{\widetilde{H}_{(j)}^{\prime}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)$ would be less than ε. This contradicts that $\boldsymbol{x}^{\prime} \in \widetilde{H}_{(j)}^{\prime \sigma} \backslash \mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m_{j}, n_{j}}^{\prime}, \mathcal{H}_{(j)}^{\prime}\right)$ and $\boldsymbol{y}^{\prime} \in \widetilde{H}_{(j)}^{\prime-\sigma}$. See Figure 2.4. Thus, if \boldsymbol{y} is contained in $\widetilde{H}_{(j)}^{\sigma}$, then \boldsymbol{x} is not in $\widetilde{H}_{(j)}^{\sigma}$. In particular, \boldsymbol{x} is not contained in $\widetilde{\gamma}_{m_{j}, n_{j}}=\widetilde{H}_{(j)}^{+} \cap \widetilde{H}_{(j)}^{-}$, and so $\widetilde{\gamma}_{m_{j}, n_{j}} \cap h^{-1}\left(\widetilde{H}_{(j)}^{\prime \sigma} \backslash \mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m, n}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)\right)=\emptyset$. Since $h^{-1}\left(\widetilde{H}_{(j)}^{\prime \sigma} \backslash \mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m, n}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)\right)$ is connected, it follows that $h^{-1}\left(\widetilde{H}_{(j)}^{\prime \sigma} \backslash \mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m, n}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)\right) \subset$ $\widetilde{H}_{(j)}^{\sigma}$ for $\sigma= \pm$, and hence $h^{-1}\left(\mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m_{j}, n_{j}}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)\right) \supset \widetilde{\gamma}_{m_{j}, n_{j}} \cap h^{-1}\left(\widetilde{H}_{(j)}^{\prime}\right)$. This completes the proof.

From the proof of Lemma 2.3, we know that there exists a simple curve in $h\left(\widetilde{\gamma}_{m_{j}, n_{j}}\right) \cap \widetilde{H}_{(j)}^{\prime}$ connecting the two components of $\partial \widetilde{H}_{(j)}^{\prime} \cap \partial \mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m_{j}, n_{j}}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)$. The following corollary says that the images of certain straight segments in $D_{a}(p)$ by the homeomorphism h are naturally straight segments in $D_{a^{\prime}}\left(p^{\prime}\right)$.

Corollary 2.4. For the limit straight segment γ_{0}^{\natural} of $\gamma_{m_{j}, n_{j}}, h\left(\gamma_{0}^{\natural}\right) \cap D_{a^{\prime}}\left(p^{\prime}\right)$ is the

Figure 2．4．The situation which does not actually occur．$d_{1}:=$ $\operatorname{dist}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)<\nu(\varepsilon), d_{2}:=\operatorname{dist}_{\tilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y})<\delta(\varepsilon)$ and $d_{3}:=$ $\operatorname{dist}_{\widetilde{H}_{(j)}^{\prime}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)<\varepsilon$ ．

Proof．Since γ_{0}^{\natural} is the limit straight segment of $\widetilde{\gamma}_{m_{j}, n_{j}}$ and h is uniformity contin－ uous，$h\left(\gamma_{0}^{\mathrm{h}}\right) \cap D_{a^{\prime}}\left(p^{\prime}\right)$ is the limit of $h\left(\widetilde{\gamma}_{m_{j}, n_{j}}\right) \cap \widetilde{H}_{(j)}^{\prime}$ ．It follows from Lemma 2.3 that $h\left(\gamma_{0}^{\natural}\right) \cap D_{a^{\prime}}\left(p^{\prime}\right)$ is also the limit of $\operatorname{pr}\left(\widetilde{\gamma}_{m_{j}, n_{j}}^{\prime}\right)=\gamma_{m_{j}, n_{j}}^{\prime}$ ，that is，$h\left(\gamma_{0}^{\natural}\right) \cap D_{a^{\prime}}\left(p^{\prime}\right)$ is equal to the limit straight segment of $\gamma_{m_{j}, n_{j}}^{\prime}$ ．

For any straight segment l in $D_{a}(p)$ such that $h(l)$ is also a straight segment in $D_{b^{\prime}}\left(p^{\prime}\right)$ ，we denote $h(l) \cap D_{a^{\prime}}\left(p^{\prime}\right)$ simply by $h(l)$ ．In particular，Corollary 2．4 implies that $h\left(\gamma_{0}^{\natural}\right)=\gamma_{0}^{\prime \text { ¢ }}$ ．

3．Proof of Theorem A

Suppose that $\mathrm{St}_{a}(p)$ is the set of oriented proper straight segments in $D_{a}(p)$ passing through 0 ，that is，each element of $\operatorname{St}_{a}(p)$ is an oriented diameter of the disk $D_{a}(p)$ ．For any $l \in \operatorname{St}_{a}(p)$ and $n \in \mathbb{N}$ ，the component of $f^{n}(l) \cap U_{a}(p)$ containing 0 is also an element of $\operatorname{St}_{a}(p)$ ．We denote the element simply by $f^{n}(l)$ ．

Since $\left.f^{n}\right|_{D_{a}(p)}$ preserves angles on $D_{a}(p)$ ，by 2．3），for any $k, n \in \mathbb{N}$ ，

$$
\vartheta\left(\gamma_{m, n}\right)-\vartheta\left(\gamma_{m+k, n}\right)=\vartheta\left(\gamma_{m, 0}\right)-\vartheta\left(\gamma_{m+k, 0}\right) \rightarrow \vartheta\left(\gamma_{0}\right)-\vartheta\left(\gamma_{0}\right)=0
$$

as $m \rightarrow \infty$ ．Moreover it follows from（2．4）that $\lim _{j \rightarrow \infty} d_{m_{j}+k, n_{j}}=w_{0} \lambda^{k}$ ．By these facts together with Lemma 2．1．one can show that $\gamma_{m_{j}+k, n_{j}}$ uniformly converges as $m \rightarrow \infty$ to a straight segment γ_{k}^{\natural} in $U_{a}(p)$ with

$$
\begin{equation*}
\vartheta\left(\gamma_{k}^{\natural}\right)=\theta^{\natural} \quad \text { and } \quad d\left(0, \gamma_{k}^{\natural}\right)=w_{0} \lambda^{k} . \tag{3.1}
\end{equation*}
$$

Thus we have obtained the parallel family $\left\{\gamma_{k}^{\natural}\right\}$ of oriented straight segments in $D_{a}(p)$ ．See Figure 3．1．By Corollary 2.4 ．$\left\{\gamma_{k}^{\prime \text { 的 }}\right\}$ with $\gamma_{k}^{\prime \text { দ }}=h\left(\gamma_{k}^{\natural}\right)$ is also a parallel family of oriented straight segments in $D_{a^{\prime}}\left(p^{\prime}\right)$ ．Since $\gamma_{k}^{\prime 4}$ is the limit of $\gamma_{m_{j}+k, n_{j}}^{\prime}$ as $j \rightarrow \infty$ ，we have the equations

$$
\begin{equation*}
\vartheta\left(\gamma_{k}^{\prime \text { 的 }}\right)=\theta^{\prime \text { Ł }} \quad \text { and } \quad d\left(0, \gamma_{k}^{\prime \text { 鸟 }}\right)=w_{0}^{\prime} \lambda^{\prime k} . \tag{3.2}
\end{equation*}
$$

Figure 3.1. The images of the parallel straight segments γ_{k}^{\natural} in $D_{a}(p)$ by h.
corresponding to (3.1) for some $\theta^{\prime \natural}$ and $w_{0}^{\prime}>0$. Let $\gamma_{\infty}^{\natural} \in \operatorname{St}_{a}(p)$ (resp. $\gamma_{\infty}^{\prime \natural} \in$

Proof of Theorem (A. By Lemma 2.1 and (2.4), $w_{0}=\lim _{j \rightarrow \infty} \widetilde{d}_{0} \widetilde{t}_{0} \lambda^{m_{j}} r^{n_{j}}$. This implies that

$$
\lim _{j \rightarrow \infty}\left(\frac{m_{j}}{n_{j}} \log \lambda+\log r\right)=\lim _{j \rightarrow \infty} \frac{1}{n_{j}} \log \frac{w_{0}}{\widetilde{d}_{0} \widetilde{t}_{0}}=0
$$

and hence $\lim _{j \rightarrow \infty} \frac{m_{j}}{n_{j}}=-\frac{\log r}{\log \lambda}$. Applying the same argument to $\gamma_{m_{j}, n_{j}}^{\prime}$, we also have $\lim _{j \rightarrow \infty} \frac{m_{j}}{n_{j}}=-\frac{\log r^{\prime}}{\log \lambda^{\prime}}$. This shows the part (1) of Theorem A.

Now we will prove the part (2). For any $n \in \mathbb{N} \cup\{0\}$, we set $f^{n}\left(\gamma_{\infty}^{\natural}\right)=\gamma_{\infty, n}^{\natural}$ and $f^{\prime n}\left(\gamma_{\infty}^{\prime \text { 品 }}\right)=\gamma_{\infty, n}^{\prime \text { 品. }}$. By Corollary 2.4 .

$$
\begin{equation*}
h\left(\gamma_{\infty, n}^{\natural}\right)=h\left(f^{n}\left(\gamma_{\infty}^{\natural}\right)\right)=f^{\prime n}\left(h\left(\gamma_{\infty}^{\natural}\right)\right)=f^{\prime n}\left(\gamma_{\infty}^{\prime \natural}\right)=\gamma_{\infty, n}^{\prime \natural} . \tag{3.3}
\end{equation*}
$$

We identify $\operatorname{St}_{a}(p)$ with the unit circle $S^{1}=\{z \in \mathbb{C} ;|z|=1\}$ by corresponding $l \in \operatorname{St}_{a}(p)$ to $e^{\sqrt{-1} \vartheta(l)}$. Then the action of f on $\mathrm{St}_{a}(p)$ is equal to the θ-rotation R_{θ} on S^{1} defined by $R_{\theta}(z)=e^{\sqrt{-1} \theta} z$.

If $\theta / 2 \pi=v / u$ for coprime positive integers u, v with $0 \leq v<u$. Since $h\left(\gamma_{\infty}^{\natural}\right)=\gamma_{\infty}^{\prime \text { Ł }}$, we have $f^{\prime k}\left(\gamma_{\infty}^{\prime \mathfrak{\natural}}\right) \neq \gamma_{\infty}^{\prime \text { দ }}$ for $k=1, \ldots, u-1$ and $f^{\prime u}\left(\gamma_{\infty}^{\prime \text { a }}\right)=\gamma_{\infty}^{\prime \natural}$. This implies that $\theta^{\prime} / 2 \pi=v^{\prime} / u$ for some $v^{\prime} \in \mathbb{N}$ with $0 \leq v^{\prime}<u$. Since $\left.h\right|_{D_{a}(p)}$: $D_{a}(p) \rightarrow D_{a^{\prime}}\left(p^{\prime}\right)$ is a homeomorphism with the correspondence $h\left(R_{\theta}^{k}\left(\gamma_{\infty}^{\natural}\right)\right)=$ $R_{\theta^{\prime}}^{k}\left(\gamma_{\infty}^{\prime \natural}\right)(k=0,1, \ldots, u-1)$, there exists an orientation-preserving homeomorphism $\eta_{0}: S^{1} \rightarrow S^{1}$ with $\eta_{0}\left(e^{\sqrt{-1}\left(\theta^{\natural}+k \theta\right)}\right)=e^{\sqrt{-1}\left(\theta^{\prime \natural}+k \theta^{\prime}\right)}$ for $k=0,1, \ldots, u-1$. We set $\Gamma=\left\{e^{\sqrt{-1}\left(\theta^{\natural}+k \theta\right)} ; k=0,1, \ldots, u-1\right\}$ and $\Gamma^{\prime}=\left\{e^{\sqrt{-1}\left(\theta^{\prime}+k \theta^{\prime}\right)} ; k=0,1, \ldots, u-1\right\}$. Then $\left[e^{\sqrt{-1} \theta^{\natural}}, e^{\sqrt{-1}\left(\theta^{\natural}+\theta\right)}\right) \cap \Gamma$ consists of v points, where $[a, b)$ denotes the positively oriented half-open interval in S^{1} for $a, b \in S^{1}$ with $a \neq b$. Since moreover $\eta_{0}\left(\left[e^{\sqrt{-1} \theta^{\natural}}, e^{\sqrt{-1}\left(\theta^{\natural}+\theta\right)}\right) \cap \Gamma\right)=\left[e^{\sqrt{-1} \theta^{\prime \natural}}, e^{\sqrt{-1}\left(\theta^{\prime \natural}+\theta^{\prime}\right)}\right) \cap \Gamma^{\prime}$ consists of v^{\prime} points, it follows that $v=v^{\prime}$, and hence $\theta=\theta^{\prime}$.

Next we suppose that $\theta / 2 \pi$ is irrational. Then, for any $l \in \mathrm{St}_{a}(p)$, there exists a subsequence $\left\{n_{k}\right\}$ of \mathbb{N} such that the sequence $\gamma_{\infty, n_{k}}^{\natural}$ uniformly converges to l as
$k \rightarrow \infty$. By (3.3), $\gamma_{\infty, n_{k}}^{\prime \text {, }}$ uniformly converges to $l^{\prime}=h(l)$. Since $\gamma_{\infty, n_{k}}^{\prime \text { G }} \in \operatorname{St}_{a^{\prime}}\left(p^{\prime}\right)$, l^{\prime} is also an element of $\mathrm{St}_{a^{\prime}}\left(p^{\prime}\right)$. Thus we have a homeomorphism $\eta: S^{1} \rightarrow S^{1}$ with respect to which R_{θ} and $R_{\theta^{\prime}}$ are conjugate. Since the rotation number is invariant under topological conjugations, $\theta / 2 \pi=\theta^{\prime} / 2 \pi \bmod 1$ holds. This completes the proof of the part (2).

4. Proof of Theorem B

In this section, we will prove Theorem B. Suppose that f, f^{\prime} are elements of $\operatorname{Diff}^{r}(M)$ satisfying the conditions of Theorems A and $\theta / 2 \pi$ is irrational.

Since $\theta=\theta^{\prime} \bmod 2 \pi$, for any $k, j \in \mathbb{N}$,

$$
\begin{equation*}
\vartheta\left(\gamma_{\infty, k}^{\natural}\right)-\vartheta\left(\gamma_{\infty, j}^{\natural}\right)=\vartheta\left(\gamma_{\infty, k}^{\prime \natural}\right)-\vartheta\left(\gamma_{\infty, j}^{\prime \natural}\right)=(k-j) \theta \quad \bmod 2 \pi . \tag{4.1}
\end{equation*}
$$

Let $l_{j}(j=1,2)$ be any elements of $\mathrm{St}_{a}(p)$. As in the proof of TheoremA, there exist subsequences $\left\{n_{k}\right\},\left\{n_{j}\right\}$ of \mathbb{N} such that the sequencers $\left\{\gamma_{\infty, n_{k}}^{\natural}\right\},\left\{\gamma_{\infty, n_{j}}^{\natural}\right\}$ uniformly converge to l_{1} and l_{2} respectively. Then, $\left\{\gamma_{\infty, n_{k}}^{\prime \natural}\right\},\left\{\gamma_{\infty, n_{j}}^{\prime \dagger}\right\}$ also uniformly converge to the elements $l_{1}^{\prime}=h\left(l_{1}\right)$ and $l_{2}^{\prime}=h\left(l_{2}\right)$ of $\mathrm{St}_{a^{\prime}}\left(p^{\prime}\right)$ respectively. Then, by 4.1),

$$
\begin{equation*}
\vartheta\left(l_{2}\right)-\vartheta\left(l_{1}\right)=\vartheta\left(l_{2}^{\prime}\right)-\vartheta\left(l_{1}^{\prime}\right) \quad \bmod 2 \pi \tag{4.2}
\end{equation*}
$$

For the proof of Theorem B, we need another family of straight segments in $D_{a}(p)$. Fix an integer a_{0} with

$$
a_{0}>\max \left\{\frac{\log (2 r)}{\log \left(\lambda^{-1}\right)}, \frac{\log \left(2 r^{\prime}\right)}{\log \left(\lambda^{\prime-1}\right)}\right\} .
$$

For any $k \geq 0$, we consider the straight segment $\xi_{k}^{\natural}=f^{k}\left(\gamma_{a_{0} k}^{\natural}\right) \cap D_{a}(p)$. By (3.1),

$$
\begin{equation*}
\vartheta\left(\xi_{k}^{\natural}\right)-\vartheta\left(\xi_{0}^{\natural}\right)=k \theta \quad \bmod 2 \pi \quad \text { and } \quad d\left(0, \xi_{k}^{\natural}\right)=w_{0} \lambda^{a_{0} k} r^{k}<2^{-k} w_{0} \tag{4.3}
\end{equation*}
$$

Similarly, by $3.2, \xi_{k}^{\prime \natural}=h\left(\xi_{k}^{\natural}\right)$ is a straight segment in $D_{a^{\prime}}\left(p^{\prime}\right)$ with

$$
\begin{equation*}
\vartheta\left(\xi_{k}^{\prime \text { Ł }}\right)-\vartheta\left(\xi_{0}^{\prime \text { Ø }}\right)=k \theta \quad \bmod 2 \pi \quad \text { and } \quad d\left(0, \xi_{k}^{\prime \text { Ł }}\right)=w_{0}^{\prime} \lambda^{\prime a_{0} k} r^{\prime k}<2^{-k} w_{0}^{\prime} . \tag{4.4}
\end{equation*}
$$

Proof of Theorem B. Let α be the element of $\operatorname{St}_{a}(p)$ with $\vartheta\left(\xi_{0}^{\natural}\right)-\vartheta(\alpha)=\pi / 2$ and $\alpha^{\prime}=h(\alpha) \in \operatorname{St}_{a^{\prime}}\left(p^{\prime}\right)$. We will show that $\theta_{\alpha^{\prime}}:=\vartheta\left(\xi_{0}^{\prime \text { 冋 }}\right)-\vartheta\left(\alpha^{\prime}\right)$ is also equal to $\pi / 2$ $\bmod 2 \pi$. See Figure 4.1. In fact, since $\theta / 2 \pi$ is irrational, by 4.3) there exists a

Figure 4.1. Correspondence of straight segments via h.
subsequence $\xi_{k_{j}}^{\natural}$ uniformly converges to α. Since $\left.h\right|_{D_{a}(p)}$ is uniformly continuous, $\xi_{k_{j}}^{\prime \text { 曰 }}$ also uniformly converges to α^{\prime}. On the other hand, since $\vartheta\left(\xi_{k_{j}}^{\natural}\right)-\vartheta(\alpha)=k_{j} \theta+\pi / 2$ $\bmod 2 \pi$ and $\vartheta\left(\xi_{k_{j}}^{\prime \natural}\right)-\vartheta\left(\alpha^{\prime}\right)=k_{j} \theta+\theta_{\alpha^{\prime}} \bmod 2 \pi$,

$$
\theta_{\alpha^{\prime}}-\frac{\pi}{2}=\left(\vartheta\left(\xi_{k_{j}}^{\prime \natural}\right)-\vartheta\left(\alpha^{\prime}\right)\right)-\left(\vartheta\left(\xi_{k_{j}}^{\natural}\right)-\vartheta(\alpha)\right) \rightarrow 0 \quad \bmod 2 \pi
$$

as $j \rightarrow \infty$. Thus we have $\theta_{\alpha^{\prime}}=\pi / 2 \bmod 2 \pi$.
We denote by $z(\boldsymbol{x}) \in \mathbb{C}$ the entry of $\boldsymbol{x} \in D_{a}(p)$ with respect to the linearizing coordinate on $D_{a}(p)$. Similarly, the entry of $\boldsymbol{x}^{\prime} \in D_{a^{\prime}}\left(p^{\prime}\right)$ is denoted by $z^{\prime}\left(\boldsymbol{x}^{\prime}\right)$. Let \boldsymbol{x}_{0} be the intersection point of α and ξ_{0}^{\natural}, and let $\boldsymbol{x}_{0}^{\prime}=h\left(\boldsymbol{x}_{0}\right)$. One can set $z\left(\boldsymbol{x}_{0}\right)=\rho_{0} e^{\sqrt{-1} \omega_{0}}$ and $z^{\prime}\left(\boldsymbol{x}_{0}^{\prime}\right)=\rho_{0}^{\prime} e^{\sqrt{-1} \omega_{0}^{\prime}}$ for some $\rho_{0}>0, \rho_{0}^{\prime}>0$ and $\omega_{0}, \omega_{0}^{\prime} \in \mathbb{R}$. We define the new linearizing coordinate on $D_{a^{\prime}}\left(p^{\prime}\right)$ by using the linear conformal map such that, for any $\boldsymbol{x}^{\prime} \in D_{a^{\prime}}\left(p^{\prime}\right), z^{\prime \text { new }}\left(\boldsymbol{x}^{\prime}\right)=\rho_{0} \rho_{0}^{\prime-1} e^{\sqrt{-1}\left(\omega_{0}-\omega_{0}^{\prime}\right)} z^{\prime}\left(\boldsymbol{x}^{\prime}\right)$. Then $z\left(\boldsymbol{x}_{0}\right)=z^{\text {new }}\left(\boldsymbol{x}_{0}^{\prime}\right)$ holds.

For any $\boldsymbol{x} \in \xi_{0}^{\natural}$, there exists $l \in \operatorname{St}_{a}(p)$ with $\{\boldsymbol{x}\}=\xi_{0}^{\natural} \cap l$. Then $\boldsymbol{x}^{\prime}=h(\boldsymbol{x})$ is the intersection of $\xi_{0}^{\prime \text { ■ }}$ and $l^{\prime}=h(l)$. By 4.2 ,,$\vartheta(l)-\vartheta(\alpha)=\vartheta\left(l^{\prime}\right)-\vartheta\left(\alpha^{\prime}\right) \bmod 2 \pi$ and hence $z(\boldsymbol{x})=z^{\prime \text { new }}\left(\boldsymbol{x}^{\prime}\right)$. We say the property that h is identical on ξ_{0}^{\natural}. Since $\theta / 2 \pi$ is irrational, there exists $k_{*} \in \mathbb{N}$ satisfying

$$
\frac{\pi}{3} \leq \vartheta\left(\xi_{k_{*}}^{\natural}\right)-\vartheta\left(\xi_{0}^{\natural}\right) \leq \frac{\pi}{2} \quad \bmod 2 \pi
$$

Then $\xi_{k_{*}}^{\natural}$ meets ξ_{0}^{\natural} at a single point $\boldsymbol{x}_{k_{*}}$ in $D_{a}(p)$. For $\alpha_{k_{*}}=f^{k_{*}}(\alpha)$ and $\alpha_{k_{*}}^{\prime}=$
 $\boldsymbol{x}_{k_{*}}, h$ is proved to be identical on $\xi_{k_{*}}^{\natural}$ by an argument as above. Then one can show inductively that, for any $n \in \mathbb{N}, h$ is identical on $\xi_{n k_{*}}^{\natural}$. See Figure 4.2. By 4.3),

Figure 4.2. Correspondence via h with respect to the new coordinate on $D_{a^{\prime}}\left(p^{\prime}\right)$.
$\lim _{n \rightarrow \infty} d\left(0, \xi_{n k_{*}}^{\natural}\right)=0$. Since moreover $k_{*} \theta / 2 \pi$ is irrational, $\overline{\bigcup_{n=1}^{\infty} \xi_{n k_{*}}^{\natural}}$ is equal to $D_{a}(p)$. This shows that h is identical on $D_{a}(p)$. In particular, this implies that $\left.h\right|_{D_{a}(p)}$ is a linear conformal map with respect to the original coordinates. We write $z(q)=\rho_{1} e^{\sqrt{-1} \omega_{1}}$ and $z^{\prime}\left(q^{\prime}\right)=\rho_{1}^{\prime} e^{\sqrt{-1} \omega_{1}^{\prime}}$. It follows from the assumption of $h(q)=q^{\prime}$
in our theorems that $h(z)=\rho_{1}^{\prime} \rho_{1}^{-1} e^{\sqrt{-1}\left(\omega_{1}^{\prime}-\omega_{1}\right)} z$ for any $z \in \mathbb{C}$ with $|z| \leq a$. In particular, this implies that $\left.h\right|_{W_{\text {loc }}^{u}(p)}$ is a linear conformal map. Let \widetilde{h} be any other conjugacy homeomorphism between f and f^{\prime} satisfying the conditions in Theorems A and B. In particular, $\widetilde{h}(p)=p^{\prime}$ and $\widetilde{h}(q)=q^{\prime}$ hold. Since $z(q)=\rho_{1} e^{\sqrt{-1} \omega_{1}}$ and $z^{\prime}\left(q^{\prime}\right)=\rho_{1}^{\prime} e^{\sqrt{-1} \omega_{1}^{\prime}}$, one can show as above that $\widetilde{h}(z)=\rho_{1}^{\prime} \rho_{1}^{-1} e^{\sqrt{-1}\left(\omega_{1}^{\prime}-\omega_{1}\right)} z$ for any $z \in \mathbb{C}$ with $|z| \leq a$ and hence $\left.\widetilde{h}\right|_{D_{a}(p)}=\left.h\right|_{D_{a}(p)}$. This shows the assertion (2) of Theorem B and $r=r^{\prime}$. Then, by the assertion (1) of Theorem A, we also have $\lambda=\lambda^{\prime}$. This completes the proof.

Let \widehat{z} be the homoclinic transverse point of $W^{u}(p)$ and $W^{s}(p)$ given in Subsection 1.1. Fix a sufficiently large $n \in \mathbb{N}$ with $s=f^{-n}(\widehat{z}) \in D_{p}(a)$. Then $s^{\prime}=h(s)$ is contained in $D_{b^{\prime}}\left(p^{\prime}\right)$. The following corollary shows that $z(s) / z(q)$ is a modulus for f. Recall that $z(\boldsymbol{x}) \in \mathbb{C}$ is the entry of \boldsymbol{x} with respect to the complex linearizing coordinate on $D_{a}(a)$. The complex number $z^{\prime}\left(\boldsymbol{x}^{\prime}\right)$ is defined similarly for $\boldsymbol{x}^{\prime} \in$ $D_{a^{\prime}}\left(p^{\prime}\right)$.

Corollary C. Let f, f^{\prime} be elements of $\operatorname{Diff}^{r}(M)$ satisfying the conditions of Theorems A and B, and let h be a conjugacy homeomorphism between f and f^{\prime} with $h(p)=p^{\prime}$ and $h(q)=q^{\prime}$. If $\left.h\right|_{W_{\text {loc }}^{u}(p)}$ is orientation-preserving, then $z(s) / z(q)=$ $z^{\prime}\left(s^{\prime}\right) / z^{\prime}\left(q^{\prime}\right)$. Otherwise, $z(s) / z(q)=\overline{z^{\prime}\left(s^{\prime}\right) / z^{\prime}\left(q^{\prime}\right)}$.

Proof. Here we only consider the case that h is orientation-preserving. Since $\left.h\right|_{D_{a}(p)}$ is a linear conformal map, the triangle with vertices $0, z(q), z(s)$ is similar to that with vertices $0, z^{\prime}\left(q^{\prime}\right), z^{\prime}\left(s^{\prime}\right)$ with respect to Euclidean geometry. This shows $z(s) / z(q)=z^{\prime}\left(s^{\prime}\right) / z^{\prime}\left(q^{\prime}\right)$.

Acknowledgement. The authors would like to thank the referee and the editors for helpful comments and suggestions.

References

[BD] C. Bonatti and E. Dufraine, Équivalence topologique de connexions de selles en dimension 3, Ergodic Theory Dynam. Sys. 23 (2003), no. 5, 1347-1381.
[CR] M. Carvalho and A. Rodrigues, Complete set of invariants for a Bykov attractor, Regular Chaotic Dynam. 23 (2018), no. 3, 227-247.
[dM] W. de Melo, Moduli of stability of two-dimensional diffeomorphisms, Topology 19 (1980), no. 1, 9-21.
[dMP] W. de Melo and J. Palis, Moduli of stability for diffeomorphisms, Global theory of dynamical systems, Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979, pp. 318-339, Lecture Notes in Math., 819, Springer, Berlin, 1980.
[dMvS] W. de Melo and S. J. van Strien, Diffeomorphisms on surfaces with a finite number of moduli, Ergodic Theory Dynam. Sys. 7 (1987), no. 3, 415-462.
[Du1] E. Dufraine, Some topological invariants for three-dimensional flows, Chaos 11 (2001), 443-448.
[Du2] E. Dufraine, Un critère d'existence d'invariant pour la conjugaison de difféomorphismes et de champs de vecteurs, C. R. Math. Acad. Sci. Paris 334 (2002), no. 1, 53-58.
$[G P v S]$ V.Z. Grines, O.V. Pochinka and S. J. van Strien, On 2-diffeomorphisms with onedimensional basic sets and a finite number of moduli, Mosc. Math. J. 16 (2016), no. 4, 727-749.
[Ha] S. Hashimoto, Moduli of surface diffeomorphisms with cubic tangencies, Tokyo J. Math. (to appear).
[MP1] T. M Mitryakova and O. V. Pochinka, On necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a finite number of orbits of heteroclinic tangency, Proc. Steklov Inst. Math. 270 (2010), no. 1, 194-215.
[MP2] T. M Mitryakova and O. V. Pochinka, Necessary and sufficient conditions for the topological conjugacy of 3-diffeomorphisms with heteroclinic tangencies, Trans. Moscow Math. Soc. (2016), 69-86.
[NPT] S. Newhouse, J. Palis and F. Takens, Bifurcations and stability of families of diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 57 (1983), 5-71.
[Ni] Y. Nishizawa, Existence of horseshoe sets with nondegenerate one-sided homoclinic tangencies in \mathbb{R}^{3}, Hokkaido Math. J. 37 (2008), no. 1, 133-145.
[Pa] J. Palis, A differentiable invariant of topological conjugacies and moduli of stability, Dynamical systems, Vol. III-Warsaw, pp. 335-346, Astérisque, No. 51, Soc. Math. France, Paris, 1978.
[Po] R. A. Posthumus, Homoclinic points and moduli, Ergodic Theory Dynam. Sys. 9 (1989), no. 2, 389-398.
[PT] R. A. Posthumus and F. Takens, Homoclinic tangencies: moduli and topology of separatrices, Ergodic Theory Dynam. Sys. 13 (1993), no. 2, 369-385.
[Ro] A. Rodrigues, Moduli for heteroclinic connections involving saddle-foci and periodic solutions, Discrete Cont. Dyn. Sys. 35 (2015), no. 7, 3155-3182.
[Ta] F. Takens, Heteroclinic attractors: Time averages and moduli of topological conjugacy, Bol. Soc. Brasil. Mat. 25 (1994), 107-120.
[To] Y. Togawa, A modulus of 3-dimensional vector fields, Ergodic Theory Dynam. Sys. 7 (1987), no. 2, 295-301.

[^0]: Date: June 25, 2018.
 2010 Mathematics Subject Classification. Primary: 37C05, 37C15, 37C29.
 Key words and phrases. diffeomorphism, moduli, homoclinic tangency.
 This work was partially supported by JSPS KAKENHI Grant Numbers 17K05283 and 26400093.

