
MODULI OF 3-DIMENSIONAL DIFFEOMORPHISMS WITH

SADDLE-FOCI

SHINOBU HASHIMOTO

Department of Mathematics and Information Sciences, Tokyo Metropolitan
University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397, Japan.

E-mail address: hashimoto-shinobu@ed.tmu.ac.jp

SHIN KIRIKI

Department of Mathematics, Tokai University, 4-1-1 Kitakaname, Hiratuka
Kanagawa, 259-1292, Japan.

E-mail address: kiriki@tokai-u.jp

TERUHIKO SOMA

Department of Mathematical Sciences, Tokyo Metropolitan University,
Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397, Japan.

E-mail address: tsoma@tmu.ac.jp

Abstract. We consider a space U of 3-dimensional diffeomorphisms f with
hyperbolic fixed points p the stable and unstable manifolds of which have

quadratic tangencies and satisfying some open conditions and such that Df(p)
has non-real expanding eigenvalues and a real contracting eigenvalue. The aim

of this paper is to study moduli of diffeomorphisms in U . We show that, for

a generic element f of U , all the eigenvalues of Df(p) are moduli and the
restriction of a conjugacy homeomorphism to a local unstable manifold is a

uniquely determined linear conformal map.

The topological classification of structurally unstable diffeomorphisms or vector
fields on a manifold M is an important subject in the study of dynamical systems.
Palis [Pa] suggested that moduli play important roles in such a classification. For
a subspace N of the diffeomorphism space Diffr(M) with r ≥ 1, we say that a
value m(f) determined by f ∈ N is a modulus in N if m(g) = m(f) holds for
any g ∈ N topologically conjugate to f , that is, there exists a homeomorphism
h : M → M with g = h ◦ f ◦ h−1. A modulus for a certain class of vector fields
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is defined similarly. We say that a set µN of moduli is complete if any f , g ∈ N
with m(f) = m(g) for all m ∈ µN are topologically conjugate. For given vector
fields X, Y on M , a candidate for a conjugacy homeomorphism between X and Y
is found in a usual manner. In many cases, such a map is well defined in a most
part of M . So it remains to show that the map is extended to a homeomorphism
on M by using the condition that X and Y have the same value for any moduli in
µN . On the other hand, in the diffeomorphism case, it would be difficult to find a
complete set of moduli except for very restricted classes N in Diffr(M).

First we consider the case that dimM = 2 and fj (j = 0, 1) are elements of
Diffr(M) (r ≥ 2) with two saddle fixed points pj , qj . Suppose moreover that
Wu(pj) and W s(qj) have a quadratic heteroclinic tangency rj and there exists
a conjugacy homeomorphism h between f1 and f2 with h(p0) = p1, h(q0) = q1

and h(r0) = r1. Then, Palis [Pa] proved that
log |λ0|
log |µ0|

=
log |λ1|
log |µ1|

holds under

ordinary conditions, where λj is the contracting eigenvalue of Df(pj) and µi is the
expanding eigenvalue of Df(qj). In [Po], Posthumus proved that the homoclinic
version of Palis’ results. In fact, he proved that, if fj (j = 0, 1) has a saddle

fixed point pj with a homoclinic quadratic tangency, then
log |λ0|
log |µ0|

=
log |λ1|
log |µ1|

holds,

where λj , µj are the contracting and expanding eigenvalues of Df(pi). Moreover,
he showed that, by using some results of de Melo [dM], λ0 = λ1 and µ0 = µ1 hold if
log |λ0|
log |µ0|

is irrational. We refer to [dMP, dMvS, PT, MP1, GPvS, Ha] and references

therein for more results on moduli of 2-dimensional diffeomorphisms. Moduli for 2-
dimensional flows with saddle-connections are studied by Palis [Pa] and Takens [Ta]
and so on. In those papers, they present finite sets of moduli which are complete
in a neighborhood of the saddle connection in M .

In this paper, we consider 3-dimensional diffeomorphisms f with a hyperbolic
fixed point p such that Wu(p) and W s(p) have a quadratic tangency and Df(p) has

non-real expanding eigenvalues re±
√
−1θ with r > 1 and a contracting eigenvalue

0 < λ < 1. Moduli for diffeomorphisms of dimension more than two have been
already studied by [NPT, Du2, MP2] and so on.

First we will prove the following theorem.

Theorem A. Let M be a 3-manifold and fj (j = 0, 1) elements of Diffr(M)
for some r ≥ 3 which have hyperbolic fixed points pj and homoclinic quadratic
tangencies qj positively associated with pj and satisfy the following conditions.

• For j = 0, 1, there exists a neighborhood U(pj) of pj in M such that fj |U(pj)

is linear and Dfj(pj) has non-real eigenvalues rje
±
√
−1θj and a real eigenvalue

λj with rj > 1, θj 6= 0 mod π and 0 < λj < 1.
• f0 is topologically conjugate to f1 by a homeomorphism h : M → M with
h(p0) = p1 and h(q0) = q1.

Then the following (1) and (2) hold.

(1)
log λ0
log r0

=
log λ1
log r1

.

(2) Either θ0 = θ1 or θ0 = −θ1 mod 2π.

Here we say that a homoclinic quadratic tangency q0 is positively associated with
p0 if both fn0 (q0) and f−n0 (α) lie in the same component of U(p0) \Wu

loc(p0) for a
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sufficiently large n ∈ N and any small curve α in W s(p0) containing q0. Theorem
A holds also in the case when θ0 = 0 mod π or −1 < λj < 0 except for some rare
case, see Remark 1.1 for details.

Remark 0.1. Assertion (1) of Theorem A is implied in the case (D) of Theorem
1.1 in [NPT, Chapter III]. Assertion (2) is also proved by Dufraine [Du2] under
weaker assumptions. The author used non-spiral curves in Wu

loc(p) emanating from
p. On the other hand, we employ unstable bent disks defined in Section 1 which
are originally introduced by Nishizawa [Ni]. By using such disks, we construct a
convergent sequence of mutually parallel straight segments in Wu

loc(p) which are
mapped to straight segments in Wu

loc(h(p)) by h, see Figure 3.1. An advantage
of our proof is that these sequences are applicable to prove our main theorem,
Theorem B below.

Results corresponding to Theorem A for 3-dimensional flows with Shilnikov cy-
cles are obtained by Togawa [To], Carvalho-Rodrigues [CR] and for those with con-
nections of saddle-foci by Bonatti-Dufraine [BD], Dufraine [Du1], Rodrigues [Ro]
and so on. See the Section 2 in [Ro] for details. Moreover Carvalho and Rodrigues
[CR] present results on moduli of 3-dimensional flows with Bykov cycles.

Theorem B. Under the assumptions in Theorem A, suppose moreover that θ0/2π
is irrational. Then the following conditions hold.

(1) λ0 = λ1 and r0 = r1.
(2) The restriction h|Wu

loc(p0)
: Wu

loc(p0)→Wu
loc(p1) is a uniquely determined linear

conformal map.

In contrast to Posthumus’ results for 2-dimensional diffeomorphisms, the eigen-

values λ0 and r0 are proved to be moduli without the assumption that
log λ0
log r0

is

irrational.
The restriction h|Wu

loc(p0)
is said to be a linear conformal map if h|Wu

loc(p0)
is

represented as h|Wu
loc(p0)

(z) = ρe
√
−1ωz (z ∈ Wu

loc(p0)) for some ρ ∈ R \ {0} and

ω ∈ R under the natural identification of Wu
loc(p0), Wu

loc(p1) with neighborhoods of
the origin in C via their linearizing coordinates.

For any rj > 1 and θj ∈ R (j = 0, 1), let ϕj : C → C be the map defined by

ϕj(z) = rje
√
−1θjz. Then there are many choices of conjugacy homeomorphisms

on C for ϕ0 and ϕ1. For example, we take two-sided Jordan curves Γj in C with
ϕj(Γj) ∩ Γj = ∅ and bounding disks in C containing the origin arbitrarily. Then
there exists a conjugacy homeomorphism h : C→ C for ϕ0 and ϕ1 with h(Γ0) = Γ1.
On the other hand, Theorem B (2) implies that we have severe constraints in the
choice of conjugacy homeomorphisms for 3-dimensional diffeomorphisms as above.
Intuitively, it says that only a homeomorphism h with h|Wu

loc
(p) linear and conformal

can be a candidate for a conjugacy between f0 and f1. As an application of the
linearity and conformality of h|Wu

loc
(p), we will present a new modulus for f0 other

than θ0, λ0, r0, see Corollary C in Section 4.

1. Front curves and folding curves

For j = 0, 1, let fj be a diffeomorphism and qj a quadratic tangency associated
with a hyperbolic fixed point pj satisfying the conditions of Theorem A. We will
define in this section front curves in Wu(pj) and folding curves in Wu

loc(pj) and
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show in the next section that these curves converge to straight segments which are
preserved by any conjugacy homeomorphism between f0 and f1.

We set f0 = f , p0 = p, q0 = q, r0 = r, θ0 = θ and λ0 = λ for short. Similarly, let
f1 = f ′, p1 = p′, q1 = q′, r1 = r′, θ1 = θ′ and λ1 = λ′. Suppose that (z, t) = (x, y, t)
with z = x+

√
−1y is a coordinate around p with respect to which f is linear. For

a small a > 0, let Da(p) be the disk {z ∈ C ; |z| ≤ a}. We may assume that q is
contained in the interior of Da(p)× {0} ⊂Wu

loc(p) and q̂ = fN (q) is in the interior
of the upper half W s+

loc (p) = {0} × [0, a] of W s
loc(p) for some N ∈ N. See Figure

1.1. Let Ua(p) be the circular column in the coordinate neighborhood defined by

Figure 1.1. A saddle-focus p and a homoclinic quadratic tan-
gency q in Da(p).

Ua(p) = Da(p) × [0, a] and Vq̂ a small neighborhood of q̂ in Ua(p). Suppose that
Ua(p) has the Euclidean metric induced from the linearizing coordinate on Ua(p).
By choosing the coordinate suitably and replacing θ by −θ if necessary, we may

assume that the restriction f |Da(p) is represented as re
√
−1θz for z ∈ C with |z| < a.

Similarly, one can suppose that f ′|Da′ (p
′) is represented as r′e

√
−1θ′z for some a′ > 0.

The orthogonal projection pr : Ua(p)→ Da(p) is defined by pr(x, y, t) = (x, y).

In this section, we construct an unstable bent disk H̃0 in Wu(p) ∩ Ua(p), the

front curve γ̃0 in H̃0 and the folding curves γ0 in Ua(p). We also define the sequence

of unstable bent disks H̃m in Wu(p) ∩ Ua(p) converging to H̃0, which will be used
in the next section to construct the sequence of front curves converging to γ̃0.

1.1. Construction of unstable bent disks, front curves and folding curves.

We set q̂ = (0, t0). Let H̃ be the component of Wu(p) ∩ Vq̂ containing q̂. One can
retake the linearizing coordinate on C if necessary so that the line in Vq̂ passing

through q̂ and parallel to the x-axis in Ua(p) meets H̃ transversely. Then H̃ is
represented as the graph of a Cr-function x = ϕ(y, t) with

(1.1) ϕ(0, t0) = 0,
∂ϕ

∂t
(0, t0) = 0 and

∂2ϕ

∂t2
(0, t0) 6= 0.
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By the implicit function theorem, there exists a Cr−1-function t = η(y) defined in a
small neighborhood V of 0 in the y-axis and satisfying η(0) = t0 and ∂ϕ(y, η(y))/∂t =

0. Then the curve γ̃ in Vq̂ parametrized by
(
ϕ(y, η(y)), y, η(y)

)
divides H̃ into two

components and γ = pr(γ̃) is a Cr−1-curve embedded in Da(p). Let H̃+ (resp.

H̃−) be the closure of the upper (resp. lower) component of H̃ \ γ̃. For a sufficiently

large n0 ∈ N, the component H̃0 of fn0(H̃) ∩ Ua(p) containing q0 = fn0(q̂) is an

unstable bent disk in Ua(p) such that ∂H̃0 is a simple closed Cr-curve in ∂sideUa(p),
where

∂sideUa(p) = {(x, t) ∈ C× R ; |z| = a, 0 ≤ t < a} ⊂ ∂Ua(p).

See Figure 1.2. We set γ̃0 = fn0(γ̃)∩H̃0, H̃+
0 = fn0(H̃+)∩H̃0, H̃−0 = fn0(H̃−)∩H̃0,

H0 = pr(H̃+
0 ) = pr(H̃−0 ) and γ0 = pr(γ̃0). Then γ̃0 is called the front curve of H̃0

and γ0 is the folding curve of H0.

Figure 1.2. The front curve γ̃0 divides H̃0 into the two sheets

H̃+
0 and H̃−0 . The folding curve γ0 of H0 is the orthogonal image

of γ̃0.

We note that Nishizawa [Ni] has studied unstable bent disks similar to H̃0 as
above in a different situation. In fact, he considered a 3-dimensional diffeomorphism
g which has a saddle fixed point s such that all the eigenvalues of Dg(s) are real
and has a homoclinic quadratic tangency associated with s. Here we consider the

component H̃−0;u of fu(H̃−0 ) ∩ Ua(p) containing fu(q0) for u ∈ N. Since the homo-

clinic tangency q is positively associated with p, one can show that there exists H̃−0;u
which meets W s(p) transversely at a point ẑ near q by using an argument similar
to that in [Ni, Lemma 4.4]. See Figure 1.3. To show the claim, the assumption
of θ0 6= 0 mod π in Theorem A is crucial. In fact, the condition implies that the
following property:

(P) There exists an arbitrarily large u such that the interior of H0;u = pr(H̃−0;u) in

Da(p) contains q.
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Figure 1.3. The half disk H̃−0;u meets W s(p) transversely at two
points near q, one of which is ẑ.

Remark 1.1. (1) We here suppose θ = 0 mod π. Even in this case, if f has
the property (P), then the component of W s(p) containing q and Wu(p) have a
homoclinic transverse intersection point. Then Theorems A and B will be proved
quite similarly. Since θ = 0 mod π, all fu(γ0) are tangent to a unique straight
segment γ∞ in Da(p) at p. Thus the property (P) is satisfied if γ∞ does not pass
through q.

(2) Even in the case of −1 < λ < 0, one can show that f has the property (P)
similarly by using f2 instead of f if 2θ 6= 0 mod π. Moreover, since either q or
f(q) is a homoclinic tangency positively associated with p, Theorems A and B hold
without the assumption that q is positively associated with p.

1.2. Construction of convergent sequence of unstable bent disks. Take
v ∈ N such that ẑ0 = fv(ẑ) is a point (0, t̂ ) contained in Ua(p), where ẑ is the

transverse intersection point of H̃−0;u and W s(p) given in the previous subsection.

Let D be a small disk in Wu(p) ∩ Ua(p) whose interior contains ẑ0. The absolute
slope σ(v) of a vector v = (v1, v2, v3) in Ua(p) with (v1, v2) 6= (0, 0) is given as

σ(v) =
|v3|√
v21 + v22

.

The maximum absolute slope σ(D) of D is defined by

σ(D) = max{σ(v) ; unit vectors v in Ua(p) tangent to D}.

Fix m0 ∈ N such that, for any m ∈ N∪{0}, the component Dm of fm0+m(D)∩U(p)
containing fm0+m(ẑ0) is a properly embedded disk in Ua(p) with ∂Dm ⊂ ∂sideUa(p).

Note that Dm intersects W s
loc(p) transversely at (0, λmt0), where t0 = λm0 t̂. See

Figure 1.4. The maximum absolute slope of Dm satisfies

(1.2) σ(Dm) ≤ σ0λmr−m,

where σ0 = σ(D)λm0r−m0 . Consider a short straight segment ρ in Ua(p) meet-

ing H̃0 orthogonally at q0. Then ρ̃ = f−(N+n0)(ρ) is a Cr-curve meeting Da(p)
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Figure 1.4. Trip from H̃−0 to H̃m: fu+v(H̃−0 ) ⊃ D, fm0(D) ⊃
D0, fm(D0) ⊃ Dm and fN+n0(Dm) ⊃ H̃m, where N , n0 are the
positive integers with fN (q) = q̃ and fn0(q̃) = q0. The dotted line
passing through q represents a straight segment tangent to ρ̃ at q.

transversely at q, where N , n0 are the positive integers given as above. One can
choose m0 ∈ N so that, for any m ∈ N ∪ {0}, ρ̃ meets Dm transversely at a single
point wm = (zm, sm). Then (1.2) implies that |t0λm − sm| ≤ ãσ0λ

mr−m, where
ã = supm≥0{|zm|} < ∞. It follows that sm = t0λ

m + O(λmr−m). Since ρ̃ has a
tangency of order at least two with a straight segment at q,

(1.3) dist(wm, q) = t̃0λ
m +O(λmr−m) +O(λ2m) = t̃0λ

m + o(λm)

for some constant t̃0 > 0. By the inclination lemma, Dm uniformly Cr-converges
to Da(p). A short curve in W s(p) containing q as an interior point meets Dm

transversely in two points for all sufficiently large m. Let H̃m be the component of

fN+n0(Dm)∩Ua(p) containing fN+n0(wm). Then H̃m Cr-converges to H̃0 as m→
∞. By (1.1), there exist Cr-functions ϕm(y, t) Cr-converging to ϕ and representing

H̃m as the graph of x = ϕm(y, t). Then the front curve γ̃m in H̃m is defined as the

front curve γ̃0 in H̃0. Since ∂ϕm(y, t)/∂t Cr−1-converges to ∂ϕ(y, t)/∂t, γ̃m also

Cr−1-converges to γ̃0. Note that γ̃m divides H̃m into the upper surface H̃+
m and the

lower surface H̃−m with γ̃m = H̃+
m ∩ H̃−m and Hm = pr(H̃m) = pr(H̃+

m) = pr(H̃−m).
The image γm = pr(γ̃m) is called the folding curve of Hm.

2. Limit straight segments

A curve γ in Da(p) is called a straight segment if γ is a segment with respect to
the Euclidean metric on Da(p). In this section, we will construct a proper straight

segment γ\0 in Da(p) with p 6∈ γ\0 which is mapped to a straight segment in Ua′(p
′)

by h.
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2.1. Sequences of folding curves converging to straight segments. Let α be
an oriented Cr−1-curve in Da(p) of bounded length. Since r−1 ≥ 2, there exists the
maximum absolute curvature κ(α) of α. If α passes near the center 0 of Da(p) and
satisfies κ(α) < 1/a, then α has a unique point z(α) with dist(0, z(α)) = dist(0, α).
In fact, if α had two points zi (i = 1, 2) with dist(0, zi) = dist(0, α), then for a point
z3 in α with the maximum dist(0, z3) between z1 and z2, the curvature of α at z3
is not less than 1/dist(0, z3) ≥ 1/a, a contradiction. We denote by ϑ(α) mod 2π
the angle between α̂ and the positive direction of the x-axis at 0, where α̂ is the
oriented curve in Da(p) obtained from α by the parallel translation taking z(α) to
0.

By (1.3), there exists a constant d̃0 > 0 such that

(2.1) dist(γ̃m, the t-axis) = d̃0(t̃0λ
m + o(λm)) + o(λm) = d̃0t̃0λ

m + o(λm).

Since γm Cr−1-converges to γ0, κ(γm) also converges to κ(γ0) as m → ∞. This
shows that

(2.2) sup
m
{κ(γm)} = κ0 <∞.

It follows that, for all sufficiently large m, there exists a unique point cm of γm with

dist(cm, 0) = dist(γm, 0) = dist(c̃m, the t-axis) = dist(γ̃m, the t-axis),

where c̃m is the point of γ̃m with pr(c̃m) = cm.
Fix w with 0 < w < a/2 arbitrarily. For any n ∈ N, let m(n) be the minimum

positive integer such that fn(cm) is contained in Dw(p) for any m ≥ m(n). Then

limn→∞m(n) = ∞ holds. For any m ≥ m(n), the component H̃m,n of fn(H̃m) ∩
Ua(p) containing c̃m,n = fn(c̃m) is a proper disk in Ua(p) with ∂H̃m,n ⊂ ∂sideUa(p).

Then γ̃m,n = fn(γ̃m)∩ H̃m,n is the front curve of H̃m,n and γm,n = pr(γ̃m,n) is the

folding curve of Hm,n = pr(H̃m,n). Then cm,n = pr(c̃m,n) is a unique point of γm,n
closest to 0. Here we orient γ̃m = γ̃m,0 so that γ̃m,0 C

r−1-converges as oriented
curves to γ̃0 as m→∞. Suppose that γm,n has the orientation induced from that
on γ̃m,0 via pr ◦ fn. In particular, it follows that

(2.3) lim
m→∞

ϑ(γm,0) = ϑ(γ0).

We set dm,n = dist(cm,n, 0). By (2.1),

(2.4) dm,n = rn(d̃0t̃0λ
m + o(λm)).

There exist subsequences {mj}, {nj} of N and wλ/2 ≤ w0 ≤ w such that

(2.5) lim
j→∞

d̃0t̃0λ
mjrnj = w0.

If necessary taking subsequences of {mj} and {nj} simultaneously, we may also

assume that ϑ(γmj ,nj ) has a limit θ\. Since f(z) = re
√
−1θz on Da(p), by (2.2) we

have

κ(γmj ,nj ) ≤ r−njκ(γmj ,0) ≤ r−njκ0 → 0 as j →∞.
Thus the following lemma is obtained immediately.

Lemma 2.1. The sequence γmj ,nj
uniformly converges as oriented curves to an

oriented straight segment γ\0 in Da(p) with ϑ(γ\0) = θ\ and dist(γ\0, 0) = w0.

We say that γ\0 is the limit straight segment of γmj ,nj
.
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2.2. Limit straight segments preserved by the conjugacy. Let Ua′(p
′), Ub′(p

′)
be the circular columns defined as Ua(p) for some 0 < a′ < b′ which are contained
in a coordinate neighborhood around p′ with respect to which f ′ is linear. One can
retake a > 0 and choose such a′, b′ so that Ua′(p

′) ⊂ h(Ua(p)) ⊂ Ub′(p′).
Let H̃ ′m,n be the component of h(H̃m,n)∩Ua′(p′) defined as H̃m,n and pr(H̃ ′m,n) =

H ′m,n. One can define the front and folding curves γ̃′m,n, γ′m,n in H̃ ′m,n and H ′m,n
as γ̃m,n, γm,n in H̃m,n and Hm,n respectively. See Figure 2.1.

Figure 2.1. The image h(H̃(j)) is contained in Ĥ ′(j), but h(H̃±(j))

is not necessarily contained in Ĥ ′±(j).

Since h is only supposed to be a homeomorphism, h(γ̃m,n)∩Ua′(p′) would not be
equal to γ̃′m,n. We will show that this equality holds in the limit. For the sequences

{mj}, {nj} given in Section 2, we set H̃mj ,nj
= H̃(j), Hmj ,nj

= H(j), H̃
′
mj ,nj

= H̃ ′(j)

and H ′mj ,nj
= H ′(j) for simplicity. Similarly, suppose that Ĥ ′(j) is the component of

Wu(p′)∩Ub′(p′) containing H̃ ′(j) and γ̂′mj ,n1
is the front curve of Ĥ ′(j). The distance

between x, y in Ua(p) is denoted by d(x,y) and that between x′, y′ in Ua′(p
′) by

d′(x′,y′).

The path metric on H̃(j) is denoted by dH̃(j)
. That is, for any x, y ∈ H̃(j),

dH̃(j)
(x,y) is the length of a shortest piecewise smooth curve in H̃(j) connecting x

with y. The path metrics dH̃′
(j)

on H̃ ′(j) and dĤ′
(j)

on Ĥ ′(j) are defined similarly.

Lemma 2.2. (i) For any ε > 0, there exists a constant η(ε) > 0 independent of
j ∈ N and satisfying the following conditions.
• limε→0 η(ε) = 0.

• Let x, y be any points of H̃(j) both of which are contained in one of H̃+
(j)

and H̃−(j). If d(x,y) < η(ε), then dH̃(j)
(x,y) < ε.

(ii) For any ε > 0, there exists a constant δ(ε) > 0 independent of j ∈ N and
satisfying the following conditions.
• limε→0 δ(ε) = 0.
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• Let x, y be any points of H̃(j) both of which are contained in one of

H̃+
(j) and H̃−(j). If dH̃(j)

(x,y) < δ(ε) and x′ = h(x) and y′ = h(y) are

contained in H̃ ′(j), then dH̃′
(j)

(x′,y′) < ε.

One can take these constants η(ε), δ(ε) so that they work also for dH̃′
(j)

and

dĤ′
(j)

.

Proof. (i) The assertion is proved immediately from the fact that H̃±(j) uniformly

converges to a disk H\ in Da(p) such that d(x,y) = dH\(x,y) for any x,y ∈ H\.

(ii) Suppose that x,y ∈ H̃+
(j). First we consider the case that both x′ and y′ are

contained in one of H̃ ′+(j) and H̃ ′−(j), say H̃ ′+(j). If dH̃′
(j)

(x′,y′) ≥ ε, then it follows from

the assertion (i) that d′(x′,y′) ≥ η(ε). Since h is uniformly continuous on Ua(p),
there exists a constant δ1(ε) > 0 with limε→0 δ1(ε) = 0 and d(x,y) ≥ δ1(ε). Hence,
in particular, dH̃(j)

(x,y) ≥ δ1(ε). Thus dH̃(j)
(x,y) < δ1(ε) implies dH̃′

(j)
(x′,y′) <

ε.
Next we suppose that x′ ∈ H̃ ′+(j) and y′ ∈ H̃ ′−(j). Consider a shortest curve α in

H̃(j) connecting x and y. Since α′ = h(α) is contained in Ĥ ′(j), α
′ intersects γ̂′mj ,nj

non-trivially. Let z be one of the intersection points of α with h−1(γ̂′mj ,nj
). See

Figure 2.2. Suppose that dH̃(j)
(x,y) < δ1(ε/2). Since dH̃(j)

(x,y) = dH̃(j)
(x, z) +

Figure 2.2. The case of x,y ∈ H̃+
(j), x

′ ∈ H̃ ′+(j) and y′ ∈ H̃ ′−(j).

dH̃(j)
(z,y),

dH̃(j)
(x, z) < δ1(ε/2) and dH̃(j)

(z,y) < δ1(ε/2).

Since x′, z′ ∈ Ĥ ′+(j) and z′,y′ ∈ Ĥ ′−(j), by the result in the previous case we have

dĤ′
(j)

(x′, z′) < ε/2 and dĤ′
(j)

(z′,y′) < ε/2, and hence

dH̃′
(j)

(x′,y′) = dĤ′
(j)

(x′,y′) < ε.

Thus δ(ε) := δ1(ε/2) satisfies the conditions of (ii). �

The following result is a key of this paper.
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Lemma 2.3. For any ε > 0, there exists j0 ∈ N such that, for any j ≥ j0,

h(γ̃mj ,nj ) ∩ H̃ ′(j) ⊂ Nε(γ̃
′
mj ,nj

, H̃ ′(j)),

where Nε(γ̃′mj ,nj
, H̃ ′(j)) is the ε-neighborhood of γ̃′mj ,nj

in H̃ ′(j).

Figure 2.3 illustrates the situation of Lemma 2.3.

Figure 2.3. The shaded region represents Nε(γ̃′mj ,nj
, H̃ ′(j)).

Proof. For σ = ±, we will show that h−1(H̃ ′σ(j) \ Nε(γ
′
mj ,nj

, H̃ ′(j))) ⊂ H̃σ
(j) for all

sufficiently large j. Since h−1|Ua′ (p
′) is uniformly continuous, there exists ν(ε) > 0

such that, for any x′,y′ ∈ Ua′(p′) with d′(x′,y′) < ν(ε), the inequality d(x,y) <

η(δ(ε)) holds, where x = h−1(x′), y = h−1(y′). Since both H̃ ′+(j) and H̃ ′−(j) uniformly

converge to the same half disk H ′\ in Da′(p
′), there exists j0 ∈ N such that, for

any j ≥ j0 and any x′ ∈ H̃ ′σ(j) \ Nε(γ̃
′
(j), H̃

′
(j)), d

′(x′,y′) is less than ν(ε), where

y′ is the element of H̃ ′−σ(j) with pr(x′) = pr(y′). Then we have d(x,y) < η(δ(ε)).

If both x and y were contained in one of H̃σ
(j) and H̃−σ(j) , then by Lemma 2.2 (i)

dH̃(j)
(x,y) < δ(ε). Then, by Lemma 2.2 (ii), dH̃′

(j)
(x′,y′) would be less than ε. This

contradicts that x′ ∈ H̃ ′σ(j) \Nε(γ̃
′
mj ,nj

, H̃ ′(j)) and y′ ∈ H̃ ′−σ(j) . See Figure 2.4. Thus,

if y is contained in H̃σ
(j), then x is not in H̃σ

(j). In particular, x is not contained

in γ̃mj ,nj
= H̃+

(j) ∩ H̃
−
(j), and so γ̃mj ,nj

∩ h−1(H̃ ′σ(j) \ Nε(γ̃
′
m,n, H̃

′
(j))) = ∅. Since

h−1(H̃ ′σ(j)\Nε(γ̃
′
m,n, H̃

′
(j))) is connected, it follows that h−1(H̃ ′σ(j)\Nε(γ̃

′
m,n, H̃

′
(j))) ⊂

H̃σ
(j) for σ = ±, and hence h−1(Nε(γ̃′mj ,nj

, H̃ ′(j))) ⊃ γ̃mj ,nj ∩ h−1(H̃ ′(j)). This

completes the proof. �

From the proof of Lemma 2.3, we know that there exists a simple curve in

h(γ̃mj ,nj )∩ H̃ ′(j) connecting the two components of ∂H̃ ′(j) ∩ ∂Nε(γ̃
′
mj ,nj

, H̃ ′(j)). The

following corollary says that the images of certain straight segments in Da(p) by
the homeomorphism h are naturally straight segments in Da′(p

′).

Corollary 2.4. For the limit straight segment γ\0 of γmj ,nj
, h(γ\0) ∩Da′(p

′) is the

limit straight segment of γ′mj ,nj
, i.e. h(γ\0) ∩Da′(p

′) = γ′ \0 .



12 SHINOBU HASHIMOTO, SHIN KIRIKI, AND TERUHIKO SOMA

Figure 2.4. The situation which does not actually occur. d1 :=
dist(x′,y′) < ν(ε), d2 := distH̃(j)

(x,y) < δ(ε) and d3 :=

distH̃′
(j)

(x′,y′) < ε.

Proof. Since γ\0 is the limit straight segment of γ̃mj ,nj
and h is uniformity contin-

uous, h(γ\0) ∩ Da′(p
′) is the limit of h(γ̃mj ,nj

) ∩ H̃ ′(j). It follows from Lemma 2.3

that h(γ\0)∩Da′(p
′) is also the limit of pr(γ̃′mj ,nj

) = γ′mj ,nj
, that is, h(γ\0)∩Da′(p

′)

is equal to the limit straight segment of γ′mj ,nj
. �

For any straight segment l in Da(p) such that h(l) is also a straight segment in
Db′(p

′), we denote h(l)∩Da′(p
′) simply by h(l). In particular, Corollary 2.4 implies

that h(γ\0) = γ′ \0 .

3. Proof of Theorem A

Suppose that Sta(p) is the set of oriented proper straight segments in Da(p)
passing through 0, that is, each element of Sta(p) is an oriented diameter of the
disk Da(p). For any l ∈ Sta(p) and n ∈ N, the component of fn(l)∩Ua(p) containing
0 is also an element of Sta(p). We denote the element simply by fn(l).

Since fn|Da(p) preserves angles on Da(p), by (2.3), for any k, n ∈ N,

ϑ(γm,n)− ϑ(γm+k,n) = ϑ(γm,0)− ϑ(γm+k,0)→ ϑ(γ0)− ϑ(γ0) = 0

as m→∞. Moreover it follows from (2.4) that limj→∞ dmj+k,nj
= w0λ

k. By these
facts together with Lemma 2.1, one can show that γmj+k,nj uniformly converges as

m→∞ to a straight segment γ\k in Ua(p) with

(3.1) ϑ(γ\k) = θ\ and d(0, γ\k) = w0λ
k.

Thus we have obtained the parallel family {γ\k} of oriented straight segments in

Da(p). See Figure 3.1. By Corollary 2.4, {γ′ \k } with γ′ \k = h(γ\k) is also a parallel

family of oriented straight segments in Da′(p
′). Since γ′\k is the limit of γ′mj+k,nj

as

j →∞, we have the equations

(3.2) ϑ(γ′ \k ) = θ′ \ and d(0, γ′ \k ) = w′0λ
′k.
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Figure 3.1. The images of the parallel straight segments γ\k in
Da(p) by h.

corresponding to (3.1) for some θ′ \ and w′0 > 0. Let γ\∞ ∈ Sta(p) (resp. γ′ \∞ ∈
Sta′(p

′)) be the limit of γ\k (resp. γ′ \k ).

Proof of Theorem A. By Lemma 2.1 and (2.4), w0 = limj→∞ d̃0t̃0λ
mjrnj . This

implies that

lim
j→∞

(
mj

nj
log λ+ log r

)
= lim
j→∞

1

nj
log

w0

d̃0t̃0
= 0

and hence limj→∞
mj

nj
= − log r

log λ
. Applying the same argument to γ′ \mj ,nj

, we also

have limj→∞
mj

nj
= − log r′

log λ′
. This shows the part (1) of Theorem A.

Now we will prove the part (2). For any n ∈ N∪{0}, we set fn(γ\∞) = γ\∞,n and

f ′n(γ′ \∞) = γ′ \∞,n. By Corollary 2.4,

(3.3) h(γ\∞,n) = h(fn(γ\∞)) = f ′n(h(γ\∞)) = f ′n(γ′ \∞) = γ′ \∞,n.

We identify Sta(p) with the unit circle S1 = {z ∈ C ; |z| = 1} by corresponding

l ∈ Sta(p) to e
√
−1ϑ(l). Then the action of f on Sta(p) is equal to the θ-rotation Rθ

on S1 defined by Rθ(z) = e
√
−1θz.

If θ/2π = v/u for coprime positive integers u, v with 0 ≤ v < u. Since
h(γ\∞) = γ′ \∞, we have f ′k(γ′ \∞) 6= γ′ \∞ for k = 1, . . . , u − 1 and f ′u(γ′ \∞) = γ′ \∞.
This implies that θ′/2π = v′/u for some v′ ∈ N with 0 ≤ v′ < u. Since h|Da(p) :

Da(p) → Da′(p
′) is a homeomorphism with the correspondence h(Rkθ (γ\∞)) =

Rkθ′(γ
′\
∞) (k = 0, 1, . . . , u−1), there exists an orientation-preserving homeomorphism

η0 : S1 → S1 with η0(e
√
−1(θ\+kθ)) = e

√
−1(θ′\+kθ′) for k = 0, 1, . . . , u − 1. We set

Γ =
{
e
√
−1(θ\+kθ); k = 0, 1, . . . , u−1

}
and Γ′ =

{
e
√
−1(θ′\+kθ′); k = 0, 1, . . . , u−1

}
.

Then
[
e
√
−1θ\ , e

√
−1(θ\+θ)) ∩ Γ consists of v points, where [a, b) denotes the posi-

tively oriented half-open interval in S1 for a, b ∈ S1 with a 6= b. Since moreover

η0
([
e
√
−1θ\ , e

√
−1(θ\+θ)) ∩ Γ

)
=
[
e
√
−1θ′\ , e

√
−1(θ′\+θ′)) ∩ Γ′ consists of v′ points, it

follows that v = v′, and hence θ = θ′.
Next we suppose that θ/2π is irrational. Then, for any l ∈ Sta(p), there exists

a subsequence {nk} of N such that the sequence γ\∞,nk
uniformly converges to l as
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k → ∞. By (3.3), γ′ \∞,nk
uniformly converges to l′ = h(l). Since γ′ \∞,nk

∈ Sta′(p
′),

l′ is also an element of Sta′(p
′). Thus we have a homeomorphism η : S1 → S1 with

respect to which Rθ and Rθ′ are conjugate. Since the rotation number is invariant
under topological conjugations, θ/2π = θ′/2π mod 1 holds. This completes the
proof of the part (2). �

4. Proof of Theorem B

In this section, we will prove Theorem B. Suppose that f, f ′ are elements of
Diffr(M) satisfying the conditions of Theorems A and θ/2π is irrational.

Since θ = θ′ mod 2π, for any k, j ∈ N,

(4.1) ϑ(γ\∞,k)− ϑ(γ\∞,j) = ϑ(γ′ \∞,k)− ϑ(γ′ \∞,j) = (k − j)θ mod 2π.

Let lj (j = 1, 2) be any elements of Sta(p). As in the proof of Theorem A, there exist
subsequences {nk}, {nj} of N such that the sequencers {γ\∞,nk

}, {γ\∞,nj
} uniformly

converge to l1 and l2 respectively. Then, {γ′ \∞,nk
}, {γ′ \∞,nj

} also uniformly converge

to the elements l′1 = h(l1) and l′2 = h(l2) of Sta′(p
′) respectively. Then, by (4.1),

(4.2) ϑ(l2)− ϑ(l1) = ϑ(l′2)− ϑ(l′1) mod 2π.

For the proof of Theorem B, we need another family of straight segments in
Da(p). Fix an integer a0 with

a0 > max

{
log(2r)

log(λ−1)
,

log(2r′)

log(λ′−1)

}
.

For any k ≥ 0, we consider the straight segment ξ\k = fk(γ\a0k) ∩Da(p). By (3.1),

(4.3) ϑ(ξ\k)− ϑ(ξ\0) = kθ mod 2π and d(0, ξ\k) = w0λ
a0krk < 2−kw0.

Similarly, by (3.2), ξ′ \k = h(ξ\k) is a straight segment in Da′(p
′) with

(4.4) ϑ(ξ′ \k )− ϑ(ξ′ \0 ) = kθ mod 2π and d(0, ξ′ \k ) = w′0λ
′a0kr′k < 2−kw′0.

Proof of Theorem B. Let α be the element of Sta(p) with ϑ(ξ\0)− ϑ(α) = π/2 and

α′ = h(α) ∈ Sta′(p
′). We will show that θα′ := ϑ(ξ′ \0 ) − ϑ(α′) is also equal to π/2

mod 2π. See Figure 4.1. In fact, since θ/2π is irrational, by (4.3) there exists a

Figure 4.1. Correspondence of straight segments via h.
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subsequence ξ\kj uniformly converges to α. Since h|Da(p) is uniformly continuous, ξ′ \kj
also uniformly converges to α′. On the other hand, since ϑ(ξ\kj )−ϑ(α) = kjθ+π/2

mod 2π and ϑ(ξ′ \kj )− ϑ(α′) = kjθ + θα′ mod 2π,

θα′ −
π

2
=
(
ϑ(ξ′ \kj )− ϑ(α′)

)
−
(
ϑ(ξ\kj )− ϑ(α)

)
→ 0 mod 2π

as j →∞. Thus we have θα′ = π/2 mod 2π.
We denote by z(x) ∈ C the entry of x ∈ Da(p) with respect to the linearizing

coordinate on Da(p). Similarly, the entry of x′ ∈ Da′(p
′) is denoted by z′(x′).

Let x0 be the intersection point of α and ξ\0, and let x′0 = h(x0). One can set

z(x0) = ρ0e
√
−1ω0 and z′(x′0) = ρ′0e

√
−1ω′0 for some ρ0 > 0, ρ′0 > 0 and ω0, ω′0 ∈ R.

We define the new linearizing coordinate on Da′(p
′) by using the linear conformal

map such that, for any x′ ∈ Da′(p
′), z′ new(x′) = ρ0ρ

′−1
0 e

√
−1(ω0−ω′0)z′(x′). Then

z(x0) = z′ new(x′0) holds.

For any x ∈ ξ\0, there exists l ∈ Sta(p) with {x} = ξ\0 ∩ l. Then x′ = h(x) is the

intersection of ξ′ \0 and l′ = h(l). By (4.2), ϑ(l)− ϑ(α) = ϑ(l′)− ϑ(α′) mod 2π and

hence z(x) = z′ new(x′). We say the property that h is identical on ξ\0. Since θ/2π
is irrational, there exists k∗ ∈ N satisfying

π

3
≤ ϑ(ξ\k∗)− ϑ(ξ\0) ≤ π

2
mod 2π.

Then ξ\k∗ meets ξ\0 at a single point xk∗ in Da(p). For αk∗ = fk∗(α) and α′k∗ =

h(αk∗), we have ϑ(ξ\k∗) − ϑ(αk∗) = ϑ(ξ′ \k∗) − ϑ(α′k∗) = π/2. Since h is identical at

xk∗ , h is proved to be identical on ξ\k∗ by an argument as above. Then one can show

inductively that, for any n ∈ N, h is identical on ξ\nk∗ . See Figure 4.2. By (4.3),

Figure 4.2. Correspondence via h with respect to the new coor-
dinate on Da′(p

′).

limn→∞ d(0, ξ\nk∗) = 0. Since moreover k∗θ/2π is irrational,
⋃∞
n=1 ξ

\
nk∗

is equal to

Da(p). This shows that h is identical on Da(p). In particular, this implies that
h|Da(p) is a linear conformal map with respect to the original coordinates. We write

z(q) = ρ1e
√
−1ω1 and z′(q′) = ρ′1e

√
−1ω′1 . It follows from the assumption of h(q) = q′
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in our theorems that h(z) = ρ′1ρ
−1
1 e
√
−1(ω′1−ω1)z for any z ∈ C with |z| ≤ a. In

particular, this implies that h|Wu
loc(p)

is a linear conformal map. Let h̃ be any other

conjugacy homeomorphism between f and f ′ satisfying the conditions in Theorems

A and B. In particular, h̃(p) = p′ and h̃(q) = q′ hold. Since z(q) = ρ1e
√
−1ω1 and

z′(q′) = ρ′1e
√
−1ω′1 , one can show as above that h̃(z) = ρ′1ρ

−1
1 e
√
−1(ω′1−ω1)z for any

z ∈ C with |z| ≤ a and hence h̃|Da(p) = h|Da(p). This shows the assertion (2) of
Theorem B and r = r′. Then, by the assertion (1) of Theorem A, we also have
λ = λ′. This completes the proof. �

Let ẑ be the homoclinic transverse point of Wu(p) and W s(p) given in Subsection
1.1. Fix a sufficiently large n ∈ N with s = f−n(ẑ) ∈ Dp(a). Then s′ = h(s) is
contained in Db′(p

′). The following corollary shows that z(s)/z(q) is a modulus for
f . Recall that z(x) ∈ C is the entry of x with respect to the complex linearizing
coordinate on Da(a). The complex number z′(x′) is defined similarly for x′ ∈
Da′(p

′).

Corollary C. Let f , f ′ be elements of Diffr(M) satisfying the conditions of The-
orems A and B, and let h be a conjugacy homeomorphism between f and f ′ with
h(p) = p′ and h(q) = q′. If h|Wu

loc(p)
is orientation-preserving, then z(s)/z(q) =

z′(s′)/z′(q′). Otherwise, z(s)/z(q) = z′(s′)/z′(q′).

Proof. Here we only consider the case that h is orientation-preserving. Since
h|Da(p) is a linear conformal map, the triangle with vertices 0, z(q), z(s) is simi-
lar to that with vertices 0, z′(q′), z′(s′) with respect to Euclidean geometry. This
shows z(s)/z(q) = z′(s′)/z′(q′). �
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de champs de vecteurs, C. R. Math. Acad. Sci. Paris 334 (2002), no. 1, 53–58.

[GPvS] V. Z. Grines, O. V. Pochinka and S. J. van Strien, On 2-diffeomorphisms with one-
dimensional basic sets and a finite number of moduli, Mosc. Math. J. 16 (2016), no. 4,

727–749.
[Ha] S. Hashimoto, Moduli of surface diffeomorphisms with cubic tangencies, Tokyo J. Math. (to

appear).
[MP1] T. M Mitryakova and O. V. Pochinka, On necessary and sufficient conditions for the topo-

logical conjugacy of surface diffeomorphisms with a finite number of orbits of heteroclinic

tangency, Proc. Steklov Inst. Math. 270 (2010), no. 1, 194–215.



MODULI OF 3-DIMENSIONAL DIFFEOMORPHISMS 17

[MP2] T. M Mitryakova and O. V. Pochinka, Necessary and sufficient conditions for the topolog-

ical conjugacy of 3-diffeomorphisms with heteroclinic tangencies, Trans. Moscow Math. Soc.

(2016), 69–86.
[NPT] S. Newhouse, J. Palis and F. Takens, Bifurcations and stability of families of diffeomor-

phisms, Inst. Hautes Études Sci. Publ. Math. 57 (1983), 5–71.
[Ni] Y. Nishizawa, Existence of horseshoe sets with nondegenerate one-sided homoclinic tangencies

in R3, Hokkaido Math. J. 37 (2008), no. 1, 133–145.

[Pa] J. Palis, A differentiable invariant of topological conjugacies and moduli of stability, Dynam-
ical systems, Vol. III–Warsaw, pp. 335–346, Astérisque, No. 51, Soc. Math. France, Paris,
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