論文

査読有り 最終著者 国際誌
2020年12月

TRPA1 and TRPV1 channels participate in atmospheric-pressure plasma-induced [Ca2+]i response

Scientific Reports
  • Masayoshi Kawase
  • ,
  • Weijian Chen
  • ,
  • Kota Kawaguchi
  • ,
  • Mazvita R. Nyasha
  • ,
  • Shota Sasaki
  • ,
  • Hiroyasu Hatakeyama
  • ,
  • Toshiro Kaneko
  • ,
  • Makoto Kanzaki

10
1
開始ページ
9687
終了ページ
9687
記述言語
英語
掲載種別
研究論文(学術雑誌)
DOI
10.1038/s41598-020-66510-y
出版者・発行元
Springer Science and Business Media LLC

Despite successful clinical application of non-equilibrium atmospheric pressure plasma (APP), the details of the molecular mechanisms underlying APP-inducible biological responses remain ill-defined. We previously reported that exposure of 3T3L1 cells to APP-irradiated buffer raised the cytoplasmic free Ca2+ ([Ca2+]i) concentration by eliciting Ca2+ influx in a manner sensitive to transient receptor potential (TRP) channel inhibitors. However, the precise identity of the APP-responsive channel molecule(s) remains unclear. In the present study, we aimed to clarify channel molecule(s) responsible for indirect APP-responsive [Ca2+]i rises. siRNA-mediated silencing experiments revealed that TRPA1 and TRPV1 serve as the major APP-responsive Ca2+ channels in 3T3L1 cells. Conversely, ectopic expression of either TRPA1 or TRPV1 in APP-unresponsive C2C12 cells actually triggered [Ca2+]i elevation in response to indirect APP exposure. Desensitization experiments using 3T3L1 cells revealed APP responsiveness to be markedly suppressed after pretreatment with allyl isothiocyanate or capsaicin, TRPA1 and TRPV1 agonists, respectively. APP exposure also desensitized the cells to these chemical agonists, indicating the existence of a bi-directional heterologous desensitization property of APP-responsive [Ca2+]i transients mediated through these TRP channels. Mutational analyses of key cysteine residues in TRPA1 (Cys421, Cys621, Cys641, and Cys665) and in TRPV1 (Cys258, Cys363, and Cys742) have suggested that multiple reactive oxygen and nitrogen species are intricately involved in activation of the channels via a broad range of modifications involving these cysteine residues. Taken together, these observations allow us to conclude that both TRPA1 and TRPV1 channels play a pivotal role in evoking indirect APP-dependent [Ca2+]i responses.

リンク情報
DOI
https://doi.org/10.1038/s41598-020-66510-y
PubMed
https://www.ncbi.nlm.nih.gov/pubmed/32546738
PubMed Central
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297720
URL
http://www.nature.com/articles/s41598-020-66510-y.pdf
URL
http://www.nature.com/articles/s41598-020-66510-y
ID情報
  • DOI : 10.1038/s41598-020-66510-y
  • eISSN : 2045-2322
  • PubMed ID : 32546738
  • PubMed Central 記事ID : PMC7297720

エクスポート
BibTeX RIS