論文

査読有り
2020年

Multiscale simulation of proton transport in the catalyst layer with consideration of ionomer thickness distribution

ECS Transactions
  • T. Matsuda
  • ,
  • K. Kobayashi
  • ,
  • T. Mabuchi
  • ,
  • G. Inoue
  • ,
  • T. Tokumasu

98
9
開始ページ
187
終了ページ
196
記述言語
掲載種別
研究論文(国際会議プロシーディングス)
DOI
10.1149/09809.0187ecst

© The Electrochemical Society To spread polymer electrolyte fuel cells, improving the cell performance is required. The cell performance depends on various factors. One of the factors that lowers cell performance is proton transport resistance in catalyst layers. Catalyst layers have multiscale structures which influence on proton transport resistance. In this study, to investigate the relationship between structures of catalyst layers and cell performances, mass transport and chemical reactions are calculated in the 3D catalyst layer models. The information about the ionomer thickness dependence on the diffusion coefficient of protons based on the molecular dynamics simulation is introduced to transport calculation in order to analyze nanoscale structure influence on the cell performance. As a result, we have found that the output voltage increases over the whole range of current density with increasing ionomer/carbon ratio considering ionomer thickness dependence. This result suggests that the nanoscale structure in catalyst layer has a large influence on the cell performance. Furthermore, cell performance analysis with ionomer thickness distribution based on experimental values is conduced in this study. The result suggests that contribution of nanoscale proton transport characteristic increases by improving the ionomer distribution model.

リンク情報
DOI
https://doi.org/10.1149/09809.0187ecst
Scopus
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85092668094&origin=inward
Scopus Citedby
https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=85092668094&origin=inward
ID情報
  • DOI : 10.1149/09809.0187ecst
  • ISSN : 1938-6737
  • eISSN : 1938-5862
  • ISBN : 9781607689041
  • SCOPUS ID : 85092668094

エクスポート
BibTeX RIS