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Abstract
Let f : N2 7→ C be an arithmetic function of two variables. We study the existence
of the limit:

lim
x→∞

1

x2(log x)k−1

∑
n1,n2≤x

f(n1, n2)

where k is a fixed positive integer. Moreover, we express this limit as an infinite
product over all prime numbers in the case that f is a multiplicative function of
two variables. This study is a generalization of Cohen-van der Corput’s results to
the case of two variables.

1. Introduction

Let µ denote the the Möbius function and let µk = µ ∗ µ ∗ · · · ∗ µ︸ ︷︷ ︸
k

be the k−folded

Dirichlet convolution of µ, that is, µk(n) =
∑

d1d2···dk=n µ(d1)µ(d2) . . . µ(dk) for

every n. Cohen [2] proved that if f : N 7→ C is an arithmetic function satisfying∑∞
n=1 |(f ∗ µk)(n)|/n < ∞, then

lim
x→∞

1

x(log x)k−1

∑
n≤x

f(n) =
1

(k − 1)!

∞∑
n=1

(f ∗ µk)(n)

n
. (1.1)

Van der Corput [12] proved that if f : N 7→ C is a multiplicative function sat-

isfying
∏

p∈P(
∑∞

ν=0 |(f ∗ µk)(p
ν)|/pν) < ∞ where P is the set of prime numbers,

then

lim
x→∞

1

x(log x)k−1

∑
n≤x

f(n) =
1

(k − 1)!

∏
p∈P

(
1− 1

p

)k( ∞∑
ν=0

f(pν)

pν

)
. (1.2)

We would like to generalize these results to the case in which f is an arithmetic

function of two variables and obtain several interesting examples.



2

Let gcd(n1, n2) denote the greatest common divisor of n1 and n2, σ(n) the sum

of divisors of n, and φ(n) Euler’s totient function. Cohen [3] proved that∑
n1,n2≤x

σ(gcd(n1, n2)) = x2
(
log x+ 2γ − 1

2
− ζ(2)

2

)
+O(x

3
2 log x), (1.3)

∑
n1,n2≤x

φ(gcd(n1, n2)) =
x2

ζ2(2)

(
log x+2γ− 1

2
− ζ(2)

2
− 2ζ ′(2)

ζ(2)

)
+O(x

3
2 log x), (1.4)

where ζ(n) is the Riemann zeta function.

Next we consider two functions s and c, where s(n1, n2) =
∑

d1|n1,d2|n2
gcd(d1, d2)

and c(n1, n2) =
∑

d1|n1,d2|n2
φ(gcd(d1, d2)). Nowak and Tóth [4] proved that

∑
n1,n2≤x

s(n1, n2) =
2

π2
x2(log3 x+ a1 log

2 x+ a2 log x+ a3) + (x
1117
701 +ε), (1.5)

∑
n1,n2≤x

c(n1, n2) =
12

π4
x2(log3 x+ b1 log

2 x+ b2 log x+ b3) + (x
1117
701 +ε), (1.6)

where a1, a2, a3, b1, b2, b3 are explicit constants.

We would like to obtain these leading coefficients in (1.3) ∼ (1.6) by a systematic

method. We will calculate those leading coefficients in Example 3, 4, 7 and 8 in

Section 5. Although we cannot obtain remainder terms by our theorems, our method

for obtaining leading terms is very simple and is applicable to many arithmetic

functions of two variables.

2. Some Results

Let µ̃(n1, n2) denote the Dirichlet inverse of the gcd function, that is, µ̃ is the

function which satisfies (µ̃ ∗ gcd)(n1, n2) = δ(n1, n2) for every n1, n2 ∈ N, where
δ(n1, n2) = 1 or 0 according to whether n1 = n2 = 1 or not. Let x ∧ y denote

min(x, y). We first establish the following theorem.

Theorem 1. Let f be an arithmetic function of two variables satisfying

∞∑
n1,n2=1

|(f ∗ µ̃)(n1, n2)|
n1n2

< ∞. (2.1)

Then we have

lim
x,y→∞

1

xy log x ∧ y

∑
n1≤x,n2≤y

f(n1, n2) =
1

ζ(2)

∞∑
n1,n2=1

(f ∗ µ̃)(n1, n2)

n1n2
. (2.2)
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The proof of Theorem 1 will be given in the next section. To proceed to the next

theorem, we need some notations. Let

τk(n1, n2) = (1 ∗ 1 ∗ · · · ∗ 1︸ ︷︷ ︸
k

)(n1, n2)

stand for the k−folded Dirichlet convolution of the function 1, where 1(n1, n2) = 1

for every n1, n2 ∈ N. Let µk = τ−1
k denote the Dirichlet inverse of τk. Note that

µ1(n1, n2) = µ(n1)µ(n2). Similarly, let

τ̃1(n1, n2) = gcd(n1, n2),

τ̃k(n1, n2) = (1 ∗ 1 ∗ · · · ∗ 1︸ ︷︷ ︸
k−1

∗ gcd)(n1, n2) if k ≥ 2.

We also denote µ̃k = τ̃−1
k the Dirichlet inverse of τ̃k. Note that µ̃1 = µ̃ = gcd−1

and µ̃k = µk−1 ∗ µ̃ if k ≥ 2. The next theorem is an extension of Cohen’s theorem

(1.1) to the case in which f is an arithmetic function of two variables.

Theorem 2. Let f be an arithmetic function of two variables and let k ∈ N.
(i) Suppose

∞∑
n1,n2=1

|(f ∗ µk)(n1, n2)|
n1n2

< ∞. (2.3)

Then we have

lim
x,y→∞

1

xy(log x log y)k−1

∑
n1≤x,n2≤y

f(n1, n2) = Ck

∞∑
n1,n2=1

(f ∗ µk)(n1, n2)

n1n2
, (2.4)

where Ck =
1

((k − 1)!)2
.

(ii) Suppose
∞∑

n1,n2=1

|(f ∗ µ̃k)(n1, n2)|
n1n2

< ∞. (2.5)

Then we have

lim
x→∞

1

x2(log x)2k−1

∑
n1,n2≤x

f(n1, n2) = C̃k

∞∑
n1,n2=1

(f ∗ µ̃k)(n1, n2)

n1n2
, (2.6)

where C̃k =
1

ζ(2)

1

((k − 1)!)2(2k − 1)
.

Remark. In part (ii), we do not deal with:

limx,y→∞(xy(log x log y)k−1 log x∧y)−1
∑

n1≤x,n2≤y f(n1, n2) since it is too compli-

cated and we cannot obtain a simple formula.

The proof of Theorem 2 will also be given in the next section.
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3. Proof of Theorem 1 and Theorem 2

The following lemma is well known (cf. Cohen [2]) and will be needed later.

Lemma 1. For fixed α ≥ 0 and all x, we have∑
n≤x

logα n

n
=

logα+1 x

α+ 1
+O(1). (3.1)

It is also well known that
∑

n1,n2≤x gcd(n1, n2) = x2 log x/ζ(2) + cx2 + o(x2),

where c is a suitable constant (cf. Cesàro [1]). We would like to modify this

formula as follows.

Lemma 2.

lim
x,y→∞

1

xy log x ∧ y

∑
n1≤x,n2≤y

gcd(n1, n2) =
1

ζ(2)
. (3.2)

Proof. Let

A(x, y) = #{(n1, n2) : 1 ≤ n1 ≤ x, 1 ≤ n2 ≤ y, gcd(n1, n2) = 1}

=
∑

n1≤x,n2≤y

µ2((gcd(n1, n2))
2).

Applying Theorem 7 in Ushiroya [11] to the function µ2((gcd(n1, n2))
2) we have

lim
x,y→∞

1

xy
A(x, y) =

1

ζ(2)
.

From this we have ∑
n1≤x,n2≤y

gcd(n1, n2)

=
∑

1≤d≤x∧y

d #{(n1, n2); 1 ≤ n1 ≤ x, 1 ≤ n2 ≤ y, gcd(n1, n2) = d}

=
∑

1≤d≤x∧y

d #{(n
′

1, n
′

2); 1 ≤ n
′

1 ≤ x

d
, 1 ≤ n

′

2 ≤ y

d
, gcd(n

′

1, n
′

2) = 1}

=
∑

1≤d≤x∧y

dA(
x

d
,
y

d
) =

∑
1≤d≤x∧y

d
( 1

ζ(2)

x

d

y

d
+ o(

x

d

y

d
)
)

=
1

ζ(2)
xy log x ∧ y + o(xy log x ∧ y),

which implies (3.2).

Lemma 3. Let a(n1, n2) be an arithmetic function of two variables satisfying∑∞
n1,n2=1 |a(n1, n2)| < ∞. Then we have

lim
x,y→∞

1

log x ∧ y

∑
n1≤x,n2≤y

a(n1, n2) log
x

n1
∧ y

n2
=

∞∑
n1,n2=1

a(n1, n2). (3.3)
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Proof. We put M =
∑∞

n1,n2=1 a(n1, n2). Then for any ε > 0, there exists N > 0

such that
∣∣∣∑n1,n2<N a(n1, n2)−M

∣∣∣ < ε. If we take x and y sufficiently large such

that x ∧ y > N , then we have∑
n1≤x,n2≤y

a(n1, n2) log
x

n1
∧ y

n2
=

∑
n1,n2<N

a(n1, n2)
(
log

x

n1
∧ y

n2
− log x ∧ y

)
+ log x ∧ y

∑
n1,n2<N

a(n1, n2) +
∑

n1≤x,n2≤y
n1∧n2≥N

a(n1, n2) log
x

n1
∧ y

n2
=: I1 + I2 + I3,

where

I1 ≪
(

sup
n1,n2<N

log
∣∣∣ x
n1

∧ y
n2

x ∧ y

∣∣∣) ∑
n1,n2<N

a(n1, n2) ≪ logN,

|I2 −M log x ∧ y| < ε log x ∧ y,

and

I3 ≪ log x ∧ y
∑

n1≤x,n2≤y
n1∧n2≥N

a(n1, n2) ≪ ε log x ∧ y.

Therefore we have

lim sup
x,y→∞

∣∣∣ 1

log x ∧ y

∑
n1≤x, n2≤y

a(n1, n2) log
x

n1
∧ y

n2
−M

∣∣∣≪ 2ε.

Since ε is arbitrary, (3.3) holds.

Now we can prove Theorem 1.

Proof of Theorem 1. We put g = f ∗ µ̃. Noting that µ̃ ∗ τ̃1 = δ we have∑
n1≤x,n2≤y

f(n1, n2) =
∑

n1≤x,n2≤y

(f ∗ µ̃ ∗ τ̃1)(n1, n2) =
∑

n1≤x,n2≤y

(g ∗ τ̃1)(n1, n2)

=
∑

d1δ1≤x, d2δ2≤y

g(d1, d2)τ̃(δ1, δ2) =
∑

n1≤x,n2≤y

g(n1 , n2)
∑

δ1≤ x
n1

,δ2≤ y
n2

τ̃1(δ1, δ2).

From Lemma 2 we see that this equals∑
n1≤x,n2≤y

g(n1, n2)
{ 1

ζ(2)

x

n1

y

n2
log(

x

n1
∧ y

n2
) + o

( x
n1

y

n2
log(

x

n1
∧ y

n2
)
)}

.

Applying Lemma 3 to the function a(n1, n2) = g(n1, n2)/n1n2, we see that the

above equals

xy log x ∧ y

ζ(2)

∞∑
n1,n2=1

g(n1, n2)

n1n2
+ o(xy log x ∧ y),

which implies (2.2). Thus the proof of Theorem 1 is now complete.
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Next we prove several lemmas needed later.

Lemma 4.
∑

n1≤x,n2≤y

log n1 ∧ n2 = xy log x ∧ y + o(xy log x ∧ y).

Proof. Without loss of generality, we may assume that y ≤ x. Let [x] denote the

greatest integer that is less than or equal to x. Using the well known formula∑
1≤n≤x log n = x log x− x+O(log x), we have∑

n1≤x,n2≤y

log n1 ∧ n2 =
∑
n2≤y

( n2∑
n1=1

log n1 +

[x]∑
n1=n2+1

log n2

)
=
∑
n2≤y

(
n2 log n2 − n2 +O(log n2) + ([x]− n2) log n2

)
=
∑
n2≤y

(
[x] log n2 − n2 +O(log n2)

)
= [x](y log y − y +O(log y)) +O(y2)

= xy log x ∧ y + o(xy log x ∧ y).

Lemma 5.
∑

n1,n2≤x

log n1 ∧ n2

n1n2
=

1

3
(log x)3 + o((log x)3).

Proof. Using Lemma 1 we have∑
n1,n2≤x

log n1 ∧ n2

n1n2
=
∑
n2≤x

( ∑
n1≤n2

log n1

n1n2
+

∑
n2<n1≤x

log n2

n1n2

)

=
∑
n2≤x

( (log n2)
2 +O(1)

2n2
+

log n2(log x− log n2 +O(1))

n2

)
=

1

6
(log x)3 +

1

2
(log x)3 − 1

3
(log x)3 + o((log x)3) =

1

3
(log x)3 + o((log x)3).

Lemma 6. For fixed α, β ≥ 0 and all x, we have∑
n1,n2≤x

(log n1)
α(log n2)

β log x
n1

∧ x
n2

n1n2
=

(log x)α+β+3

(α+ 1)(β + 1)(α+ β + 3)

+ o
(
(log x)α+β+3

)
. (3.4)

Proof. Using Lemma 1 we see that the left side of (3.4) equals

∑
n2≤x

( ∑
n1≤n2

(log n1)
α(log n2)

β log x
n2

n1n2
+

∑
n2<n1≤x

(log n1)
α(log n2)

β log x
n1

n1n2

)
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=
∑
n2≤x

( ∑
n1≤n2

(log n1)
α(log n2)

β(log x− log n2)

n1n2

+
∑

n2<n1≤x

(log n1)
α(log n2)

β(log x− log n1)

n1n2

)
=
∑
n2≤x

( ((logn2)
α+1 +O(1))(log n2)

β(log x− log n2)

(α+ 1)n2

+
((log x)α+1 − (log n2)

α+1 +O(1))(log n2)
β log x

(α+ 1)n2

− ((log x)α+2 − (log n2)
α+2 +O(1))(log n2)

β

(α+ 2)n2

)
=
∑
n2≤x

( 1

α+ 1
− 1

α+ 2

) (log x)α+2(log n2)
β − (log n2)

α+β+2

n2
+ o
(
(log x)α+β+3

)
=

1

(α+ 1)(α+ 2)

( (log x)α+β+3

β + 1
− (log x)α+β+3

α+ β + 3

)
+ o
(
(log x)α+β+3

)
=

(log x)α+β+3

(α+ 1)(β + 1)(α+ β + 3)
+ o
(
(log x)α+β+3

)
.

This proves Lemma 6.

The next lemma gives a partial summation formula in the case of a function of

two variables.

Lemma 7. Let a(n1, n2) be an arithmetic function of two variables and

let M(x, y) =
∑

n1≤x,n2≤y a(n1, n2). Then we have∑
n1≤x,n2≤y

a(n1, n2)

n1n2
=
∑
n1≤x
n2≤y

M(n1, n2)

n1(n1 + 1)n2(n2 + 1)
+
∑
n1≤x

M(n1, y)

n1(n1 + 1)([y] + 1)

+
∑
n2≤y

M(x, n2)

n2(n2 + 1)([x] + 1)
+

M(x, y)

([x] + 1)([y] + 1)
, (3.5)

where [x] is the greatest integer that is less than or equal to x.

Proof. We put M(x.y) = 0 if x < 1 or y < 1 for convenience. Then we see that the

left side of (3.5) equals∑
n1≤x,n2≤y

M(n1, n2)−M(n1 − 1, n2)−M(n1, n2 − 1) +M(n1 − 1, n2 − 1)

n1n2

=
∑

n1≤x,n2≤y

M(n1, n2)
{ 1

n1n2
− 1

(n1 + 1)n2
− 1

n1(n2 + 1)
+

1

(n1 + 1)(n2 + 1)

}



8

+
∑
n2≤y

M(x, n2)

([x] + 1)n2
+
∑
n1≤x

M(n1, y)

n1([y] + 1)
−
∑
n1≤x

M(n1, y)

(n1 + 1)([y] + 1)

−
∑
n2≤y

M(x, n2)

([x] + 1)(n2 + 1)
+

M(x, y)

([x+ 1] + 1)([y] + 1)

=
∑

n1≤x,n2≤y

M(n1, n2)
1

n1(n1 + 1)n2(n2 + 1)
+
∑
n2≤y

M(x, n2)

([x] + 1)

( 1

n2
− 1

n2 + 1

)
+
∑
n1≤x

M(n1, y)

([y] + 1)

( 1

n1
− 1

n1 + 1

)
+

M(x, y)

([x] + 1)([y] + 1)
,

which equals the right side of (3.5).

The next lemma is an extension of Proposition 5 in van der Corput [12] to the

case of arithmetical functions of two variables.

Lemma 8. Let a, b be arithmetical functions of two variables and let c = a ∗ b.
For α, β ≥ 0, we assume that

lim
x,y→∞

1

xy(log x)α(log y)β

∑
n1≤x,n2≤y

a(n1, n2) = A,

where A is a constant.

(i) If lim
x,y→∞

1

xy

∑
n1≤x,n2≤y

b(n1, n2) = B, where B is a constant, then

lim
x→∞

1

xy(log x)α+1(log y)β+1

∑
n1≤x,n2≤y

c(n1, n2) =
AB

(α+ 1)(β + 1)
. (3.6)

(ii) If lim
x,y→∞

1

xy log x ∧ y

∑
n1≤x,n2≤y

b(n1, n2) = B, where B is a constant, then

lim
x→∞

1

x2(log x)α+β+3

∑
n1,n2≤x

c(n1, n2) =
AB

(α+ 1)(β + 1)(α+ β + 3)
. (3.7)

Proof. We first prove (i). We have∑
n1≤x,n2≤y

c(n1, n2) =
∑

n1≤x,n2≤y

(a ∗ b)(n1, n2) =
∑

ℓ1m1≤x, ℓ2m2≤y

a(ℓ1, ℓ2)b(m1,m2)

=
∑

ℓ1m1≤x, ℓ2m2≤y

a(ℓ1, ℓ2)
(
b(m1,m2)−B

)
+B

∑
ℓ1m1≤x, ℓ2m2≤y

(
a(ℓ1, ℓ2)−A(log ℓ1)

α(log ℓ2)
β
)
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+AB
∑

ℓ1m1≤x, ℓ2m2≤y

(log ℓ1)
α(log ℓ2)

β =: I1 + I2 + I3,

where, by Lemma 7 and Lemma 1,

I1 =
∑

ℓ1≤x,ℓ2≤y

a(ℓ1, ℓ2)
∑

m1≤x/ℓ1
m2≤y/ℓ2

(
b(m1,m2)−B

)
=

∑
ℓ1≤x,ℓ2≤y

a(ℓ1, ℓ2) o
( xy

ℓ1ℓ2

)

= o
(
xy

∑
ℓ1≤x,ℓ2≤y

Aℓ1ℓ2(log ℓ1)
α(log ℓ2)

β

ℓ1(ℓ1 + 1)ℓ2(ℓ2 + 1)

)
= o(xy(log x)α+1(log y)β+1),

I2 = B
∑

ℓ1≤x,ℓ2≤y

(
a(ℓ1, ℓ2)−A(log ℓ1)

α(log ℓ2)
β
) ∑
m1≤x/ℓ1,m2≤y/ℓ2

1

= B
∑

ℓ1≤x,ℓ2≤y

xy

ℓ1ℓ2

(
a(ℓ1, ℓ2)−A(log ℓ1)

α(log ℓ2)
β
)

= B
∑

ℓ1≤x,ℓ2≤y

xy
o
(
ℓ1ℓ2(log ℓ1)

α(log ℓ2)
β
)

ℓ1(ℓ1 + 1)ℓ2(ℓ2 + 1)
= o
(
xy(log x)α+1(log y)β+1

)
,

and

I3 = AB
∑

ℓ1≤x,ℓ2≤y

(log ℓ1)
α(log ℓ2)

β
∑

m1≤x/ℓ1,m2≤y/ℓ2

1

= AB
∑

ℓ1≤x,ℓ2≤y

xy

ℓ1ℓ2
(log ℓ1)

α(log ℓ2)
β

=
AB

(α+ 1)(β + 1)
xy(log x)α+1(log y)β+1 + o

(
xy(log x)α+1(log y)β+1

)
.

Therefore (3.6) holds. This proves (i).

Next we prove (ii). Similarly we have∑
n1, n2≤x

c(n1, n2) =
∑

ℓ1m1≤x, ℓ2m2≤x

a(ℓ1, ℓ2) b(m1,m2)

=
∑

ℓ1m1≤x,ℓ2m2≤x

a(ℓ1, ℓ2)
(
b(m1,m2)−B logm1 ∧m2

)
+B

∑
ℓ1m1≤x,ℓ2m2≤x

(
a(ℓ1, ℓ2)−A(log ℓ1)

α(log ℓ2)
β
)
logm1 ∧m2

+AB
∑

ℓ1m1≤x,ℓ2m2≤x

(log ℓ1)
α(log ℓ2)

β logm1 ∧m2 =: J1 + J2 + J3.

Firstly we have

J1 =
∑

ℓ1,ℓ2≤x

a(ℓ1, ℓ2)
∑

m1≤x/ℓ1,m2≤x/ℓ2

(
b(m1,m2)−B logm1 ∧m2

)
=

∑
ℓ1,ℓ2≤x

a(ℓ1, ℓ2) o
( x

ℓ1

x

ℓ2
log

x

ℓ1
∧ x

ℓ2

)
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Since log x
k1

∧ x
k2

≤ log x, we have by Lemma 7 and Lemma 1

J1 ≪ o
(
x2 log x

) ∑
ℓ1,ℓ2≤x

|a(ℓ1, ℓ2)|
ℓ1ℓ2

= o
(
x2(log x)α+β+3

)
.

Secondly we have by Lemma 5

J2 = B
∑

m1,m2≤x

logm1 ∧m2

∑
ℓ1≤x/m1,ℓ2≤x/m2

(
a(ℓ1, ℓ2)−A(log ℓ1)

α(log ℓ2)
β
)

= B
∑

m1,m2≤x

(logm1 ∧m2) o
( x

m1

x

m2

(
log

x

m1

)α(
log

x

m2

)β)
= o
(
x2(log x)α+β

∑
m1,m2≤x

logm1 ∧m2

m1m2

)
= o
(
x2(log x)α+β · 1

3
(log x)3

)
= o
(
x2(log x)α+β+3

)
.

Thirdly we have by Lemma 4 and Lemma 6

J3 = AB
∑

ℓ1,ℓ2≤x

(log ℓ1)
α(log ℓ2)

β
∑

m1≤x/ℓ1,m2≤x/ℓ2

logm1 ∧m2

= AB
∑

ℓ1,ℓ2≤x

(log ℓ1)
α(log ℓ2)

β
( x

ℓ1

x

ℓ2
log

x

ℓ1
∧ x

ℓ2
+ o(

x

ℓ1

x

ℓ2
log

x

ℓ1
∧ x

ℓ2
)
)

= AB
x2(log x)α+β+3

(α+ 1)(β + 1)(α+ β + 3)
+ o
(
x2(log x)α+β+3

)
.

From these estimates we have∑
n1,n2≤x

c(n1, n2) = AB
x2(log x)α+β+3

(α+ 1)(β + 1)(α+ β + 3)
+ o(x2(log x)α+β+3).

Thus the proof of Lemma 8 is now complete.

Now we can prove Theorem 2.

Proof of Theorem 2. We first prove (i). We proceed by induction on k. If k = 1,

then (2.4) holds by Theorem 1 in Ushiroya [10]. Let k ≥ 2 and suppose that (2.4)

holds for k − 1 instead of k. We put g = f ∗ µk and h = g ∗ τk−1. Since

∞∑
n1,n2=1

|g(n1, n2)|
n1n2

=
∞∑

n1,n2=1

|h ∗ µk−1(n1, n2)|
n1n2

< ∞

holds by the induction hypothesis, we obtain

lim
x,y→∞

1

xy(log x log y)k−2

∑
n1≤x,n2≤y

h(n1, n2) = Ck−1

∞∑
n1,n2=1

g(n1, n2)

n1n2
.
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Since f = h ∗ 1, we have by taking a = h, b = 1 and α = β = k − 2 in Lemma 8(i)

lim
x,y→∞

1

xy(log x log y)k−1

∑
n1≤x,n2≤y

f(n1, n2)

=
1

(k − 1)2
Ck−1

∞∑
n1,n2=1

g(n1, n2)

n1n2
= Ck

∞∑
n1,n2=1

g(n1, n2)

n1n2
.

This proves (i).

Next we prove (ii). Similarly we proceed by induction on k. If k = 1, then (2.6)

holds by Theorem 1. Let k ≥ 2 and suppose that (2.6) holds for k− 1 instead of k.

We put g = f ∗ µ̃k and h = g ∗ τk−1. Since

∞∑
n1,n2=1

|g(n1, n2)|
n1n2

=
∞∑

n1,n2=1

|h ∗ µk−1(n1, n2)|
n1n2

< ∞,

we have by Theorem 2(i)

lim
x,y→∞

1

xy(log x log y)k−2

∑
n1≤x,n2≤y

h(n1, n2) = Ck−1

∞∑
n1, n2=1

g(n1, n2)

n1n2
.

Since f = h∗ τ̃1, we have by taking a = h, b = τ̃1 and α = β = k−2 in Lemma 8(ii)

lim
x→∞

1

x2(log x)2k−1

∑
n1,n2≤x

f(n1, n2)

=
1

(k − 1)2(2k − 1)

Ck−1

ζ(2)

∞∑
n1, n2=1

g(n1, n2)

n1n2
= C̃k

∞∑
n1,n2=1

g(n1, n2)

n1n2
.

Thus the proof of Theorem 2 is now complete.

4. Multiplicative Case

We say that f is a multiplicative function of two variables if f satisfies

f(m1n1,m2n2) = f(m1,m2) f(n1, n2)

for any m1,m2, n1, n2 ∈ N satisfying gcd(m1m2, n1n2) = 1. It is well known that

if f and g are multiplicative functions of two variables, then f ∗ g also becomes a

multiplicative function of two variables. The next theorem is an extension of van

der Corput’s theorem (1.2) to the case in which f is a multiplicative function of two

variables.
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Theorem 3. Let f be a multiplicative function of two variables and let k ∈ N.
(i) Suppose ∑

p∈P

∑
ν1,ν2≥0
ν1+ν2≥1

|(f ∗ µk)(p
ν1 , pν2)|

pν1+ν2
< ∞. (4.1)

Then we have

lim
x,y→∞

1

xy(log x log y)k−1

∑
n1≤x
n2≤y

f(n1, n2) = Ck

∏
p∈P

(
1− 1

p

)2k( ∑
ν1,ν2≥0

f(pν1 , pν2)

pν1+ν2

)
,

(4.2)

where Ck =
1

((k − 1)!)2
.

(ii) Suppose ∑
p∈P

∑
ν1,ν2≥0
ν1+ν2≥1

|(f ∗ µ̃k)(p
ν1 , pν2)|

pν1+ν2
< ∞. (4.3)

Then we have

lim
x→∞

1

x2(log x)2k−1

∑
n1≤x

f(n1, n2) = C̃ ′
k

∏
p∈P

(
1−1

p

)2k+1( ∑
ν1,ν2≥0

f(pν1 , pν2)

pν1+ν2

)
, (4.4)

where C̃ ′
k = ζ(2)C̃k =

1

((k − 1)!)2(2k − 1)
.

Remark. In part (ii), we do not deal with:

limx,y→∞(xy(log x log y)k−1 log x∧y)−1
∑

n1≤x,n2≤y f(n1, n2) since it is too compli-

cated and we cannot obtain a simple formula.

Before we prove Theorem 3, we give lemmas needed later.

Lemma 9 (Sándor and Crstici [5] p.107). For k ∈ N and p ∈ P, we have

µk(p
ν1 , pν2) =

 (−1)ν1+ν2

(
k

ν1

)(
k

ν2

)
if ν1, ν2 ≤ k,

0 otherwise,

where
(
k
ν

)
is a binomial coefficient.

Lemma 10. For p ∈ P we have

µ̃(pν1 , pν2) =


−1 if ν1 + ν2 = 1,
2− p if ν1 = ν2 = 1,
p− 1 if |ν1 − ν2| = 1 and ν1, ν2 ≥ 1,
2− 2p if ν1 = ν2 ≥ 2,

0 otherwise.
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Proof. Let f be the multiplicative function defined by the same formulas as the

above. Then, by an elementary calculation, it is easy to see that (f ∗ gcd)(pa, pb) =
δ(pa, pb) holds for every a, b ≥ 0. By the uniqueness of the Dirichlet inverse of the

gcd function, we have f = µ̃.

Now we can prove Theorem 3.

Proof of Theorem 3. We first prove (i). Since the function: (n1, n2) 7→ (f∗µk)(n1,n2)
n1n2

is multiplicative, we have∑
n1≤x,n2≤y

|(f ∗ µk)(n1, n2)|
n1n2

≤
∏
p∈P

( ∑
ν1, ν2≥0

1

pν1+ν2
|(f ∗ µk)(p

ν1 , pν2)|
)

=
∏
p∈P

(
1 +

∑
ν1+ν2≥1

1

pν1+ν2
|(f ∗ µk)(p

ν1 , pν2)|
)

≤ exp
(∑

p

( ∑
ν1+ν2≥1

1

pν1+ν2
|(f ∗ µk)(p

ν1 , pν2)|
))

< ∞,

where we have used the well known inequality 1 + x ≤ exp(x) for x ≥ 0. Therefore

(2.4) holds by Theorem 2(i). On the other hand, using Lemma 9 we have

∑
ν1,ν2≥0

(f ∗ µk)(p
ν1 , pν2)

pν1+ν2
=

∞∑
a1,a2,b1,b2=0

f(pa1 , pa2) µk(p
b1 , pb2)

pa1+b1+a2+b2

=

∞∑
a1,a2=0

f(pa1 , pa2)

pa1+a2

k∑
b1,b2=0

(−1)b1+b2

(
k

b1

)(
k

b2

)
pb1+b2

=

∞∑
a1,a2=0

f(pa1 , pa2)

pa1+a2

(
1− 1

p

)2k
.

Hence the right side of (2.4) is equal to

Ck

∏
p∈P

(
1− 1

p

)2k( ∑
ν1,ν2≥0

f(pν1 , pν2)

pν1+ν2

)
.

This proves (i).

Next we prove (ii). Similarly we have∑
m1,m2≤x

|(f ∗ µ̃k)(m1,m2)|
m1m2

≤
∏
p∈P

( ∑
ν1,ν2≥0

1

pν1+ν2
|(f ∗ µ̃k)(p

ν1 , pν2)|
)

≤
∏
p∈P

(
1 +

∑
ν1+ν2≥1

1

pν1+ν2
|(f ∗ µ̃k)(p

ν1 , pν2)|
)

≤ exp
(∑
p∈P

( ∑
ν1+ν2≥1

1

pν1+ν2
|(f ∗ µ̃k)(p

ν1 , pν2)|
))

< ∞.
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Therefore (2.6) holds by Theorem 2(ii). On the other hand, we have

∑
ν1,ν2≥0

(f ∗ µ̃k)(p
ν1 , pν2)

pν1+ν2
=

∞∑
a1,a2=0

f(pa1 , pa2)

pa1+a2

∞∑
b1,b2=0

µ̃k(p
b1 , pb2)

pb1+b2
.

If k ≥ 2, then noting that µ̃k = µk−1 ∗ µ̃ we have

∞∑
b1,b2=0

µ̃k(p
b1 , pb2)

pb1+b2
=

∞∑
c1,c2,d1,d2=0

µk−1(p
c1 , pc2)

pc1+c2

µ̃(pd1 , pd2)

pd1+d2

=

k∑
c1,c2=0

(−1)c1+c2

pc1+c2

(
k − 1

c1

)(
k − 1

c2

) ∞∑
d1,d2=0

µ̃(pd1 , pd2)

pd1+d2

=
(
1− 1

p

)2(k−1) ∞∑
d1,d2=0

µ̃(pd1 , pd2)

pd1+d2
.

Using the relation µ̃ ∗ gcd = δ we have( ∞∑
d1,d2=0

µ̃(pd1 , pd2)

pd1+d2

)( ∞∑
d1,d2=0

gcd(pd1 , pd2)

pd1+d2

)
= 1,

where, by an elementary calculation, we can easily derive

∞∑
d1,d2=0

gcd(pd1 , pd2)

pd1+d2
=

∞∑
d1,d2=0

pd1∧d2

pd1+d2
=

1− 1
p2

(1− 1
p )

3
.

Therefore we have obtained the following two formulas.

∞∑
b1,b2=0

µ̃(pb1 , pb2)

pb1+b2
=

(
1− 1

p

)3
1− 1

p2

, (4.5)

∞∑
b1,b2=0

µ̃k(p
b1 , pb2)

pb1+b2
=
(
1− 1

p

)2(k−1)
(
1− 1

p

)3
1− 1

p2

=
(1− 1

p )
2k+1

1− 1
p2

if k ≥ 2.

Hence we see that, for every k ∈ N, the right side of (2.6) equals

C̃k

∏
p∈P

( ∑
ν1,ν2≥0

(f ∗ µ̃k)(p
ν1 , pν2)

pν1+ν2

)
= C̃k

∏
p∈P

( ∞∑
a1,a2=0

f(pa1 , pa2)

pa1+a2

) (1− 1
p )

2k+1

1− 1
p2

= C̃ ′
k

∏
p∈P

(
1− 1

p

)2k+1( ∞∑
ν1,ν2=0

f(pν1 , pν2)

pν1+ν2

)
,

where C̃ ′
k = ζ(2)C̃k. Thus the proof of Theorem 3 is now complete.
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It is well known (Schwarz and Spilker [6]) that if f : N 7→ C is a multiplicative

function satisfying
∑

p∈P(|f(p)−1|/p+
∑

ν≥2 f(p
ν)/pν) < ∞, then the mean value

M(f) = limx→∞ x−1
∑

n≤x f(n) exists and equals
∏

p∈P(1− 1/p)(
∑

ν≥0 f(p
ν)/pν).

The following theorem is a generalization of this result.

Theorem 4. Let f be a multiplicative function of two variables and let k ∈ N.
(i) Suppose∑

p∈P

( |f(p, 1)− k|+ |f(1, p)− k|
p

+
∑

ν1+ν2≥2

|f(pν1 , pν2)|
pν1+ν2

)
< ∞. (4.6)

Then we have

lim
x,y→∞

1

xy(log x log y)k−1

∑
n1≤x
n2≤y

f(n1, n2) = Ck

∏
p∈P

(
1− 1

p

)2k( ∑
ν1,ν2≥0

f(pν1 , pν2)

pν1+ν2

)
,

(4.7)

where Ck =
1

((k − 1)!)2
.

(ii) Suppose∑
p∈P

( |f(p, 1)− k|+ |f(1, p)− k|
p

+
|f(p, p)− p|

p2
+

∑
ν1+ν2≥2

(ν1,ν2) ̸=(1,1)

|f(pν1 , pν2)|
pν1+ν2

)
< ∞.

(4.8)

Then we have

lim
x→∞

1

x2(log x)2k−1

∑
n1,n2≤x

f(n1, n2) = C̃ ′
k

∏
p∈P

(
1− 1

p

)2k+1( ∑
ν1,ν2≥0

f(pν1 , pν2)

pν1+ν2

)
,

(4.9)

where C̃ ′
k =

1

((k − 1)!)2(2k − 1)
.

Proof. We first prove (i). We would like to show that f satisfies (4.1). We have∑
p∈P

∑
ν1+ν2≥1

|(f ∗ µk)(p
ν1 , pν2)|

pν1+ν2
=: I1 + I2,

where

I1 =
∑
p∈P

∑
ν1+ν2=1

|(f ∗ µk)(p
ν1 , pν2)|

pν1+ν2
=
∑
p∈P

|(f ∗ µk)(p, 1)|+ |(f ∗ µk)(1, p)|
p

=
∑
p∈P

|f(p, 1)− k|+ |f(1, p)− k|
p

< ∞,
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and

I2 =
∑
p∈P

∑
ν1+ν2≥2

|(f ∗ µk)(p
ν1 , pν2)|

pν1+ν2
=
∑
p∈P

∑
a1+a2+b1+b2≥2

|f(pa1 , pa2)µk(p
b1 , pb2)|

pa1+a2+b1+b2
.

=
∑
p∈P

( ∑
a1+a2=0
b1+b2≥2

+
∑

a1+a2=1
b1+b2≥1

+
∑

a1+a2≥2
b1+b2≥0

)
|f(pa1 , pa2)µk(p

b1 , pb2)|
pa1+a2+b1+b2

≪
∑
p∈P

( ∑
b1+b2≥2

1

pb1+b2
+

∑
b1+b2≥1

|f(p, 1)|+ |f(1, p)|
p1+b1+b2

+
∑

a1+a2≥2
b1+b2≥0

|f(pa1 , pa2)|
pa1+a2+b1+b2

)

< ∞.

Therefore f satisfies (4.1), and hence (4.7) (which is equal to (4.2)) holds by Theo-

rem 3(i). This proves (i).

Next we prove (ii). If k = 1, then it is easy to see that (4.8) implies (4.3)

since (f ∗ µ̃)(p, 1) = f(p, 1) − 1, (f ∗ µ̃)(1, p) = f(1, p) − 1 and (f ∗ µ̃)(p, p) =

f(p, p)− f(p, 1)− f(1, p) + 2− p hold by Lemma 10. Let k ≥ 2. We put f̃ = f ∗ µ̃.
We show that f̃ satisfies (4.6) for k − 1 instead of k. We first see that∑
p∈P

|f̃(p, 1)− (k − 1)|+ |f̃(1, p)− (k − 1)|
p

=
∑
p∈P

|f(p, 1)− k|+ |f(1, p)− k|
p

< ∞.

We also have∑
p∈P

∑
ν1+ν2≥2

|f̃(pν1 , pν2)|
pν1+ν2

=
∑
p∈P

( ∑
ν1+ν2=2

+
∑

ν1+ν2≥3

) |f̃(pν1 , pν2)|
pν1+ν2

=: J1 + J2,

where

J1 =
∑
p∈P

∑
ν1+ν2=2

|f̃(pν1 , pν2)|
pν1+ν2

=
∑
p∈P

|f̃(p2, 1)|+ |f̃(p, p)|+ |f̃(1, p2)|
p2

.

Noting that f̃(p2, 1) = f(p2, 1)−f(p, 1), f̃(p, p) = f(p, p)−f(p, 1)−f(1, p)+2−p

and f̃(1, p2) = f(1, p2)− f(1, p) hold by Lemma 10, we have

J1 ≪
∑
p∈P

|f(p2, 1)|+ |f(p, 1)− k|+ |f(p, p)− p|+ |f(1, p)− k|+ |f(1, p2)|+ 1

p2
,

which implies that J1 < ∞.

As for J2, since |µ̃(pν1 , pν2)| ≪ 1+ p holds for every ν1, ν2 ≥ 0 by Lemma 10, we

have

J2 =
∑
p∈P

∑
ν1+ν2≥3

|f̃(pν1 , pν2)|
pν1+ν2

=
∑
p∈P

∑
a1+a2+b1+b2≥3

|f(pa1 , pa2)µ̃(pb1 , pb2)|
pa1+a2+b1+b2
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≪
∑
p∈P

( ∑
ν1+ν2≥2

1 + |f(pν1 , pν2)|
pν1+ν2

)
< ∞.

Therefore f̃ satisfies (4.6) for k − 1 instead of k. Hence by Theorem 4(i) we have

lim
x,y→∞

1

xy(log x log y)k−2

∑
n1≤x
n2≤y

f̃(n1, n2) = Ck−1

∏
p∈P

(
1− 1

p

)2(k−1)(∑
ν1≥0
ν2≥0

f̃(pν1 , pν2)

pν1+ν2

)
.

Since f = f̃ ∗ τ̃1, we have by taking a = f̃ , b = τ̃1 and α = β = k−2 in Lemma 8(ii)

lim
x→∞

1

x2(log x)2k−1

∑
n1,n2≤x

f(n1, n2)

=
1

(k − 1)2(2k − 1)

1

ζ(2)
Ck−1

∏
p∈P

(
1− 1

p

)2(k−1)( ∑
ν1, ν2≥0

f̃(pν1 , pν2)

pν1+ν2

)
=

1

ζ(2)
C̃ ′

k

∏
p∈P

(
1− 1

p

)2(k−1)( ∑
a1,a2,b1,b2≥0

f(pa1 , pa2)

pa1+a2

µ̃(pb1 , pb2)

pb1+b2

)
.

By (4.5) we see that the above equals

1

ζ(2)
C̃ ′

k

∏
p∈P

(
1− 1

p

)2(k−1) (1− 1
p )

3

1− 1
p2

( ∑
a1,a2≥0

f(pa1 , pa2)

pa1+a2

)
=C̃ ′

k

∏
p∈P

(
1− 1

p

)2k+1( ∑
ν1,ν2≥0

f(pν1 , pν2)

pν1+ν2

)
.

Thus the proof of Theorem 4 is now complete.

5. Examples

Let ω(n) =
∑

p|n 1 be the counting function of the total number of prime factors

of n taken without multiplicity. It is known that for a fixed positive integer k,

limx→∞ x−1(log x)1−k
∑

n≤x k
ω(n) = ((k− 1)!)−1

∏
p∈P(1− 1/p)k−1

(
1+ (k− 1)/p

)
(cf. Tenenbaum and Wu [7] p.25). The following example is an extenstion of this

result to the case of a function of two variables.

Example 1. Let k ∈ N and let f(n1, n2) = kω(n1n2). Then we have

lim
x,y→∞

1

xy(log x log y)k−1

∑
n1≤x
n2≤y

f(n1, n2) = Ck

∏
p∈P

(
1−1

p

)2(k−1)(
1+

2(k − 1)

p
+
1− k

p2

)
,

where Ck =
1

((k − 1)!)2
.
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Proof. Since f(pν1 , pν2) = k if ν1 + ν2 ≥ 1, it is easy to see that f satisfies (4.6).

Therefore we can apply Theorem 4(i) to obtain

lim
x,y→∞

1

xy(log x log y)k−1

∑
n1≤x,n2≤y

f(n1, n2) = Ck

∏
p∈P

(
1−1

p

)2k(
1+

∑
ν1+ν2≥1

k

pν1+ν2

)

= Ck

∏
p∈P

(
1− 1

p

)2k(
1+

k(2p− 1)

(p− 1)2

)
= Ck

∏
p∈P

(
1− 1

p

)2(k−1)(
1+

2(k − 1)

p
+

1− k

p2

)
.

Example 2. Let f(q, n) = |cq(n)| where cq(n) = µ(q/(q, n))φ(q)/φ(q/(q, n)) is the

Ramanujan sum. Then we have

lim
x→∞

1

x2 log x

∑
n1,n2≤x

f(n1, n2) =
∏
p∈P

(
1− 3

p2
+

2

p3

)
.

Proof. It is easy to see that f(p, 1) = f(1, p) = 1, f(p, p) = p− 1,

f(pν , 1) = 0, f(1, pν) = 1 if ν ≥ 2, and

f(pν1 , pν2) =

{
µ2(pν1−ν2)pν2 if 1 ≤ ν2 < ν1,

pν1(1− 1/p) if 1 ≤ ν1 ≤ ν2.

From these relations, we see that f satisfies (4.8) for k = 1. After an elementary

calculation we obtain ∑
ν1,ν2≥0

f(pν1 , pν2)

pν1+ν2
=

p+ 2

p− 1
.

Therefore we have by (4.9)

lim
x→∞

1

x2 log x

∑
n1,n2≤x

f(n1, n2) = C̃ ′
1

∏
p∈P

(
1− 1

p

)3 p+ 2

p− 1
=
∏
p∈P

(
1− 3

p2
+

2

p3

)
.

Next we obtain the leading coefficients in (1.3) and (1.4) using Theorem 4.

Example 3. Let f(n1, n2) = σ(gcd(n1, n2)) where σ(n) =
∑

d|n d. Then we have

lim
x→∞

1

x2 log x

∑
n1,n2≤x

f(n1, n2) = 1.

Proof. Since f(pν1 , pν2) = (pν1∧ν2+1 − 1)/(p− 1) if ν1, ν2 ≥ 0, it is easy to see that

f satisfies (4.8) for k = 1. Therefore we can apply Theorem 4(ii) for k = 1. After

an elementary calculation we obtain∑
ν1,ν2≥0

f(pν1 , pν2)

pν1+ν2
=

1

(1− 1
p )

3
.
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Therefore we have by (4.9)

lim
x→∞

1

x2 log x

∑
n1,n2≤x

f(n1, n2) = C̃ ′
1

∏
p∈P

(
1− 1

p

)3 1

(1− 1
p )

3
= 1.

Example 4. Let f(n1, n2) = φ(gcd(n1, n2)). Then we have

lim
x→∞

1

x2 log x

∑
n1,n2≤x

f(n1, n2) =
1

ζ2(2)
.

Proof. Since f(pν1 , pν2) = pν1∧ν2(1 − 1/p) if ν1, ν2 ≥ 1, it is easy to see that f

satisfies (4.8) for k = 1. Therefore we can apply Theorem 4 (ii) for k = 1. After an

elementary calculation we obtain

∑
ν1,ν2≥0

f(pν1 , pν2)

pν1+ν2
=

(1 + 1
p )

2

1− 1
p

.

Therefore we have by (4.9)

lim
x→∞

1

x2 log x

∑
n1,n2≤x

f(n1, n2) =
∏
p∈P

(
1− 1

p

)3 (1 + 1
p )

2

1− 1
p

=
∏
p∈P

(
1− 1

p2

)2
=

1

ζ2(2)
.

The proof of the following example is similar.

Example 5. Let

f1(n1, n2) = gcd(n1, n2)µ
2(gcd(n1, n2)),

f2(n1, n2) = gcd(n1, n2)µ
2(lcm(n1, n2)).

Then we have

lim
x→∞

1

x2 log x

∑
n1,n2≤x

f1(n1, n2) =
1

ζ2(2)
,

lim
x→∞

1

x2 log x

∑
n1,n2≤x

f2(n1, n2) =
∏
p∈P

(
1− 1

p

)3(
1 +

3

p

)
.

Example 6. Let f(n1, n2) =
ϕ(n1)ϕ(n2)

lcm(n1, n2)
. Then we have

lim
x→∞

1

x2 log x

∑
n1,n2≤x

f(n1, n2) =
∏
p∈P

(
1− 1

p

)3(
1 +

3

p
+

1

p2

)
.
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Proof. Since f(pν , 1) = f(1, pν) = 1− 1/p if ν ≥ 1 and

f(pν1 , pν2) = (1 − 1/p)2pν1∧ν2 if ν1, ν2 ≥ 1, it is easy to see that f satisfies (4.8)

for k = 1. Therefore we can apply Theorem 4 (ii) for k = 1. After an elementary

calculation we obtain ∑
ν1,ν2≥0

f(pν1 , pν2)

pν1+ν2
= 1 +

3

p
+

1

p2
.

Therefore, using (4.9) for k = 1, we have the desired result.

Next we obtain the leading coefficients in (1.5) and (1.6).

Example 7. Let s(n1, n2) =
∑

d1|n1,d2|n2
gcd(d1, d2). Then we have

lim
x→∞

1

x2(log x)3

∑
n1,n2≤x

s(n1, n2) =
2

π2
.

Proof. Since s = gcd ∗ 1 = τ̃2, we have s ∗ µ̃2 = δ. Therefore (2.5) trivially holds for

k = 2 and (2.6) gives

lim
x→∞

1

x2(log x)3

∑
n1,n2≤x

s(n1, n2) = C̃ ′
2

∑
n1,n2≤x

δ(n1, n2)

n1n2
=

2

π2
.

Example 8. Let c(n1, n2) =
∑

d1|n1,d2|n2
φ(gcd(d1, d2)). Then we have

lim
x→∞

1

x2(log x)3

∑
n1,n2≤x

c(n1, n2) =
12

π4
.

Proof. we note that c = φ(gcd) ∗ 1. Since φ(gcd) satisfies (4.8) for k = 1 from

the proof of Example 4, we see that φ(gcd) also satisfies (2.1) from the proofs of

Theorem 4, Theorem 3 and Theorem 2. Therefore we have by Theorem 1 and

Example 4

lim
x,y→∞

1

xy log x ∧ y

∑
n1≤x,n2≤y

φ(gcd(n1, n2)) =
1

ζ2(2)
.

Taking a = 1, b = φ(gcd) and α = β = 0 in Lemma 8(ii), we have

lim
x→∞

1

x2(log x)3

∑
n1,n2≤x

c(n1, n2) =
1

3

1

ζ2(2)
=

12

π4
.
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Remark. According to Novak and Tóth [4], it holds that c(p, 1) = c(1, p) = 2,

c(p, p) = p+ 2, c(pa, 1) = c(1, pa) = a+ 1 if a ≥ 1, and, moreover,

c(pa, pb) = 2(1 + p + p2 + . . . + pa−1) + (b − a + 1)pa if 1 ≤ a ≤ b. Using this

explicit formulas we can directly show that c satisfies (4.8) for k = 2 and also can

directly calculate (4.9). However, we did not prove in that way for simplicity.

Example 9. Let A(n1, n2) =
∑

d1|n1, d2|n2
ϕ(d1)ϕ(d2)/lcm(d1, d2). Then we have

lim
x→∞

1

x2(log x)3

∑
n1,n2≤x

A(n1, n2) =
1

3

∏
p∈P

(
1− 1

p

)3(
1 +

3

p
+

1

p2

)
. (5.1)

Proof. Let g(n1, n2) = ϕ(n1)ϕ(n2)/lcm(n1, n2). Since A = g ∗ 1, by a similar

argument as in Example 8, we see that the left side of (5.1) equals

1

3
lim
x→∞

1

x2 log x

∑
n1,n2≤x

g(n1, n2).

By Example 6, it is easy to see that the above equals the right side of (5.1).
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