ON SOME GENERALIZATIONS OF MEAN VALUE THEOREMS FOR ARITHMETIC FUNCTIONS OF TWO VARIABLES

Noboru Ushiroya
National Institute of Technology, Wakayama College,
Gobo, Wakayama, Japan
ushiroya@wakayama-nct.ac.jp

Abstract

Let $f: \mathbb{N}^{2} \mapsto \mathbb{C}$ be an arithmetic function of two variables. We study the existence of the limit: $$
\lim _{x \rightarrow \infty} \frac{1}{x^{2}(\log x)^{k-1}} \sum_{n_{1}, n_{2} \leq x} f\left(n_{1}, n_{2}\right)
$$ where k is a fixed positive integer. Moreover, we express this limit as an infinite product over all prime numbers in the case that f is a multiplicative function of two variables. This study is a generalization of Cohen-van der Corput's results to the case of two variables.

1. Introduction

Let μ denote the the Möbius function and let $\mu_{k}=\underbrace{\mu * \mu * \cdots * \mu}_{k}$ be the k-folded Dirichlet convolution of μ, that is, $\mu_{k}(n)=\sum_{d_{1} d_{2} \cdots d_{k}=n} \mu\left(d_{1}\right) \mu\left(d_{2}\right) \ldots \mu\left(d_{k}\right)$ for every n. Cohen [2] proved that if $f: \mathbb{N} \mapsto \mathbb{C}$ is an arithmetic function satisfying $\sum_{n=1}^{\infty}\left|\left(f * \mu_{k}\right)(n)\right| / n<\infty$, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x(\log x)^{k-1}} \sum_{n \leq x} f(n)=\frac{1}{(k-1)!} \sum_{n=1}^{\infty} \frac{\left(f * \mu_{k}\right)(n)}{n} . \tag{1.1}
\end{equation*}
$$

Van der Corput [12] proved that if $f: \mathbb{N} \mapsto \mathbb{C}$ is a multiplicative function satisfying $\prod_{p \in \mathcal{P}}\left(\sum_{\nu=0}^{\infty}\left|\left(f * \mu_{k}\right)\left(p^{\nu}\right)\right| / p^{\nu}\right)<\infty$ where \mathcal{P} is the set of prime numbers, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x(\log x)^{k-1}} \sum_{n \leq x} f(n)=\frac{1}{(k-1)!} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{k}\left(\sum_{\nu=0}^{\infty} \frac{f\left(p^{\nu}\right)}{p^{\nu}}\right) . \tag{1.2}
\end{equation*}
$$

We would like to generalize these results to the case in which f is an arithmetic function of two variables and obtain several interesting examples.

Let $\operatorname{gcd}\left(n_{1}, n_{2}\right)$ denote the greatest common divisor of n_{1} and $n_{2}, \sigma(n)$ the sum of divisors of n, and $\varphi(n)$ Euler's totient function. Cohen [3] proved that

$$
\begin{gather*}
\sum_{n_{1}, n_{2} \leq x} \sigma\left(\operatorname{gcd}\left(n_{1}, n_{2}\right)\right)=x^{2}\left(\log x+2 \gamma-\frac{1}{2}-\frac{\zeta(2)}{2}\right)+O\left(x^{\frac{3}{2}} \log x\right), \tag{1.3}\\
\sum_{n_{1}, n_{2} \leq x} \varphi\left(\operatorname{gcd}\left(n_{1}, n_{2}\right)\right)=\frac{x^{2}}{\zeta^{2}(2)}\left(\log x+2 \gamma-\frac{1}{2}-\frac{\zeta(2)}{2}-\frac{2 \zeta^{\prime}(2)}{\zeta(2)}\right)+O\left(x^{\frac{3}{2}} \log x\right), \tag{1.4}
\end{gather*}
$$

where $\zeta(n)$ is the Riemann zeta function.
Next we consider two functions s and c, where $s\left(n_{1}, n_{2}\right)=\sum_{d_{1}\left|n_{1}, d_{2}\right| n_{2}} \operatorname{gcd}\left(d_{1}, d_{2}\right)$ and $c\left(n_{1}, n_{2}\right)=\sum_{d_{1}\left|n_{1}, d_{2}\right| n_{2}} \varphi\left(\operatorname{gcd}\left(d_{1}, d_{2}\right)\right)$. Nowak and Tóth [4] proved that

$$
\begin{align*}
& \sum_{n_{1}, n_{2} \leq x} s\left(n_{1}, n_{2}\right)=\frac{2}{\pi^{2}} x^{2}\left(\log ^{3} x+a_{1} \log ^{2} x+a_{2} \log x+a_{3}\right)+\left(x^{\frac{1117}{701}+\varepsilon}\right), \tag{1.5}\\
& \sum_{n_{1}, n_{2} \leq x} c\left(n_{1}, n_{2}\right)=\frac{12}{\pi^{4}} x^{2}\left(\log ^{3} x+b_{1} \log ^{2} x+b_{2} \log x+b_{3}\right)+\left(x^{\frac{1117}{701}+\varepsilon}\right), \tag{1.6}
\end{align*}
$$

where $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ are explicit constants.
We would like to obtain these leading coefficients in (1.3) $\sim(1.6)$ by a systematic method. We will calculate those leading coefficients in Example 3, 4, 7 and 8 in Section 5. Although we cannot obtain remainder terms by our theorems, our method for obtaining leading terms is very simple and is applicable to many arithmetic functions of two variables.

2. Some Results

Let $\tilde{\mu}\left(n_{1}, n_{2}\right)$ denote the Dirichlet inverse of the gcd function, that is, $\tilde{\mu}$ is the function which satisfies $(\tilde{\mu} * \operatorname{gcd})\left(n_{1}, n_{2}\right)=\delta\left(n_{1}, n_{2}\right)$ for every $n_{1}, n_{2} \in \mathbb{N}$, where $\delta\left(n_{1}, n_{2}\right)=1$ or 0 according to whether $n_{1}=n_{2}=1$ or not. Let $x \wedge y$ denote $\min (x, y)$. We first establish the following theorem.

Theorem 1. Let f be an arithmetic function of two variables satisfying

$$
\begin{equation*}
\sum_{n_{1}, n_{2}=1}^{\infty} \frac{\left|(f * \tilde{\mu})\left(n_{1}, n_{2}\right)\right|}{n_{1} n_{2}}<\infty . \tag{2.1}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\lim _{x, y \rightarrow \infty} \frac{1}{x y \log x \wedge y} \sum_{n_{1} \leq x, n_{2} \leq y} f\left(n_{1}, n_{2}\right)=\frac{1}{\zeta(2)} \sum_{n_{1}, n_{2}=1}^{\infty} \frac{(f * \tilde{\mu})\left(n_{1}, n_{2}\right)}{n_{1} n_{2}} . \tag{2.2}
\end{equation*}
$$

The proof of Theorem 1 will be given in the next section. To proceed to the next theorem, we need some notations. Let

$$
\tau_{k}\left(n_{1}, n_{2}\right)=(\underbrace{1 * 1 * \cdots * 1}_{k})\left(n_{1}, n_{2}\right)
$$

stand for the k-folded Dirichlet convolution of the function $\mathbf{1}$, where $\mathbf{1}\left(n_{1}, n_{2}\right)=1$ for every $n_{1}, n_{2} \in \mathbb{N}$. Let $\mu_{k}=\tau_{k}^{-1}$ denote the Dirichlet inverse of τ_{k}. Note that $\mu_{1}\left(n_{1}, n_{2}\right)=\mu\left(n_{1}\right) \mu\left(n_{2}\right)$. Similarly, let

$$
\begin{aligned}
& \tilde{\tau}_{1}\left(n_{1}, n_{2}\right)=\operatorname{gcd}\left(n_{1}, n_{2}\right), \\
& \tilde{\tau}_{k}\left(n_{1}, n_{2}\right)=(\underbrace{\mathbf{1} * \mathbf{1} * \cdots * \mathbf{1}}_{k-1} * \operatorname{gcd})\left(n_{1}, n_{2}\right) \quad \text { if } \quad k \geq 2 .
\end{aligned}
$$

We also denote $\tilde{\mu}_{k}=\tilde{\tau}_{k}^{-1}$ the Dirichlet inverse of $\tilde{\tau}_{k}$. Note that $\tilde{\mu}_{1}=\tilde{\mu}=\operatorname{gcd}^{-1}$ and $\tilde{\mu}_{k}=\mu_{k-1} * \tilde{\mu}$ if $k \geq 2$. The next theorem is an extension of Cohen's theorem (1.1) to the case in which f is an arithmetic function of two variables.

Theorem 2. Let f be an arithmetic function of two variables and let $k \in \mathbb{N}$.
(i) Suppose

$$
\begin{equation*}
\sum_{n_{1}, n_{2}=1}^{\infty} \frac{\left|\left(f * \mu_{k}\right)\left(n_{1}, n_{2}\right)\right|}{n_{1} n_{2}}<\infty . \tag{2.3}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\lim _{x, y \rightarrow \infty} \frac{1}{x y(\log x \log y)^{k-1}} \sum_{n_{1} \leq x, n_{2} \leq y} f\left(n_{1}, n_{2}\right)=C_{k} \sum_{n_{1}, n_{2}=1}^{\infty} \frac{\left(f * \mu_{k}\right)\left(n_{1}, n_{2}\right)}{n_{1} n_{2}} \tag{2.4}
\end{equation*}
$$

where $C_{k}=\frac{1}{((k-1)!)^{2}}$.
(ii) Suppose

$$
\begin{equation*}
\sum_{n_{1}, n_{2}=1}^{\infty} \frac{\left|\left(f * \tilde{\mu}_{k}\right)\left(n_{1}, n_{2}\right)\right|}{n_{1} n_{2}}<\infty \tag{2.5}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x^{2}(\log x)^{2 k-1}} \sum_{n_{1}, n_{2} \leq x} f\left(n_{1}, n_{2}\right)=\tilde{C}_{k} \sum_{n_{1}, n_{2}=1}^{\infty} \frac{\left(f * \tilde{\mu}_{k}\right)\left(n_{1}, n_{2}\right)}{n_{1} n_{2}}, \tag{2.6}
\end{equation*}
$$

where $\tilde{C}_{k}=\frac{1}{\zeta(2)} \frac{1}{((k-1)!)^{2}(2 k-1)}$.
Remark. In part (ii), we do not deal with:
$\lim _{x, y \rightarrow \infty}\left(x y(\log x \log y)^{k-1} \log x \wedge y\right)^{-1} \sum_{n_{1} \leq x, n_{2} \leq y} f\left(n_{1}, n_{2}\right)$ since it is too complicated and we cannot obtain a simple formula.

The proof of Theorem 2 will also be given in the next section.

3. Proof of Theorem 1 and Theorem 2

The following lemma is well known (cf. Cohen [2]) and will be needed later.
Lemma 1. For fixed $\alpha \geq 0$ and all x, we have

$$
\begin{equation*}
\sum_{n \leq x} \frac{\log ^{\alpha} n}{n}=\frac{\log ^{\alpha+1} x}{\alpha+1}+O(1) \tag{3.1}
\end{equation*}
$$

It is also well known that $\sum_{n_{1}, n_{2} \leq x} \operatorname{gcd}\left(n_{1}, n_{2}\right)=x^{2} \log x / \zeta(2)+c x^{2}+o\left(x^{2}\right)$, where c is a suitable constant (cf. Cesàro [1]). We would like to modify this formula as follows.

Lemma 2.

$$
\begin{equation*}
\lim _{x, y \rightarrow \infty} \frac{1}{x y \log x \wedge y} \sum_{n_{1} \leq x, n_{2} \leq y} \operatorname{gcd}\left(n_{1}, n_{2}\right)=\frac{1}{\zeta(2)} \tag{3.2}
\end{equation*}
$$

Proof. Let

$$
\begin{aligned}
A(x, y) & =\#\left\{\left(n_{1}, n_{2}\right): 1 \leq n_{1} \leq x, 1 \leq n_{2} \leq y, \operatorname{gcd}\left(n_{1}, n_{2}\right)=1\right\} \\
& =\sum_{n_{1} \leq x, n_{2} \leq y} \mu^{2}\left(\left(\operatorname{gcd}\left(n_{1}, n_{2}\right)\right)^{2}\right) .
\end{aligned}
$$

Applying Theorem 7 in Ushiroya [11] to the function $\mu^{2}\left(\left(\operatorname{gcd}\left(n_{1}, n_{2}\right)\right)^{2}\right)$ we have

$$
\lim _{x, y \rightarrow \infty} \frac{1}{x y} A(x, y)=\frac{1}{\zeta(2)}
$$

From this we have

$$
\begin{aligned}
& \quad \sum_{n_{1} \leq x, n_{2} \leq y} \operatorname{gcd}\left(n_{1}, n_{2}\right) \\
& =\sum_{1 \leq d \leq x \wedge y} d \#\left\{\left(n_{1}, n_{2}\right) ; 1 \leq n_{1} \leq x, 1 \leq n_{2} \leq y, \operatorname{gcd}\left(n_{1}, n_{2}\right)=d\right\} \\
& =\sum_{1 \leq d \leq x \wedge y} d \#\left\{\left(n_{1}^{\prime}, n_{2}^{\prime}\right) ; 1 \leq n_{1}^{\prime} \leq \frac{x}{d}, \quad 1 \leq n_{2}^{\prime} \leq \frac{y}{d}, \quad \operatorname{gcd}\left(n_{1}^{\prime}, n_{2}^{\prime}\right)=1\right\} \\
& =\sum_{1 \leq d \leq x \wedge y} d A\left(\frac{x}{d}, \frac{y}{d}\right)=\sum_{1 \leq d \leq x \wedge y} d\left(\frac{1}{\zeta(2)} \frac{x}{d} \frac{y}{d}+o\left(\frac{x}{d} \frac{y}{d}\right)\right) \\
& =\frac{1}{\zeta(2)} x y \log x \wedge y+o(x y \log x \wedge y),
\end{aligned}
$$

which implies (3.2).
Lemma 3. Let $a\left(n_{1}, n_{2}\right)$ be an arithmetic function of two variables satisfying $\sum_{n_{1}, n_{2}=1}^{\infty}\left|a\left(n_{1}, n_{2}\right)\right|<\infty$. Then we have

$$
\begin{equation*}
\lim _{x, y \rightarrow \infty} \frac{1}{\log x \wedge y} \sum_{n_{1} \leq x, n_{2} \leq y} a\left(n_{1}, n_{2}\right) \log \frac{x}{n_{1}} \wedge \frac{y}{n_{2}}=\sum_{n_{1}, n_{2}=1}^{\infty} a\left(n_{1}, n_{2}\right) . \tag{3.3}
\end{equation*}
$$

Proof. We put $M=\sum_{n_{1}, n_{2}=1}^{\infty} a\left(n_{1}, n_{2}\right)$. Then for any $\varepsilon>0$, there exists $N>0$ such that $\left|\sum_{n_{1}, n_{2}<N} a\left(n_{1}, n_{2}\right)-M\right|<\varepsilon$. If we take x and y sufficiently large such that $x \wedge y>N$, then we have

$$
\begin{aligned}
& \sum_{n_{1} \leq x, n_{2} \leq y} a\left(n_{1}, n_{2}\right) \log \frac{x}{n_{1}} \wedge \frac{y}{n_{2}}=\sum_{n_{1}, n_{2}<N} a\left(n_{1}, n_{2}\right)\left(\log \frac{x}{n_{1}} \wedge \frac{y}{n_{2}}-\log x \wedge y\right) \\
+ & \log x \wedge y \sum_{n_{1}, n_{2}<N} a\left(n_{1}, n_{2}\right)+\sum_{\substack{n_{1} \leq x, n_{2} \leq y \\
n_{1} \wedge n_{2} \geq N}} a\left(n_{1}, n_{2}\right) \log \frac{x}{n_{1}} \wedge \frac{y}{n_{2}}=: I_{1}+I_{2}+I_{3},
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{1} \ll\left(\sup _{n_{1}, n_{2}<N} \log \left|\frac{\frac{x}{n_{1}} \wedge \frac{y}{n_{2}}}{x \wedge y}\right|\right) \sum_{n_{1}, n_{2}<N} a\left(n_{1}, n_{2}\right) \ll \log N \\
& \left|I_{2}-M \log x \wedge y\right|<\varepsilon \log x \wedge y
\end{aligned}
$$

and

$$
I_{3} \ll \log x \wedge y \sum_{\substack{n_{1} \leq x, n_{2} \leq y \\ n_{1} \wedge n_{2} \geq N}} a\left(n_{1}, n_{2}\right) \ll \varepsilon \log x \wedge y
$$

Therefore we have

$$
\limsup _{x, y \rightarrow \infty}\left|\frac{1}{\log x \wedge y} \sum_{n_{1} \leq x, n_{2} \leq y} a\left(n_{1}, n_{2}\right) \log \frac{x}{n_{1}} \wedge \frac{y}{n_{2}}-M\right| \ll 2 \varepsilon .
$$

Since ε is arbitrary, (3.3) holds.
Now we can prove Theorem 1.
Proof of Theorem 1. We put $g=f * \tilde{\mu}$. Noting that $\tilde{\mu} * \tilde{\tau}_{1}=\delta$ we have

$$
\begin{aligned}
& \sum_{n_{1} \leq x, n_{2} \leq y} f\left(n_{1}, n_{2}\right)=\sum_{n_{1} \leq x, n_{2} \leq y}\left(f * \tilde{\mu} * \tilde{\tau}_{1}\right)\left(n_{1}, n_{2}\right)=\sum_{n_{1} \leq x, n_{2} \leq y}\left(g * \tilde{\tau}_{1}\right)\left(n_{1}, n_{2}\right) \\
= & \sum_{d_{1} \delta_{1} \leq x, d_{2} \delta_{2} \leq y} g\left(d_{1}, d_{2}\right) \tilde{\tau}\left(\delta_{1}, \delta_{2}\right)=\sum_{n_{1} \leq x, n_{2} \leq y} g\left(n_{1}, n_{2}\right) \sum_{\delta_{1} \leq \frac{x}{n_{1}, \delta_{2} \leq \frac{y}{n_{2}}}} \tilde{\tau}_{1}\left(\delta_{1}, \delta_{2}\right) .
\end{aligned}
$$

From Lemma 2 we see that this equals

$$
\sum_{n_{1} \leq x, n_{2} \leq y} g\left(n_{1}, n_{2}\right)\left\{\frac{1}{\zeta(2)} \frac{x}{n_{1}} \frac{y}{n_{2}} \log \left(\frac{x}{n_{1}} \wedge \frac{y}{n_{2}}\right)+o\left(\frac{x}{n_{1}} \frac{y}{n_{2}} \log \left(\frac{x}{n_{1}} \wedge \frac{y}{n_{2}}\right)\right)\right\}
$$

Applying Lemma 3 to the function $a\left(n_{1}, n_{2}\right)=g\left(n_{1}, n_{2}\right) / n_{1} n_{2}$, we see that the above equals

$$
\frac{x y \log x \wedge y}{\zeta(2)} \sum_{n_{1}, n_{2}=1}^{\infty} \frac{g\left(n_{1}, n_{2}\right)}{n_{1} n_{2}}+o(x y \log x \wedge y)
$$

which implies (2.2). Thus the proof of Theorem 1 is now complete.

Next we prove several lemmas needed later.
Lemma 4. $\sum_{n_{1} \leq x, n_{2} \leq y} \log n_{1} \wedge n_{2}=x y \log x \wedge y+o(x y \log x \wedge y)$.
Proof. Without loss of generality, we may assume that $y \leq x$. Let $[x]$ denote the greatest integer that is less than or equal to x. Using the well known formula $\sum_{1 \leq n \leq x} \log n=x \log x-x+O(\log x)$, we have

$$
\begin{aligned}
& \sum_{n_{1} \leq x, n_{2} \leq y} \log n_{1} \wedge n_{2}=\sum_{n_{2} \leq y}\left(\sum_{n_{1}=1}^{n_{2}} \log n_{1}+\sum_{n_{1}=n_{2}+1}^{[x]} \log n_{2}\right) \\
= & \sum_{n_{2} \leq y}\left(n_{2} \log n_{2}-n_{2}+O\left(\log n_{2}\right)+\left([x]-n_{2}\right) \log n_{2}\right) \\
= & \sum_{n_{2} \leq y}\left([x] \log n_{2}-n_{2}+O\left(\log n_{2}\right)\right)=[x](y \log y-y+O(\log y))+O\left(y^{2}\right) \\
= & x y \log x \wedge y+o(x y \log x \wedge y) .
\end{aligned}
$$

Lemma 5. $\sum_{n_{1}, n_{2} \leq x} \frac{\log n_{1} \wedge n_{2}}{n_{1} n_{2}}=\frac{1}{3}(\log x)^{3}+o\left((\log x)^{3}\right)$.
Proof. Using Lemma 1 we have

$$
\begin{aligned}
& \quad \sum_{n_{1}, n_{2} \leq x} \frac{\log n_{1} \wedge n_{2}}{n_{1} n_{2}}=\sum_{n_{2} \leq x}\left(\sum_{n_{1} \leq n_{2}} \frac{\log n_{1}}{n_{1} n_{2}}+\sum_{n_{2}<n_{1} \leq x} \frac{\log n_{2}}{n_{1} n_{2}}\right) \\
& =\sum_{n_{2} \leq x}\left(\frac{\left(\log n_{2}\right)^{2}+O(1)}{2 n_{2}}+\frac{\log n_{2}\left(\log x-\log n_{2}+O(1)\right)}{n_{2}}\right) \\
& =\frac{1}{6}(\log x)^{3}+\frac{1}{2}(\log x)^{3}-\frac{1}{3}(\log x)^{3}+o\left((\log x)^{3}\right)=\frac{1}{3}(\log x)^{3}+o\left((\log x)^{3}\right) .
\end{aligned}
$$

Lemma 6. For fixed $\alpha, \beta \geq 0$ and all x, we have

$$
\begin{align*}
\sum_{n_{1}, n_{2} \leq x} \frac{\left(\log n_{1}\right)^{\alpha}\left(\log n_{2}\right)^{\beta} \log \frac{x}{n_{1}} \wedge \frac{x}{n_{2}}}{n_{1} n_{2}}= & \frac{(\log x)^{\alpha+\beta+3}}{(\alpha+1)(\beta+1)(\alpha+\beta+3)} \\
& +o\left((\log x)^{\alpha+\beta+3}\right) \tag{3.4}
\end{align*}
$$

Proof. Using Lemma 1 we see that the left side of (3.4) equals

$$
\sum_{n_{2} \leq x}\left(\sum_{n_{1} \leq n_{2}} \frac{\left(\log n_{1}\right)^{\alpha}\left(\log n_{2}\right)^{\beta} \log \frac{x}{n_{2}}}{n_{1} n_{2}}+\sum_{n_{2}<n_{1} \leq x} \frac{\left(\log n_{1}\right)^{\alpha}\left(\log n_{2}\right)^{\beta} \log \frac{x}{n_{1}}}{n_{1} n_{2}}\right)
$$

$$
\begin{aligned}
&= \sum_{n_{2} \leq x}\left(\sum_{n_{1} \leq n_{2}} \frac{\left(\log n_{1}\right)^{\alpha}\left(\log n_{2}\right)^{\beta}\left(\log x-\log n_{2}\right)}{n_{1} n_{2}}\right. \\
&\left.+\sum_{n_{2}<n_{1} \leq x} \frac{\left(\log n_{1}\right)^{\alpha}\left(\log n_{2}\right)^{\beta}\left(\log x-\log n_{1}\right)}{n_{1} n_{2}}\right) \\
&=\sum_{n_{2} \leq x}\left(\frac{\left(\left(\log n_{2}\right)^{\alpha+1}+O(1)\right)\left(\log n_{2}\right)^{\beta}\left(\log x-\log n_{2}\right)}{(\alpha+1) n_{2}}\right. \\
& \quad+\frac{\left((\log x)^{\alpha+1}-\left(\log n_{2}\right)^{\alpha+1}+O(1)\right)\left(\log n_{2}\right)^{\beta} \log x}{(\alpha+1) n_{2}} \\
&\left.\quad-\frac{\left((\log x)^{\alpha+2}-\left(\log n_{2}\right)^{\alpha+2}+O(1)\right)\left(\log n_{2}\right)^{\beta}}{(\alpha+2) n_{2}}\right) \\
&= \sum_{n_{2} \leq x}\left(\frac{1}{\alpha+1}-\frac{1}{\alpha+2}\right) \frac{(\log x)^{\alpha+2}\left(\log n_{2}\right)^{\beta}-\left(\log n_{2}\right)^{\alpha+\beta+2}}{n_{2}}+o\left((\log x)^{\alpha+\beta+3}\right) \\
&= \frac{1}{(\alpha+1)(\alpha+2)}\left(\frac{(\log x)^{\alpha+\beta+3}}{\beta+1}-\frac{(\log x)^{\alpha+\beta+3}}{\alpha+\beta+3}\right)+o\left((\log x)^{\alpha+\beta+3}\right) \\
&= \frac{(\log x)^{\alpha+\beta+3}}{(\alpha+1)(\beta+1)(\alpha+\beta+3)}+o\left((\log x)^{\alpha+\beta+3}\right) .
\end{aligned}
$$

This proves Lemma 6.
The next lemma gives a partial summation formula in the case of a function of two variables.

Lemma 7. Let $a\left(n_{1}, n_{2}\right)$ be an arithmetic function of two variables and let $M(x, y)=\sum_{n_{1} \leq x, n_{2} \leq y} a\left(n_{1}, n_{2}\right)$. Then we have

$$
\begin{align*}
\sum_{n_{1} \leq x, n_{2} \leq y} \frac{a\left(n_{1}, n_{2}\right)}{n_{1} n_{2}} & =\sum_{\substack{n_{1} \leq x \\
n_{2} \leq y}} \frac{M\left(n_{1}, n_{2}\right)}{n_{1}\left(n_{1}+1\right) n_{2}\left(n_{2}+1\right)}+\sum_{n_{1} \leq x} \frac{M\left(n_{1}, y\right)}{n_{1}\left(n_{1}+1\right)([y]+1)} \\
+\sum_{n_{2} \leq y} & \frac{M\left(x, n_{2}\right)}{n_{2}\left(n_{2}+1\right)([x]+1)}+\frac{M(x, y)}{([x]+1)([y]+1)} \tag{3.5}
\end{align*}
$$

where $[x]$ is the greatest integer that is less than or equal to x.
Proof. We put $M(x . y)=0$ if $x<1$ or $y<1$ for convenience. Then we see that the left side of (3.5) equals

$$
\begin{aligned}
& \sum_{n_{1} \leq x, n_{2} \leq y} \frac{M\left(n_{1}, n_{2}\right)-M\left(n_{1}-1, n_{2}\right)-M\left(n_{1}, n_{2}-1\right)+M\left(n_{1}-1, n_{2}-1\right)}{n_{1} n_{2}} \\
= & \sum_{n_{1} \leq x, n_{2} \leq y} M\left(n_{1}, n_{2}\right)\left\{\frac{1}{n_{1} n_{2}}-\frac{1}{\left(n_{1}+1\right) n_{2}}-\frac{1}{n_{1}\left(n_{2}+1\right)}+\frac{1}{\left(n_{1}+1\right)\left(n_{2}+1\right)}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\sum_{n_{2} \leq y} \frac{M\left(x, n_{2}\right)}{([x]+1) n_{2}}+\sum_{n_{1} \leq x} \frac{M\left(n_{1}, y\right)}{n_{1}([y]+1)}-\sum_{n_{1} \leq x} \frac{M\left(n_{1}, y\right)}{\left(n_{1}+1\right)([y]+1)} \\
& \quad-\sum_{n_{2} \leq y} \frac{M\left(x, n_{2}\right)}{([x]+1)\left(n_{2}+1\right)}+\frac{M(x, y)}{([x+1]+1)([y]+1)} \\
& =\sum_{n_{1} \leq x, n_{2} \leq y} M\left(n_{1}, n_{2}\right) \frac{1}{n_{1}\left(n_{1}+1\right) n_{2}\left(n_{2}+1\right)}+\sum_{n_{2} \leq y} \frac{M\left(x, n_{2}\right)}{([x]+1)}\left(\frac{1}{n_{2}}-\frac{1}{n_{2}+1}\right) \\
& \quad+\sum_{n_{1} \leq x} \frac{M\left(n_{1}, y\right)}{([y]+1)}\left(\frac{1}{n_{1}}-\frac{1}{n_{1}+1}\right)+\frac{M(x, y)}{([x]+1)([y]+1)},
\end{aligned}
$$

which equals the right side of (3.5).
The next lemma is an extension of Proposition 5 in van der Corput [12] to the case of arithmetical functions of two variables.

Lemma 8. Let a, b be arithmetical functions of two variables and let $c=a * b$. For $\alpha, \beta \geq 0$, we assume that

$$
\lim _{x, y \rightarrow \infty} \frac{1}{x y(\log x)^{\alpha}(\log y)^{\beta}} \sum_{n_{1} \leq x, n_{2} \leq y} a\left(n_{1}, n_{2}\right)=A
$$

where A is a constant.
(i) If $\lim _{x, y \rightarrow \infty} \frac{1}{x y} \sum_{n_{1} \leq x, n_{2} \leq y} b\left(n_{1}, n_{2}\right)=B$, where B is a constant, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x y(\log x)^{\alpha+1}(\log y)^{\beta+1}} \sum_{n_{1} \leq x, n_{2} \leq y} c\left(n_{1}, n_{2}\right)=\frac{A B}{(\alpha+1)(\beta+1)} \tag{3.6}
\end{equation*}
$$

(ii) If $\lim _{x, y \rightarrow \infty} \frac{1}{x y \log x \wedge y} \sum_{n_{1} \leq x, n_{2} \leq y} b\left(n_{1}, n_{2}\right)=B$, where B is a constant, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x^{2}(\log x)^{\alpha+\beta+3}} \sum_{n_{1}, n_{2} \leq x} c\left(n_{1}, n_{2}\right)=\frac{A B}{(\alpha+1)(\beta+1)(\alpha+\beta+3)} \tag{3.7}
\end{equation*}
$$

Proof. We first prove (i). We have

$$
\begin{aligned}
\sum_{n_{1} \leq x, n_{2} \leq y} c\left(n_{1}, n_{2}\right) & =\sum_{n_{1} \leq x, n_{2} \leq y}(a * b)\left(n_{1}, n_{2}\right)=\sum_{\ell_{1} m_{1} \leq x, \ell_{2} m_{2} \leq y} a\left(\ell_{1}, \ell_{2}\right) b\left(m_{1}, m_{2}\right) \\
& =\sum_{\ell_{1} m_{1} \leq x, \ell_{2} m_{2} \leq y} a\left(\ell_{1}, \ell_{2}\right)\left(b\left(m_{1}, m_{2}\right)-B\right) \\
+B & \sum_{\ell_{1} m_{1} \leq x, \ell_{2} m_{2} \leq y}\left(a\left(\ell_{1}, \ell_{2}\right)-A\left(\log \ell_{1}\right)^{\alpha}\left(\log \ell_{2}\right)^{\beta}\right)
\end{aligned}
$$

$$
+A B \sum_{\ell_{1} m_{1} \leq x, \ell_{2} m_{2} \leq y}\left(\log \ell_{1}\right)^{\alpha}\left(\log \ell_{2}\right)^{\beta}=: I_{1}+I_{2}+I_{3}
$$

where, by Lemma 7 and Lemma 1,

$$
\begin{aligned}
I_{1} & =\sum_{\ell_{1} \leq x, \ell_{2} \leq y} a\left(\ell_{1}, \ell_{2}\right) \sum_{\substack{m_{1} \leq x / \ell_{1} \\
m_{2} \leq y / \ell_{2}}}\left(b\left(m_{1}, m_{2}\right)-B\right)=\sum_{\ell_{1} \leq x, \ell_{2} \leq y} a\left(\ell_{1}, \ell_{2}\right) o\left(\frac{x y}{\ell_{1} \ell_{2}}\right) \\
& =o\left(x y \sum_{\ell_{1} \leq x, \ell_{2} \leq y} \frac{A \ell_{1} \ell_{2}\left(\log \ell_{1}\right)^{\alpha}\left(\log \ell_{2}\right)^{\beta}}{\ell_{1}\left(\ell_{1}+1\right) \ell_{2}\left(\ell_{2}+1\right)}\right)=o\left(x y(\log x)^{\alpha+1}(\log y)^{\beta+1}\right), \\
I_{2} & =B \sum_{\ell_{1} \leq x, \ell_{2} \leq y}\left(a\left(\ell_{1}, \ell_{2}\right)-A\left(\log \ell_{1}\right)^{\alpha}\left(\log \ell_{2}\right)^{\beta}\right) \sum_{m_{1} \leq x / \ell_{1}, m_{2} \leq y / \ell_{2}} 1 \\
& =B \sum_{\ell_{1} \leq x, \ell_{2} \leq y} \frac{x y}{\ell_{1} \ell_{2}}\left(a\left(\ell_{1}, \ell_{2}\right)-A\left(\log \ell_{1}\right)^{\alpha}\left(\log \ell_{2}\right)^{\beta}\right) \\
& =B \sum_{\ell_{1} \leq x, \ell_{2} \leq y} x y \frac{o\left(\ell_{1} \ell_{2}\left(\log \ell_{1}\right)^{\alpha}\left(\log \ell_{2}\right)^{\beta}\right)}{\ell_{1}\left(\ell_{1}+1\right) \ell_{2}\left(\ell_{2}+1\right)}=o\left(x y(\log x)^{\alpha+1}(\log y)^{\beta+1}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
I_{3} & =A B \sum_{\ell_{1} \leq x, \ell_{2} \leq y}\left(\log \ell_{1}\right)^{\alpha}\left(\log \ell_{2}\right)^{\beta} \sum_{m_{1} \leq x / \ell_{1}, m_{2} \leq y / \ell_{2}} 1 \\
& =A B \sum_{\ell_{1} \leq x, \ell_{2} \leq y} \frac{x y}{\ell_{1} \ell_{2}}\left(\log \ell_{1}\right)^{\alpha}\left(\log \ell_{2}\right)^{\beta} \\
& =\frac{A B}{(\alpha+1)(\beta+1)} x y(\log x)^{\alpha+1}(\log y)^{\beta+1}+o\left(x y(\log x)^{\alpha+1}(\log y)^{\beta+1}\right) .
\end{aligned}
$$

Therefore (3.6) holds. This proves (i).
Next we prove (ii). Similarly we have

$$
\begin{aligned}
& \sum_{n_{1}, n_{2} \leq x} c\left(n_{1}, n_{2}\right)=\sum_{\ell_{1} m_{1} \leq x, \ell_{2} m_{2} \leq x} a\left(\ell_{1}, \ell_{2}\right) b\left(m_{1}, m_{2}\right) \\
& =\sum_{\ell_{1} m_{1} \leq x, \ell_{2} m_{2} \leq x} a\left(\ell_{1}, \ell_{2}\right)\left(b\left(m_{1}, m_{2}\right)-B \log m_{1} \wedge m_{2}\right) \\
& +B \sum_{\ell_{1} m_{1} \leq x, \ell_{2} m_{2} \leq x}\left(a\left(\ell_{1}, \ell_{2}\right)-A\left(\log \ell_{1}\right)^{\alpha}\left(\log \ell_{2}\right)^{\beta}\right) \log m_{1} \wedge m_{2} \\
& +A B \sum_{\ell_{1} m_{1} \leq x, \ell_{2} m_{2} \leq x}\left(\log \ell_{1}\right)^{\alpha}\left(\log \ell_{2}\right)^{\beta} \log m_{1} \wedge m_{2}=: J_{1}+J_{2}+J_{3} .
\end{aligned}
$$

Firstly we have

$$
\begin{aligned}
J_{1} & =\sum_{\ell_{1}, \ell_{2} \leq x} a\left(\ell_{1}, \ell_{2}\right) \sum_{m_{1} \leq x / \ell_{1}, m_{2} \leq x / \ell_{2}}\left(b\left(m_{1}, m_{2}\right)-B \log m_{1} \wedge m_{2}\right) \\
& =\sum_{\ell_{1}, \ell_{2} \leq x} a\left(\ell_{1}, \ell_{2}\right) o\left(\frac{x}{\ell_{1}} \frac{x}{\ell_{2}} \log \frac{x}{\ell_{1}} \wedge \frac{x}{\ell_{2}}\right)
\end{aligned}
$$

Since $\log \frac{x}{k_{1}} \wedge \frac{x}{k_{2}} \leq \log x$, we have by Lemma 7 and Lemma 1

$$
J_{1} \ll o\left(x^{2} \log x\right) \sum_{\ell_{1}, \ell_{2} \leq x} \frac{\left|a\left(\ell_{1}, \ell_{2}\right)\right|}{\ell_{1} \ell_{2}}=o\left(x^{2}(\log x)^{\alpha+\beta+3}\right) .
$$

Secondly we have by Lemma 5

$$
\begin{aligned}
J_{2} & =B \sum_{m_{1}, m_{2} \leq x} \log m_{1} \wedge m_{2} \sum_{\ell_{1} \leq x / m_{1}, \ell_{2} \leq x / m_{2}}\left(a\left(\ell_{1}, \ell_{2}\right)-A\left(\log \ell_{1}\right)^{\alpha}\left(\log \ell_{2}\right)^{\beta}\right) \\
& =B \sum_{m_{1}, m_{2} \leq x}\left(\log m_{1} \wedge m_{2}\right) o\left(\frac{x}{m_{1}} \frac{x}{m_{2}}\left(\log \frac{x}{m_{1}}\right)^{\alpha}\left(\log \frac{x}{m_{2}}\right)^{\beta}\right) \\
& =o\left(x^{2}(\log x)^{\alpha+\beta} \sum_{m_{1}, m_{2} \leq x} \frac{\log m_{1} \wedge m_{2}}{m_{1} m_{2}}\right)=o\left(x^{2}(\log x)^{\alpha+\beta} \cdot \frac{1}{3}(\log x)^{3}\right) \\
& =o\left(x^{2}(\log x)^{\alpha+\beta+3}\right) .
\end{aligned}
$$

Thirdly we have by Lemma 4 and Lemma 6

$$
\begin{aligned}
J_{3} & =A B \sum_{\ell_{1}, \ell_{2} \leq x}\left(\log \ell_{1}\right)^{\alpha}\left(\log \ell_{2}\right)^{\beta} \sum_{m_{1} \leq x / \ell_{1}, m_{2} \leq x / \ell_{2}} \log m_{1} \wedge m_{2} \\
& =A B \sum_{\ell_{1}, \ell_{2} \leq x}\left(\log \ell_{1}\right)^{\alpha}\left(\log \ell_{2}\right)^{\beta}\left(\frac{x}{\ell_{1}} \frac{x}{\ell_{2}} \log \frac{x}{\ell_{1}} \wedge \frac{x}{\ell_{2}}+o\left(\frac{x}{\ell_{1}} \frac{x}{\ell_{2}} \log \frac{x}{\ell_{1}} \wedge \frac{x}{\ell_{2}}\right)\right) \\
& =A B \frac{x^{2}(\log x)^{\alpha+\beta+3}}{(\alpha+1)(\beta+1)(\alpha+\beta+3)}+o\left(x^{2}(\log x)^{\alpha+\beta+3}\right) .
\end{aligned}
$$

From these estimates we have

$$
\sum_{n_{1}, n_{2} \leq x} c\left(n_{1}, n_{2}\right)=A B \frac{x^{2}(\log x)^{\alpha+\beta+3}}{(\alpha+1)(\beta+1)(\alpha+\beta+3)}+o\left(x^{2}(\log x)^{\alpha+\beta+3}\right) .
$$

Thus the proof of Lemma 8 is now complete.
Now we can prove Theorem 2.
Proof of Theorem 2. We first prove (i). We proceed by induction on k. If $k=1$, then (2.4) holds by Theorem 1 in Ushiroya [10]. Let $k \geq 2$ and suppose that (2.4) holds for $k-1$ instead of k. We put $g=f * \mu_{k}$ and $h=g * \tau_{k-1}$. Since

$$
\sum_{n_{1}, n_{2}=1}^{\infty} \frac{\left|g\left(n_{1}, n_{2}\right)\right|}{n_{1} n_{2}}=\sum_{n_{1}, n_{2}=1}^{\infty} \frac{\left|h * \mu_{k-1}\left(n_{1}, n_{2}\right)\right|}{n_{1} n_{2}}<\infty
$$

holds by the induction hypothesis, we obtain

$$
\lim _{x, y \rightarrow \infty} \frac{1}{x y(\log x \log y)^{k-2}} \sum_{n_{1} \leq x, n_{2} \leq y} h\left(n_{1}, n_{2}\right)=C_{k-1} \sum_{n_{1}, n_{2}=1}^{\infty} \frac{g\left(n_{1}, n_{2}\right)}{n_{1} n_{2}} .
$$

Since $f=h * \mathbf{1}$, we have by taking $a=h, b=\mathbf{1}$ and $\alpha=\beta=k-2$ in Lemma 8(i)

$$
\begin{gathered}
\lim _{x, y \rightarrow \infty} \frac{1}{x y(\log x \log y)^{k-1}} \sum_{n_{1} \leq x, n_{2} \leq y} f\left(n_{1}, n_{2}\right) \\
=\frac{1}{(k-1)^{2}} C_{k-1} \sum_{n_{1}, n_{2}=1}^{\infty} \frac{g\left(n_{1}, n_{2}\right)}{n_{1} n_{2}}=C_{k} \sum_{n_{1}, n_{2}=1}^{\infty} \frac{g\left(n_{1}, n_{2}\right)}{n_{1} n_{2}} .
\end{gathered}
$$

This proves (i).
Next we prove (ii). Similarly we proceed by induction on k. If $k=1$, then (2.6) holds by Theorem 1. Let $k \geq 2$ and suppose that (2.6) holds for $k-1$ instead of k. We put $g=f * \tilde{\mu}_{k}$ and $h=g * \tau_{k-1}$. Since

$$
\sum_{n_{1}, n_{2}=1}^{\infty} \frac{\left|g\left(n_{1}, n_{2}\right)\right|}{n_{1} n_{2}}=\sum_{n_{1}, n_{2}=1}^{\infty} \frac{\left|h * \mu_{k-1}\left(n_{1}, n_{2}\right)\right|}{n_{1} n_{2}}<\infty
$$

we have by Theorem 2(i)

$$
\lim _{x, y \rightarrow \infty} \frac{1}{x y(\log x \log y)^{k-2}} \sum_{n_{1} \leq x, n_{2} \leq y} h\left(n_{1}, n_{2}\right)=C_{k-1} \sum_{n_{1}, n_{2}=1}^{\infty} \frac{g\left(n_{1}, n_{2}\right)}{n_{1} n_{2}} .
$$

Since $f=h * \tilde{\tau}_{1}$, we have by taking $a=h, b=\tilde{\tau}_{1}$ and $\alpha=\beta=k-2$ in Lemma 8(ii)

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{1}{x^{2}(\log x)^{2 k-1}} \sum_{n_{1}, n_{2} \leq x} f\left(n_{1}, n_{2}\right) \\
=\frac{1}{(k-1)^{2}(2 k-1)} \frac{C_{k-1}}{\zeta(2)} \sum_{n_{1}, n_{2}=1}^{\infty} \frac{g\left(n_{1}, n_{2}\right)}{n_{1} n_{2}}=\tilde{C}_{k} \sum_{n_{1}, n_{2}=1}^{\infty} \frac{g\left(n_{1}, n_{2}\right)}{n_{1} n_{2}} .
\end{gathered}
$$

Thus the proof of Theorem 2 is now complete.

4. Multiplicative Case

We say that f is a multiplicative function of two variables if f satisfies

$$
f\left(m_{1} n_{1}, m_{2} n_{2}\right)=f\left(m_{1}, m_{2}\right) f\left(n_{1}, n_{2}\right)
$$

for any $m_{1}, m_{2}, n_{1}, n_{2} \in \mathbb{N}$ satisfying $\operatorname{gcd}\left(m_{1} m_{2}, n_{1} n_{2}\right)=1$. It is well known that if f and g are multiplicative functions of two variables, then $f * g$ also becomes a multiplicative function of two variables. The next theorem is an extension of van der Corput's theorem (1.2) to the case in which f is a multiplicative function of two variables.

Theorem 3. Let f be a multiplicative function of two variables and let $k \in \mathbb{N}$.
(i) Suppose

$$
\begin{equation*}
\sum_{p \in \mathcal{P}} \sum_{\substack{\nu_{1}, \nu_{2} \geq 0 \\ \nu_{1}+\nu_{2} \geq 1}} \frac{\left|\left(f * \mu_{k}\right)\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|}{p^{\nu_{1}+\nu_{2}}}<\infty \tag{4.1}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\lim _{x, y \rightarrow \infty} \frac{1}{x y(\log x \log y)^{k-1}} \sum_{\substack{n_{1} \leq x \\ n_{2} \leq y}} f\left(n_{1}, n_{2}\right)=C_{k} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2 k}\left(\sum_{\nu_{1}, \nu_{2} \geq 0} \frac{f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)}{p^{\nu_{1}+\nu_{2}}}\right) \tag{4.2}
\end{equation*}
$$

where $C_{k}=\frac{1}{((k-1)!)^{2}}$.
(ii) Suppose

$$
\begin{equation*}
\sum_{\substack{p \in \mathcal{P}}} \sum_{\substack{\nu_{1}, \nu_{2} \geq 0 \\ \nu_{1}+\nu_{2} \geq 1}} \frac{\left|\left(f * \tilde{\mu}_{k}\right)\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|}{p^{\nu_{1}+\nu_{2}}}<\infty \tag{4.3}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x^{2}(\log x)^{2 k-1}} \sum_{n_{1} \leq x} f\left(n_{1}, n_{2}\right)=\tilde{C}_{k}^{\prime} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2 k+1}\left(\sum_{\nu_{1}, \nu_{2} \geq 0} \frac{f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)}{p^{\nu_{1}+\nu_{2}}}\right), \tag{4.4}
\end{equation*}
$$

where $\tilde{C}_{k}^{\prime}=\zeta(2) \tilde{C}_{k}=\frac{1}{((k-1)!)^{2}(2 k-1)}$.
Remark. In part (ii), we do not deal with:
$\lim _{x, y \rightarrow \infty}\left(x y(\log x \log y)^{k-1} \log x \wedge y\right)^{-1} \sum_{n_{1} \leq x, n_{2} \leq y} f\left(n_{1}, n_{2}\right)$ since it is too complicated and we cannot obtain a simple formula.

Before we prove Theorem 3, we give lemmas needed later.
Lemma 9 (Sándor and Crstici [5] p.107). For $k \in \mathbb{N}$ and $p \in \mathcal{P}$, we have

$$
\mu_{k}\left(p^{\nu_{1}}, p^{\nu_{2}}\right)= \begin{cases}(-1)^{\nu_{1}+\nu_{2}}\binom{k}{\nu_{1}}\binom{k}{\nu_{2}} & \text { if } \nu_{1}, \nu_{2} \leq k \\ 0 & \text { otherwise }\end{cases}
$$

where $\binom{k}{\nu}$ is a binomial coefficient.
Lemma 10. For $p \in \mathcal{P}$ we have

$$
\tilde{\mu}\left(p^{\nu_{1}}, p^{\nu_{2}}\right)=\left\{\begin{array}{cl}
-1 & \text { if } \nu_{1}+\nu_{2}=1, \\
2-p & \text { if } \nu_{1}=\nu_{2}=1, \\
p-1 & \text { if }\left|\nu_{1}-\nu_{2}\right|=1 \text { and } \nu_{1}, \nu_{2} \geq 1, \\
2-2 p & \text { if } \nu_{1}=\nu_{2} \geq 2, \\
0 & \text { otherwise } .
\end{array}\right.
$$

Proof. Let f be the multiplicative function defined by the same formulas as the above. Then, by an elementary calculation, it is easy to see that $(f * \operatorname{gcd})\left(p^{a}, p^{b}\right)=$ $\delta\left(p^{a}, p^{b}\right)$ holds for every $a, b \geq 0$. By the uniqueness of the Dirichlet inverse of the gcd function, we have $f=\tilde{\mu}$.

Now we can prove Theorem 3.
Proof of Theorem 3. We first prove (i). Since the function: $\left(n_{1}, n_{2}\right) \mapsto \frac{\left(f * \mu_{k}\right)\left(n_{1}, n_{2}\right)}{n_{1} n_{2}}$ is multiplicative, we have

$$
\begin{aligned}
& \sum_{n_{1} \leq x, n_{2} \leq y} \frac{\left|\left(f * \mu_{k}\right)\left(n_{1}, n_{2}\right)\right|}{n_{1} n_{2}} \leq \prod_{p \in \mathcal{P}}\left(\sum_{\nu_{1}, \nu_{2} \geq 0} \frac{1}{p^{\nu_{1}+\nu_{2}}}\left|\left(f * \mu_{k}\right)\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|\right) \\
& \quad=\prod_{p \in \mathcal{P}}\left(1+\sum_{\nu_{1}+\nu_{2} \geq 1} \frac{1}{p^{\nu_{1}+\nu_{2}}}\left|\left(f * \mu_{k}\right)\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|\right) \\
& \quad \leq \exp \left(\sum_{p}\left(\sum_{\nu_{1}+\nu_{2} \geq 1} \frac{1}{p^{\nu_{1}+\nu_{2}}}\left|\left(f * \mu_{k}\right)\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|\right)\right)<\infty,
\end{aligned}
$$

where we have used the well known inequality $1+x \leq \exp (x)$ for $x \geq 0$. Therefore (2.4) holds by Theorem 2(i). On the other hand, using Lemma 9 we have

$$
\begin{aligned}
& \sum_{\nu_{1}, \nu_{2} \geq 0} \frac{\left(f * \mu_{k}\right)\left(p^{\nu_{1}}, p^{\nu_{2}}\right)}{p^{\nu_{1}+\nu_{2}}}=\sum_{a_{1}, a_{2}, b_{1}, b_{2}=0}^{\infty} \frac{f\left(p^{a_{1}}, p^{a_{2}}\right) \mu_{k}\left(p^{b_{1}}, p^{b_{2}}\right)}{p^{a_{1}+b_{1}+a_{2}+b_{2}}} \\
& =\sum_{a_{1}, a_{2}=0}^{\infty} \frac{f\left(p^{a_{1}}, p^{a_{2}}\right)}{p^{a_{1}+a_{2}}} \sum_{b_{1}, b_{2}=0}^{k} \frac{(-1)^{b_{1}+b_{2}}\binom{k}{b_{1}}\binom{k}{b_{2}}}{p^{b_{1}+b_{2}}}=\sum_{a_{1}, a_{2}=0}^{\infty} \frac{f\left(p^{a_{1}}, p^{a_{2}}\right)}{p^{a_{1}+a_{2}}}\left(1-\frac{1}{p}\right)^{2 k} .
\end{aligned}
$$

Hence the right side of (2.4) is equal to

$$
C_{k} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2 k}\left(\sum_{\nu_{1}, \nu_{2} \geq 0} \frac{f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)}{p^{\nu_{1}+\nu_{2}}}\right) .
$$

This proves (i).
Next we prove (ii). Similarly we have

$$
\begin{aligned}
& \sum_{m_{1}, m_{2} \leq x} \frac{\left|\left(f * \tilde{\mu}_{k}\right)\left(m_{1}, m_{2}\right)\right|}{m_{1} m_{2}} \leq \prod_{p \in \mathcal{P}}\left(\sum_{\nu_{1}, \nu_{2} \geq 0} \frac{1}{p^{\nu_{1}+\nu_{2}}}\left|\left(f * \tilde{\mu}_{k}\right)\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|\right) \\
& \leq \prod_{p \in \mathcal{P}}\left(1+\sum_{\nu_{1}+\nu_{2} \geq 1} \frac{1}{p^{\nu_{1}+\nu_{2}}}\left|\left(f * \tilde{\mu}_{k}\right)\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|\right) \\
& \quad \leq \exp \left(\sum_{p \in \mathcal{P}}\left(\sum_{\nu_{1}+\nu_{2} \geq 1} \frac{1}{p^{\nu_{1}+\nu_{2}}}\left|\left(f * \tilde{\mu}_{k}\right)\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|\right)\right)<\infty .
\end{aligned}
$$

Therefore (2.6) holds by Theorem 2(ii). On the other hand, we have

$$
\sum_{\nu_{1}, \nu_{2} \geq 0} \frac{\left(f * \tilde{\mu}_{k}\right)\left(p^{\nu_{1}}, p^{\nu_{2}}\right)}{p^{\nu_{1}+\nu_{2}}}=\sum_{a_{1}, a_{2}=0}^{\infty} \frac{f\left(p^{a_{1}}, p^{a_{2}}\right)}{p^{a_{1}+a_{2}}} \sum_{b_{1}, b_{2}=0}^{\infty} \frac{\tilde{\mu}_{k}\left(p^{b_{1}}, p^{b_{2}}\right)}{p^{b_{1}+b_{2}}}
$$

If $k \geq 2$, then noting that $\tilde{\mu}_{k}=\mu_{k-1} * \tilde{\mu}$ we have

$$
\begin{aligned}
& \sum_{b_{1}, b_{2}=0}^{\infty} \frac{\tilde{\mu}_{k}\left(p^{b_{1}}, p^{b_{2}}\right)}{p^{b_{1}+b_{2}}}=\sum_{c_{1}, c_{2}, d_{1}, d_{2}=0}^{\infty} \frac{\mu_{k-1}\left(p^{c_{1}}, p^{c_{2}}\right)}{p^{c_{1}+c_{2}}} \frac{\tilde{\mu}\left(p^{d_{1}}, p^{d_{2}}\right)}{p^{d_{1}+d_{2}}} \\
& =\sum_{c_{1}, c_{2}=0}^{k} \frac{(-1)^{c_{1}+c_{2}}}{p^{c_{1}+c_{2}}}\binom{k-1}{c_{1}}\binom{k-1}{c_{2}} \sum_{d_{1}, d_{2}=0}^{\infty} \frac{\tilde{\mu}\left(p^{d_{1}}, p^{d_{2}}\right)}{p^{d_{1}+d_{2}}} \\
& =\left(1-\frac{1}{p}\right)^{2(k-1)} \sum_{d_{1}, d_{2}=0}^{\infty} \frac{\tilde{\mu}\left(p^{d_{1}}, p^{d_{2}}\right)}{p^{d_{1}+d_{2}}} .
\end{aligned}
$$

Using the relation $\tilde{\mu} * \operatorname{gcd}=\delta$ we have

$$
\left(\sum_{d_{1}, d_{2}=0}^{\infty} \frac{\tilde{\mu}\left(p^{d_{1}}, p^{d_{2}}\right)}{p^{d_{1}+d_{2}}}\right)\left(\sum_{d_{1}, d_{2}=0}^{\infty} \frac{\operatorname{gcd}\left(p^{d_{1}}, p^{d_{2}}\right)}{p^{d_{1}+d_{2}}}\right)=1
$$

where, by an elementary calculation, we can easily derive

$$
\sum_{d_{1}, d_{2}=0}^{\infty} \frac{\operatorname{gcd}\left(p^{d_{1}}, p^{d_{2}}\right)}{p^{d_{1}+d_{2}}}=\sum_{d_{1}, d_{2}=0}^{\infty} \frac{p^{d_{1} \wedge d_{2}}}{p^{d_{1}+d_{2}}}=\frac{1-\frac{1}{p^{2}}}{\left(1-\frac{1}{p}\right)^{3}} .
$$

Therefore we have obtained the following two formulas.

$$
\begin{align*}
\sum_{b_{1}, b_{2}=0}^{\infty} \frac{\tilde{\mu}\left(p^{b_{1}}, p^{b_{2}}\right)}{p^{b_{1}+b_{2}}} & =\frac{\left(1-\frac{1}{p}\right)^{3}}{1-\frac{1}{p^{2}}} \tag{4.5}\\
\sum_{b_{1}, b_{2}=0}^{\infty} \frac{\tilde{\mu}_{k}\left(p^{b_{1}}, p^{b_{2}}\right)}{p^{b_{1}+b_{2}}} & =\left(1-\frac{1}{p}\right)^{2(k-1)} \frac{\left(1-\frac{1}{p}\right)^{3}}{1-\frac{1}{p^{2}}}=\frac{\left(1-\frac{1}{p}\right)^{2 k+1}}{1-\frac{1}{p^{2}}} \quad \text { if } \quad k \geq 2 .
\end{align*}
$$

Hence we see that, for every $k \in \mathbb{N}$, the right side of (2.6) equals

$$
\begin{aligned}
\tilde{C}_{k} \prod_{p \in \mathcal{P}}\left(\sum_{\nu_{1}, \nu_{2} \geq 0} \frac{\left(f * \tilde{\mu}_{k}\right)\left(p^{\nu_{1}}, p^{\nu_{2}}\right)}{p^{\nu_{1}+\nu_{2}}}\right) & =\tilde{C}_{k} \prod_{p \in \mathcal{P}}\left(\sum_{a_{1}, a_{2}=0}^{\infty} \frac{f\left(p^{a_{1}}, p^{a_{2}}\right)}{p^{a_{1}+a_{2}}}\right) \frac{\left(1-\frac{1}{p}\right)^{2 k+1}}{1-\frac{1}{p^{2}}} \\
& =\tilde{C}_{k}^{\prime} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2 k+1}\left(\sum_{\nu_{1}, \nu_{2}=0}^{\infty} \frac{f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)}{p^{\nu_{1}+\nu_{2}}}\right),
\end{aligned}
$$

where $\tilde{C}_{k}^{\prime}=\zeta(2) \tilde{C}_{k}$. Thus the proof of Theorem 3 is now complete.

It is well known (Schwarz and Spilker [6]) that if $f: \mathbb{N} \mapsto \mathbb{C}$ is a multiplicative function satisfying $\sum_{p \in \mathcal{P}}\left(|f(p)-1| / p+\sum_{\nu \geq 2} f\left(p^{\nu}\right) / p^{\nu}\right)<\infty$, then the mean value $M(f)=\lim _{x \rightarrow \infty} x^{-1} \sum_{n \leq x} f(n)$ exists and equals $\prod_{p \in \mathcal{P}}(1-1 / p)\left(\sum_{\nu \geq 0} f\left(p^{\nu}\right) / p^{\nu}\right)$. The following theorem is a generalization of this result.

Theorem 4. Let f be a multiplicative function of two variables and let $k \in \mathbb{N}$.
(i) Suppose

$$
\begin{equation*}
\sum_{p \in \mathcal{P}}\left(\frac{|f(p, 1)-k|+|f(1, p)-k|}{p}+\sum_{\nu_{1}+\nu_{2} \geq 2} \frac{\left|f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|}{p^{\nu_{1}+\nu_{2}}}\right)<\infty . \tag{4.6}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\lim _{x, y \rightarrow \infty} \frac{1}{x y(\log x \log y)^{k-1}} \sum_{\substack{n_{1} \leq x \\ n_{2} \leq y}} f\left(n_{1}, n_{2}\right)=C_{k} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2 k}\left(\sum_{\nu_{1}, \nu_{2} \geq 0} \frac{f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)}{p^{\nu_{1}+\nu_{2}}}\right) \tag{4.7}
\end{equation*}
$$

where $C_{k}=\frac{1}{((k-1)!)^{2}}$.
(ii) Suppose

$$
\begin{equation*}
\sum_{p \in \mathcal{P}}\left(\frac{|f(p, 1)-k|+|f(1, p)-k|}{p}+\frac{|f(p, p)-p|}{p^{2}}+\sum_{\substack{\left.\nu_{1}+\nu_{2} \geq 2 \\ \nu_{1}, \nu_{2}\right) \neq(1,1)}} \frac{\left|f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|}{p^{\nu_{1}+\nu_{2}}}\right)<\infty \tag{4.8}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x^{2}(\log x)^{2 k-1}} \sum_{n_{1}, n_{2} \leq x} f\left(n_{1}, n_{2}\right)=\tilde{C}_{k}^{\prime} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2 k+1}\left(\sum_{\nu_{1}, \nu_{2} \geq 0} \frac{f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)}{p^{\nu_{1}+\nu_{2}}}\right) \tag{4.9}
\end{equation*}
$$

where $\tilde{C}_{k}^{\prime}=\frac{1}{((k-1)!)^{2}(2 k-1)}$.
Proof. We first prove (i). We would like to show that f satisfies (4.1). We have

$$
\sum_{p \in \mathcal{P}} \sum_{\nu_{1}+\nu_{2} \geq 1} \frac{\left|\left(f * \mu_{k}\right)\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|}{p^{\nu_{1}+\nu_{2}}}=: I_{1}+I_{2}
$$

where

$$
\begin{aligned}
I_{1} & =\sum_{p \in \mathcal{P}} \sum_{\nu_{1}+\nu_{2}=1} \frac{\left|\left(f * \mu_{k}\right)\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|}{p^{\nu_{1}+\nu_{2}}}=\sum_{p \in \mathcal{P}} \frac{\left|\left(f * \mu_{k}\right)(p, 1)\right|+\left|\left(f * \mu_{k}\right)(1, p)\right|}{p} \\
& =\sum_{p \in \mathcal{P}} \frac{|f(p, 1)-k|+|f(1, p)-k|}{p}<\infty,
\end{aligned}
$$

and

$$
\begin{aligned}
I_{2} & =\sum_{p \in \mathcal{P}} \sum_{\nu_{1}+\nu_{2} \geq 2} \frac{\left|\left(f * \mu_{k}\right)\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|}{p^{\nu_{1}+\nu_{2}}}=\sum_{p \in \mathcal{P}} \sum_{a_{1}+a_{2}+b_{1}+b_{2} \geq 2} \frac{\left|f\left(p^{a_{1}}, p^{a_{2}}\right) \mu_{k}\left(p^{b_{1}}, p^{b_{2}}\right)\right|}{p^{a_{1}+a_{2}+b_{1}+b_{2}}} . \\
& =\sum_{p \in \mathcal{P}}\left(\sum_{\substack{a_{1}+a_{2}=0 \\
b_{1}+b_{2} \geq 2}}+\sum_{\substack{a_{1}+a_{2}=1 \\
b_{1}+b_{2} \geq 1}}+\sum_{\substack{a_{1}+a_{2} \geq 2 \\
b_{1}+b_{2} \geq 0}}\right) \frac{\left|f\left(p^{a_{1}}, p^{a_{2}}\right) \mu_{k}\left(p^{b_{1}}, p^{b_{2}}\right)\right|}{p^{a_{1}+a_{2}+b_{1}+b_{2}}} \\
& \ll \sum_{p \in \mathcal{P}}\left(\sum_{\substack{a_{1}+b_{2} \geq 2 \\
b_{1}+b_{2} \geq 0}} \frac{1}{p^{b_{1}+b_{2}}}+\sum_{b_{1}+b_{2} \geq 1} \frac{|f(p, 1)|+|f(1, p)|}{p^{1+b_{1}+b_{2}}}+\sum_{b_{1}+p^{2}+p^{2}} \frac{\left|f\left(p^{a_{1}}, p^{a_{2}}\right)\right|}{p^{a_{1}+a_{2}+b_{1}+b_{2}}}\right) \\
& <\infty .
\end{aligned}
$$

Therefore f satisfies (4.1), and hence (4.7) (which is equal to (4.2)) holds by Theorem 3(i). This proves (i).

Next we prove (ii). If $k=1$, then it is easy to see that (4.8) implies (4.3) since $(f * \tilde{\mu})(p, 1)=f(p, 1)-1, \quad(f * \tilde{\mu})(1, p)=f(1, p)-1 \quad$ and $(f * \tilde{\mu})(p, p)=$ $f(p, p)-f(p, 1)-f(1, p)+2-p$ hold by Lemma 10. Let $k \geq 2$. We put $\tilde{f}=f * \tilde{\mu}$. We show that \tilde{f} satisfies (4.6) for $k-1$ instead of k. We first see that
$\sum_{p \in \mathcal{P}} \frac{|\tilde{f}(p, 1)-(k-1)|+|\tilde{f}(1, p)-(k-1)|}{p}=\sum_{p \in \mathcal{P}} \frac{|f(p, 1)-k|+|f(1, p)-k|}{p}<\infty$.
We also have

$$
\sum_{p \in \mathcal{P}} \sum_{\nu_{1}+\nu_{2} \geq 2} \frac{\left|\tilde{f}\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|}{p^{\nu_{1}+\nu_{2}}}=\sum_{p \in \mathcal{P}}\left(\sum_{\nu_{1}+\nu_{2}=2}+\sum_{\nu_{1}+\nu_{2} \geq 3}\right) \frac{\left|\tilde{f}\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|}{p^{\nu_{1}+\nu_{2}}}=: J_{1}+J_{2}
$$

where

$$
J_{1}=\sum_{p \in \mathcal{P}} \sum_{\nu_{1}+\nu_{2}=2} \frac{\left|\tilde{f}\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|}{p^{\nu_{1}+\nu_{2}}}=\sum_{p \in \mathcal{P}} \frac{\left|\tilde{f}\left(p^{2}, 1\right)\right|+|\tilde{f}(p, p)|+\left|\tilde{f}\left(1, p^{2}\right)\right|}{p^{2}} .
$$

Noting that $\tilde{f}\left(p^{2}, 1\right)=f\left(p^{2}, 1\right)-f(p, 1), \quad \tilde{f}(p, p)=f(p, p)-f(p, 1)-f(1, p)+2-p$ and $\tilde{f}\left(1, p^{2}\right)=f\left(1, p^{2}\right)-f(1, p)$ hold by Lemma 10 , we have

$$
J_{1} \ll \sum_{p \in \mathcal{P}} \frac{\left|f\left(p^{2}, 1\right)\right|+|f(p, 1)-k|+|f(p, p)-p|+|f(1, p)-k|+\left|f\left(1, p^{2}\right)\right|+1}{p^{2}},
$$

which implies that $J_{1}<\infty$.
As for J_{2}, since $\left|\tilde{\mu}\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right| \ll 1+p$ holds for every $\nu_{1}, \nu_{2} \geq 0$ by Lemma 10 , we have

$$
J_{2}=\sum_{p \in \mathcal{P}} \sum_{\nu_{1}+\nu_{2} \geq 3} \frac{\left|\tilde{f}\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|}{p^{\nu_{1}+\nu_{2}}}=\sum_{p \in \mathcal{P}} \sum_{a_{1}+a_{2}+b_{1}+b_{2} \geq 3} \frac{\left|f\left(p^{a_{1}}, p^{a_{2}}\right) \tilde{\mu}\left(p^{b_{1}}, p^{b_{2}}\right)\right|}{p^{a_{1}+a_{2}+b_{1}+b_{2}}}
$$

$$
\ll \sum_{p \in \mathcal{P}}\left(\sum_{\nu_{1}+\nu_{2} \geq 2} \frac{1+\left|f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)\right|}{p^{\nu_{1}+\nu_{2}}}\right)<\infty .
$$

Therefore \tilde{f} satisfies (4.6) for $k-1$ instead of k. Hence by Theorem 4(i) we have

$$
\lim _{x, y \rightarrow \infty} \frac{1}{x y(\log x \log y)^{k-2}} \sum_{\substack{n_{1} \leq x \\ n_{2} \leq y}} \tilde{f}\left(n_{1}, n_{2}\right)=C_{k-1} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2(k-1)}\left(\sum_{\substack{\nu_{1} \geq 0 \\ \nu_{2} \geq 0}} \frac{\tilde{f}\left(p^{\nu_{1}}, p^{\nu_{2}}\right)}{p^{\nu_{1}+\nu_{2}}}\right) .
$$

Since $f=\tilde{f} * \tilde{\tau}_{1}$, we have by taking $a=\tilde{f}, b=\tilde{\tau}_{1}$ and $\alpha=\beta=k-2$ in Lemma 8(ii)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{1}{x^{2}(\log x)^{2 k-1}} \sum_{n_{1}, n_{2} \leq x} f\left(n_{1}, n_{2}\right) \\
& =\frac{1}{(k-1)^{2}(2 k-1)} \frac{1}{\zeta(2)} C_{k-1} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2(k-1)}\left(\sum_{\nu_{1}, \nu_{2} \geq 0} \frac{\tilde{f}\left(p^{\nu_{1}}, p^{\nu_{2}}\right)}{p^{\nu_{1}+\nu_{2}}}\right) \\
& =\frac{1}{\zeta(2)} \tilde{C}_{k}^{\prime} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2(k-1)}\left(\sum_{a_{1}, a_{2}, b_{1}, b_{2} \geq 0} \frac{f\left(p^{a_{1}}, p^{a_{2}}\right)}{p^{a_{1}+a_{2}}} \frac{\tilde{\mu}\left(p^{b_{1}}, p^{b_{2}}\right)}{p^{b_{1}+b_{2}}}\right) .
\end{aligned}
$$

By (4.5) we see that the above equals

$$
\begin{aligned}
& \frac{1}{\zeta(2)} \tilde{C}_{k}^{\prime} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2(k-1)} \frac{\left(1-\frac{1}{p}\right)^{3}}{1-\frac{1}{p^{2}}}\left(\sum_{a_{1}, a_{2} \geq 0} \frac{f\left(p^{a_{1}}, p^{a_{2}}\right)}{p^{a_{1}+a_{2}}}\right) \\
& \quad=\tilde{C}_{k}^{\prime} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2 k+1}\left(\sum_{\nu_{1}, \nu_{2} \geq 0} \frac{f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)}{p^{\nu_{1}+\nu_{2}}}\right) .
\end{aligned}
$$

Thus the proof of Theorem 4 is now complete.

5. Examples

Let $\omega(n)=\sum_{p \mid n} 1$ be the counting function of the total number of prime factors of n taken without multiplicity. It is known that for a fixed positive integer k, $\lim _{x \rightarrow \infty} x^{-1}(\log x)^{1-k} \sum_{n \leq x} k^{\omega(n)}=((k-1)!)^{-1} \prod_{p \in \mathcal{P}}(1-1 / p)^{k-1}(1+(k-1) / p)$ (cf. Tenenbaum and $\mathrm{Wu}[7] \mathrm{p} .25$). The following example is an extenstion of this result to the case of a function of two variables.

Example 1. Let $k \in \mathbb{N}$ and let $f\left(n_{1}, n_{2}\right)=k^{\omega\left(n_{1} n_{2}\right)}$. Then we have
$\lim _{x, y \rightarrow \infty} \frac{1}{x y(\log x \log y)^{k-1}} \sum_{\substack{n_{1} \leq x \\ n_{2} \leq y}} f\left(n_{1}, n_{2}\right)=C_{k} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2(k-1)}\left(1+\frac{2(k-1)}{p}+\frac{1-k}{p^{2}}\right)$, where $C_{k}=\frac{1}{((k-1)!)^{2}}$.

Proof. Since $f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)=k$ if $\nu_{1}+\nu_{2} \geq 1$, it is easy to see that f satisfies (4.6). Therefore we can apply Theorem 4(i) to obtain

$$
\begin{aligned}
& \lim _{x, y \rightarrow \infty} \frac{1}{x y(\log x \log y)^{k-1}} \sum_{n_{1} \leq x, n_{2} \leq y} f\left(n_{1}, n_{2}\right)=C_{k} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2 k}\left(1+\sum_{\nu_{1}+\nu_{2} \geq 1} \frac{k}{p^{\nu_{1}+\nu_{2}}}\right) \\
& =C_{k} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2 k}\left(1+\frac{k(2 p-1)}{(p-1)^{2}}\right)=C_{k} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{2(k-1)}\left(1+\frac{2(k-1)}{p}+\frac{1-k}{p^{2}}\right) .
\end{aligned}
$$

Example 2. Let $f(q, n)=\left|c_{q}(n)\right|$ where $c_{q}(n)=\mu(q /(q, n)) \varphi(q) / \varphi(q /(q, n))$ is the Ramanujan sum. Then we have

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2} \log x} \sum_{n_{1}, n_{2} \leq x} f\left(n_{1}, n_{2}\right)=\prod_{p \in \mathcal{P}}\left(1-\frac{3}{p^{2}}+\frac{2}{p^{3}}\right) .
$$

Proof. It is easy to see that $f(p, 1)=f(1, p)=1, \quad f(p, p)=p-1$, $f\left(p^{\nu}, 1\right)=0, f\left(1, p^{\nu}\right)=1$ if $\nu \geq 2$, and

$$
f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)= \begin{cases}\mu^{2}\left(p^{\nu_{1}-\nu_{2}}\right) p^{\nu_{2}} & \text { if } 1 \leq \nu_{2}<\nu_{1} \\ p^{\nu_{1}}(1-1 / p) & \text { if } 1 \leq \nu_{1} \leq \nu_{2}\end{cases}
$$

From these relations, we see that f satisfies (4.8) for $k=1$. After an elementary calculation we obtain

$$
\sum_{\nu_{1}, \nu_{2} \geq 0} \frac{f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)}{p^{\nu_{1}+\nu_{2}}}=\frac{p+2}{p-1}
$$

Therefore we have by (4.9)

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2} \log x} \sum_{n_{1}, n_{2} \leq x} f\left(n_{1}, n_{2}\right)=\tilde{C}_{1}^{\prime} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{3} \frac{p+2}{p-1}=\prod_{p \in \mathcal{P}}\left(1-\frac{3}{p^{2}}+\frac{2}{p^{3}}\right) .
$$

Next we obtain the leading coefficients in (1.3) and (1.4) using Theorem 4.
Example 3. Let $f\left(n_{1}, n_{2}\right)=\sigma\left(\operatorname{gcd}\left(n_{1}, n_{2}\right)\right)$ where $\sigma(n)=\sum_{d \mid n} d$. Then we have

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2} \log x} \sum_{n_{1}, n_{2} \leq x} f\left(n_{1}, n_{2}\right)=1
$$

Proof. Since $f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)=\left(p^{\nu_{1} \wedge \nu_{2}+1}-1\right) /(p-1)$ if $\nu_{1}, \nu_{2} \geq 0$, it is easy to see that f satisfies (4.8) for $k=1$. Therefore we can apply Theorem 4(ii) for $k=1$. After an elementary calculation we obtain

$$
\sum_{\nu_{1}, \nu_{2} \geq 0} \frac{f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)}{p^{\nu_{1}+\nu_{2}}}=\frac{1}{\left(1-\frac{1}{p}\right)^{3}}
$$

Therefore we have by (4.9)

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2} \log x} \sum_{n_{1}, n_{2} \leq x} f\left(n_{1}, n_{2}\right)=\tilde{C}_{1}^{\prime} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{3} \frac{1}{\left(1-\frac{1}{p}\right)^{3}}=1
$$

Example 4. Let $f\left(n_{1}, n_{2}\right)=\varphi\left(\operatorname{gcd}\left(n_{1}, n_{2}\right)\right)$. Then we have

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2} \log x} \sum_{n_{1}, n_{2} \leq x} f\left(n_{1}, n_{2}\right)=\frac{1}{\zeta^{2}(2)} .
$$

Proof. Since $f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)=p^{\nu_{1} \wedge \nu_{2}}(1-1 / p)$ if $\nu_{1}, \nu_{2} \geq 1$, it is easy to see that f satisfies (4.8) for $k=1$. Therefore we can apply Theorem 4 (ii) for $k=1$. After an elementary calculation we obtain

$$
\sum_{\nu_{1}, \nu_{2} \geq 0} \frac{f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)}{p^{\nu_{1}+\nu_{2}}}=\frac{\left(1+\frac{1}{p}\right)^{2}}{1-\frac{1}{p}}
$$

Therefore we have by (4.9)

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2} \log x} \sum_{n_{1}, n_{2} \leq x} f\left(n_{1}, n_{2}\right)=\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{3} \frac{\left(1+\frac{1}{p}\right)^{2}}{1-\frac{1}{p}}=\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p^{2}}\right)^{2}=\frac{1}{\zeta^{2}(2)} .
$$

The proof of the following example is similar.
Example 5. Let

$$
\begin{aligned}
& f_{1}\left(n_{1}, n_{2}\right)=\operatorname{gcd}\left(n_{1}, n_{2}\right) \mu^{2}\left(\operatorname{gcd}\left(n_{1}, n_{2}\right)\right), \\
& f_{2}\left(n_{1}, n_{2}\right)=\operatorname{gcd}\left(n_{1}, n_{2}\right) \mu^{2}\left(\operatorname{lcm}\left(n_{1}, n_{2}\right)\right) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{1}{x^{2} \log x} \sum_{n_{1}, n_{2} \leq x} f_{1}\left(n_{1}, n_{2}\right)=\frac{1}{\zeta^{2}(2)}, \\
& \lim _{x \rightarrow \infty} \frac{1}{x^{2} \log x} \sum_{n_{1}, n_{2} \leq x} f_{2}\left(n_{1}, n_{2}\right)=\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{3}\left(1+\frac{3}{p}\right) .
\end{aligned}
$$

Example 6. Let $f\left(n_{1}, n_{2}\right)=\frac{\phi\left(n_{1}\right) \phi\left(n_{2}\right)}{\operatorname{lcm}\left(n_{1}, n_{2}\right)}$. Then we have

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2} \log x} \sum_{n_{1}, n_{2} \leq x} f\left(n_{1}, n_{2}\right)=\prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{3}\left(1+\frac{3}{p}+\frac{1}{p^{2}}\right) .
$$

Proof. Since $f\left(p^{\nu}, 1\right)=f\left(1, p^{\nu}\right)=1-1 / p$ if $\nu \geq 1$ and
$f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)=(1-1 / p)^{2} p^{\nu_{1} \wedge \nu_{2}}$ if $\nu_{1}, \nu_{2} \geq 1$, it is easy to see that f satisfies (4.8) for $k=1$. Therefore we can apply Theorem 4 (ii) for $k=1$. After an elementary calculation we obtain

$$
\sum_{\nu_{1}, \nu_{2} \geq 0} \frac{f\left(p^{\nu_{1}}, p^{\nu_{2}}\right)}{p^{\nu_{1}+\nu_{2}}}=1+\frac{3}{p}+\frac{1}{p^{2}}
$$

Therefore, using (4.9) for $k=1$, we have the desired result.
Next we obtain the leading coefficients in (1.5) and (1.6).
Example 7. Let $s\left(n_{1}, n_{2}\right)=\sum_{d_{1}\left|n_{1}, d_{2}\right| n_{2}} \operatorname{gcd}\left(d_{1}, d_{2}\right)$. Then we have

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2}(\log x)^{3}} \sum_{n_{1}, n_{2} \leq x} s\left(n_{1}, n_{2}\right)=\frac{2}{\pi^{2}} .
$$

Proof. Since $s=g c d * \mathbf{1}=\tilde{\tau}_{2}$, we have $s * \tilde{\mu}_{2}=\delta$. Therefore (2.5) trivially holds for $k=2$ and (2.6) gives

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2}(\log x)^{3}} \sum_{n_{1}, n_{2} \leq x} s\left(n_{1}, n_{2}\right)=\tilde{C}_{2}^{\prime} \sum_{n_{1}, n_{2} \leq x} \frac{\delta\left(n_{1}, n_{2}\right)}{n_{1} n_{2}}=\frac{2}{\pi^{2}} .
$$

Example 8. Let $c\left(n_{1}, n_{2}\right)=\sum_{d_{1}\left|n_{1}, d_{2}\right| n_{2}} \varphi\left(\operatorname{gcd}\left(d_{1}, d_{2}\right)\right)$. Then we have

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2}(\log x)^{3}} \sum_{n_{1}, n_{2} \leq x} c\left(n_{1}, n_{2}\right)=\frac{12}{\pi^{4}}
$$

Proof. we note that $c=\varphi(\mathrm{gcd}) *$ 1. Since $\varphi(\mathrm{gcd})$ satisfies (4.8) for $k=1$ from the proof of Example 4, we see that $\varphi(\mathrm{gcd})$ also satisfies (2.1) from the proofs of Theorem 4, Theorem 3 and Theorem 2. Therefore we have by Theorem 1 and Example 4

$$
\lim _{x, y \rightarrow \infty} \frac{1}{x y \log x \wedge y} \sum_{n_{1} \leq x, n_{2} \leq y} \varphi\left(\operatorname{gcd}\left(n_{1}, n_{2}\right)\right)=\frac{1}{\zeta^{2}(2)}
$$

Taking $a=\mathbf{1}, b=\varphi(\mathrm{gcd})$ and $\alpha=\beta=0$ in Lemma 8(ii), we have

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{2}(\log x)^{3}} \sum_{n_{1}, n_{2} \leq x} c\left(n_{1}, n_{2}\right)=\frac{1}{3} \frac{1}{\zeta^{2}(2)}=\frac{12}{\pi^{4}}
$$

Remark. According to Novak and Tóth [4], it holds that $c(p, 1)=c(1, p)=2$, $c(p, p)=p+2, c\left(p^{a}, 1\right)=c\left(1, p^{a}\right)=a+1$ if $a \geq 1$, and, moreover, $c\left(p^{a}, p^{b}\right)=2\left(1+p+p^{2}+\ldots+p^{a-1}\right)+(b-a+1) p^{a} \quad$ if $\quad 1 \leq a \leq b$. Using this explicit formulas we can directly show that c satisfies (4.8) for $k=2$ and also can directly calculate (4.9). However, we did not prove in that way for simplicity.

Example 9. Let $A\left(n_{1}, n_{2}\right)=\sum_{d_{1}\left|n_{1}, d_{2}\right| n_{2}} \phi\left(d_{1}\right) \phi\left(d_{2}\right) / \operatorname{lcm}\left(d_{1}, d_{2}\right)$. Then we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{x^{2}(\log x)^{3}} \sum_{n_{1}, n_{2} \leq x} A\left(n_{1}, n_{2}\right)=\frac{1}{3} \prod_{p \in \mathcal{P}}\left(1-\frac{1}{p}\right)^{3}\left(1+\frac{3}{p}+\frac{1}{p^{2}}\right) . \tag{5.1}
\end{equation*}
$$

Proof. Let $g\left(n_{1}, n_{2}\right)=\phi\left(n_{1}\right) \phi\left(n_{2}\right) / \operatorname{lcm}\left(n_{1}, n_{2}\right)$. Since $A=g * \mathbf{1}$, by a similar argument as in Example 8, we see that the left side of (5.1) equals

$$
\frac{1}{3} \lim _{x \rightarrow \infty} \frac{1}{x^{2} \log x} \sum_{n_{1}, n_{2} \leq x} g\left(n_{1}, n_{2}\right) .
$$

By Example 6, it is easy to see that the above equals the right side of (5.1).

References

[1] E. Cesàro, Étude moyenne du plus grand commun diviseur de deux nombres, Annal. di Mat. Pura ed Appli., 13 (1885), 235-250.
[2] E. Cohen, Arithmetical Notes, I. On a theorem of van der Corput, Proc. Amer. Math. Soc., 12 (1961), 214-217.
[3] E. Cohen, Arithmetical functions of a greatest common divisor, I., Proc. Amer. Math. Soc., 11 (1960), 164-171.
[4] W. G. Nowak and L. Tóth, On the average number of subgroups of the group $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$, Int. J. Number Theory, 10 (2014), 363-374.
[5] J. Sándor and B. Crstici, Handbook of Number Theory II, Kluwer Academic Publishers, Dordrecht, 2004.
[6] W. Schwarz and J. Spilker, Arithmetical Functions, Cambridge Univ. Press, 1994.
[7] G. Tenenbaum and J. Wu, Exercices corriges de theorie analytique et probabiliste des nombres, Soc. Math. France, 1996.
[8] L. Tóth, Multiplicative arithmetic functions of several variables: a survey, Mathematics Without Boundaries, Surveys in Pure Mathematics, (eds. Th. M. Rassias, P. Pardalos), Springer, (2014), 483-514.
[9] L. Tóth, A survey of gcd-sum functions, J. Integer Sequences, 13 (2010), Article 10.8.1, 1-23.
[10] N. Ushiroya, On a mean value of a multiplicative function of two variables, Probability and Number Theory - Kanazawa 2005, Adv. Studies in Pure Math., 49, (eds. S. Akiyama, K. Matsumoto, L. Murata \& H. Sugita), (2007) 507-515.
[11] N. Ushiroya, Mean-value theorems for multiplicative arithmetic functions of several variables, Integers, 12 (2012), 989-1002.
[12] J. G. van der Corput, Sur quelques fonctions arithmetique elementaires, Proc. Roy. Acad. Sci, 42 (1939), 859-866.

